LOWER TRIASSIC (INDUAN TO OLENEKIAN) CONODONTS, FORAMINIFERA AND BIVALVES FROM THE AL MAMALIH AREA, DEAD SEA, JORDAN: CONSTRAINTS ON THE P-T BOUNDARY

JOHN H. POWELL1*, ALDA NICORA2, MARIA CRISTINA PERRI3, ROBERTO RETTORI4, RENATO POSENATO5, MICHAEL H. STEPHENSON1, AHMED MASRI6, LETIZIA M. BORLENGHI2 & VALERIO GENNARI4

1*Corresponding author. British Geological Survey, Nottingham NG12 5GG, UK. E-mail: jhp@bgs.ac.uk; mhste@bgs.ac.uk
2 Dipartimento di Scienze della Terra “A. Desio”, Via Mangiagalli 34, 20133 Milano, Italy. E-mail: alda.nicora@unimi.it
3 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Zamboni 67, 40136 Bologna, Italy. E-mail: mariacristina.perri@unibo.it
4 Dipartimento di Fisica e Geologia, Via Alessandro Pascoli, 06123, Perugia, Italy. E-mail: roberto.rettori@unipg.it
5 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44121 Ferrara, Italy. E-mail: psr@unife.it
6 Ministry of Energy and Mineral Resources (MEMR), Geological Mapping Division, Amman, Jordan. E-mail: aiamsri@yahoo.com

Keywords: Permian-Triassic succession; conodonts; foraminifera; bivalves; Jordan.

Abstract. Upper Permian to Lower Triassic successions exposed in the Al Mamalih area, east of the Dead Sea, Jordan record the transition between the alluvial Umm Irna Formation (Upper Permian) and the overlying shallow marine Ma’in Formation (Lower Triassic). The Permian-Triassic boundary is constrained either within a hiatus represented by a sequence boundary between these formations or within ca 15 m of shallow marine beds overlying the boundary. Above the sequence boundary reddened, shallow-marine beds (Himara Member) mark the initial Triassic (presumed early Induan) marine transgression (Himara Member). Absence of both body fossils and vertical infaunal burrows indicates low-diversity ecosystems following the Permian-Triassic extinction event. A gradational upward increase in grey, green and yellow siltstones beds (Nimra Member), accompanied by a concomitant increase in bioturbation (surface traces and infaunal vertical burrows), bivalves and brachiopods, stromatolites, conchostracans and lingulids in the lower part of the Nimra Member indicates colonisation of the substrate under shallow marine conditions during the recovery phase. Shallow-water carbonates in the Nimra Member yielded an abundant, low diversity assemblage of conodonts (e.g. H. aequabilis and H. agordina) and a foraminifera assemblage (Postcladella gr. kalluri-Eearlandia spp.-Anmodiscus jordanensis n. sp.) that are interpreted as euryhaline recovery taxa that characterise the mid-late Induan. Abundant new material has allowed revision of the conodont apparatus and the foraminifera include a new species Anmodiscus jordanensis n. sp. of Induan age. The discovery of the bivalves Claraia bittneri (C. aurita group) and Eumorphothis multiformis is worthy of note. Upper Permian alluvial lithofacies (Jordan) pass basinwards, about 50 km to the northwest, to coeval shallow marine siliciclastic and carbonates in the Negev and Mediterranean coast of Israel.

INTRODUCTION

The transitional Upper Permian to Lower Triassic succession (Figs 1 and 2) outcrops along the margins of the Dead Sea, Jordan (Cox 1924, 1932; Huckriede & Stoppel in Bender 1974; Bandel & Khoury 1981; Makhlof et al. 1991) and has been described in detail in recent papers (Abu Hamad et al. 2008; Stephenson & Powell 2013, 2014; Powell et al. 2016). The succession spans the Late Permian to Early Triassic, the lower age of which has been constrained, in Jordan, by plant macrofossils (Abu Hamad et al. 2008) and palynomorphs (Stephenson & Powell 2013, 2014) in strata interpreted to be of alluvial origin (Umm Irna Formation), and by sparse conodonts, foraminifera and conchostracans (Scholze et al. 2015; Powell et al. 2016) from overlying Lower Triassic rocks of shallow marine origin (Ma’in Formation).
In this paper we describe new sections across the P-T boundary located in the Al Mamalih area, located inland about 7 km to the south-east of the Dead Sea coastal outcrops described earlier. The P-T succession in the Al Mamalih area was first described by Powell & Moh’d (1993), who recognised the importance of the localities at the southernmost outcrop (shoreline margins) of the Permian-Triassic succession in Jordan. We describe conodonts, foraminifera, including a new species (*Ammodiscus jordanensis* n. sp.), and bivalves (including *Claraia*) from thin calcareous sandstones and sandy limestones in the Lower Triassic Nimra Member and from the stratigraphically higher Upper Carbonate Member of the Dardun Formation.

Geological setting

In Jordan, the Permian to Triassic succession sequence thins southward along the Dead Sea shore below the overstepping, unconformable Lower Cretaceous Kurnub Sandstone (Wetzel & Morton 1959; Bender 1974; Moh’d 1989; Powell & Moh’d 1993; Shawabakhe 1998), wedging out just south of the Al Mamalih area (Fig. 1). To the north of Wadi Zarqa Ma’in, the Permian, Triassic and Jurassic succession is more complete and is preserved below the Lower Cretaceous (Kurnub) unconformity (Bandel & Khoury 1981; Powell & Moh’d 1993) reflecting the relative completeness of the Lower Permian to Jurassic succession in north Jordan, as compared to the Dead Sea and Al Mamalih area (this study). This is due to step-like, northerly extensional down-faulting of the succession in pre-Cretaceous (Kurnub) times, probably during the Late Jurassic (Powell & Moh’d 1993).

The Middle to Upper Permian Umm Irna Formation, unconformably overlies Cambrian sandstones (Umm Ishrin Sandstone Formation; Powell 1989; Powell et al. 2014) and, in turn, is overlain by red-bed shallow-marine siliciclastic rocks (Himara Member, Ma’in Formation) passing up to greenish-grey-yellow marine siliciclastic rocks and thin carbonates (Nimra Member) (Powell et al. 2016). Thin limestone (wacke-packstone) beds with shallow scours and bivalve shell lags, yielded a low diversity assemblage of conodonts (e.g. *Hadrodontina aequabilis*) and foraminifera (e.g. “Cornuspira” *ma-bajeri*) that were interpreted as euryhaline taxa characterising the Induan (Powell et al. 2016).
deposition of the overstepping Lower Cretaceous Kurnub Sandstone (Powell & Moh’d 1993).

West of the Dead Sea but offset by a ca 110 km left-lateral shear on the Neogene Dead Sea Transform (Freund et al. 1970), Permian sediments were deposited in a shallow marine environment with inter-fingerling fluvial siliciclastics representing the paleoshoreline in the Negev area (Eshet & Cousminer 1986; Eshet 1990; Hirsch 1975; Korn-green & Zilberman 2017). Farther west, i.e. basinwards, near the present-day coastline of Israel the P-T succession is wholly marine in character (Korn-green et al. 2013).

Paleogeographic reconstructions for the Permian-Triassic interval in the Levant indicate that the region lay about 15 to 20 degrees south of the paleo-equator at the northern margin of the Arabian Platform in a continental to shallow marine setting with the Neo-Tethys Ocean located to the north (Stampfli & Borel 2002; Powell et al. 2016, fig. 4). During high relative sea-level stands, marine transgressions advanced to the south and south east (Alsharhan & Nairn 1997) across the regional Hail-Rutbah Arch in the subsurface of eastern Jordan and Saudi Arabia (Sharland et al. 2001, 2004). The paleogeographical location, together with diverse and prolific macro- and micro-floras from the uppermost Umm Irna Formation (early Wuchiapingian), and the presence of ferralitic paleosols, indicate deposition in a humid-tropical climate (Makhlouf 1987; Makhlouf et al. 1991; Kerp et al. 2006; Stephenson & Powell 2013). Shallow-water siliciclastics with thin carbonate beds were deposited in warm seas at the southeast margin of the basin during the Early Triassic (Induan) transgression (Powell et al. 2016).

Materials and Methods

Measured sections (Fig. 1) were logged at 4 localities (Figs 3 to 4) within faulted horst and graben sections in the Al Mamalih area that expose the Umm Irna and Ma’in formations (Early Wuchiapingian). As noted above, the upper parts of the Lower Triassic Nimra Member are absent due to the overstepping Lower Cretaceous (Kurnub) unconformity. In addition, the carbonate-rich beds in the Dyke Plateau sections (Cliff/Track Section and Roadside Section, Figs 5, 11a) described by Powell et al. (2016) were re-sampled (Sample numbers AN 2-14) for additional conodont/foraminifera faunas. A fourth section was studied adjacent to the Panorama Road (Figs 6, 11b) which comprises the stratigraphically higher Dardun Formation.
Localities were recorded with a high-resolution digital camera and GPS. Thirty-six samples of limestone and sandy limestone were collected for conodont and foraminiferal analysis from the Nimra Member (Ma’in Formation) and the Upper Carbonate Member (Dardun Formation). Stained petrological thin sections of the limestones were produced for foraminiferal and microfacies analysis. Conodonts were extracted by acid leaching in 10% formic acid. Complete and broken conodont elements were picked from the >125-micron fraction of the acid-insoluble residues.

Lithostratigraphy and sedimentology of the Al Mamalih sections

Previous studies of the Umm Irna Formation (Bandel & Khoury 1981; Makhlof 1987; Makhlof et al. 1991; Powell & Moh’d 1993; Dill et al. 2010; Stephenson & Powell 2013) demonstrated depositional environments typified by predominantly fluvial, low-sinuosity and meandering sandstone channels, the latter more common in the upper part, together with epsilon cross-stratification with claystones preserving a diverse and abundant macro-plant assemblage (Abu Hamad 2008). Interfluve sediments comprise finer grained, red-bed sandstone, siltstone and claystone with intermittent ferruginous palaeosol horizons. Organic-rich mudstones and thin im-
mature coals (some with seatearths) are occasionally present. The overlying Triassic Ma'in Formation (Figs 3, 4) comprises red and green (often mottled) claystone, siltstone and fine-grained sandstone (Himara Member), passing up to green, grey, buff and yellow fine-grained sandstone with thin, cross-bedded wackestone – packstone beds.

The principal lithofacies of the Al Mamalih sections are summarized below (Localities 1 and 2). Details of the Dyke Plateau sections are given in Powell et al. (2016), but because the Roadside Section (Locality 3) was extended downwards and re-sampled for fauna (Samples AN 2-12 herein) it is reproduced here with additions. The Panorama Road section (Fig. 6) exposes the Lower Carbonate Member of the overlying Dardun Formation (Bandel & Khoury 1981).

Section 1, Al Mamalih; Ma’in Formation; Himara Member and Nimra Members

This section (Figs 3, 7), spans the Himara and Nimra members of the Ma’in Formation; the base of the Himara Member is poorly exposed but is interpreted, by comparison with Section 2, to lie about 4 m below the base of the section.

The Himara Member (up to 6 m thick) consists of alternating red and mauve siltstone and fine-grained sandstone beds with ripple cross-lamination and desiccation cracks. Trace fossils and body fossils are sparse.
The boundary with the Nimra Member is marked by a colour change to grey, green and yellow, fine-grained calcareous, glauconitic sandstone with ripple cross-lamination, indeterminate surface burrow traces, along with poorly preserved thin-shelled decalcified bivalves and possible conchostracans in the lower 5 m. Above this, yellow and grey colours reflect increasingly carbonate-rich cements in the fine-grained calcareous sandstones interbedded with partly dolomitized (and recrystalized) packstone with fragments of bivalves, crinoids, gastropods and brachiopods; glauconite and phosphate peloids are also present. Bedding plane surfaces reveal poorly preserved bivalves, conchostracans, and abundant surface burrows. Sparse foraminifera include a new species *Ammodiscus jordanensis* n. sp. (see below). The pebbly, coarse-grained Lower Cretaceous Kurnub Sandstone rests unconformably above. Samples AN 13 to AN 18 were collected from the carbonate-rich beds.

Section 2, Al Mamalih; Umm Irna Formation; Ma’in Formation, Himara and Nimra members

This section includes the sequence boundary with the underlying Umm Irna Formation and terminates at the top of a ridge within the Nimra Member (Figs 4, 8); the unconformable Kurnub Sandstone is absent due to erosion. The uppermost 1 m of the Umm Irna Formation is shown in Fig. 8, but the section extends downwards to include the lower unconformable boundary with the Cambrian Umm Ishrin Sandstone (Powell & Moh’d 1993; Powell et al. 2014). Umm Irna Formation lithofacies are similar to those reported from the Dead Sea coastal exposures (Stephenson & Powell 2013) comprising stacked channel sandstones, mostly with granule to coarse-grained, cross-bedded sandstone fill, and overbank sandstones with ferruginous paleosols. However, in contrast to the Dead Sea sections, no fine-grained claystones with plant-rich organic material were seen. This suggests higher fluvial channel velocities in the Al Mamalih area and an absence of meandering channels where plants might be preserved during waning flow.

The lowermost Himara Member comprises red-mauve, fine-grained sandstone with ripple marks and ripple cross-lamination (Fig. 9), and parallel laminated beds with syneresis cracks and desiccation cracks (Fig. 9) on bedding planes. An
Upper Permian to Lower Triassic successions in the Al Mamalih area, Dead Sea, Jordan

Fig. 7 - Al Mamalih section 1, showing the Upper Permian Umm Irna Fm. fluvial sandstone in the foreground and small ridge dipping to the left; red siltstone and fine-grained sandstone of the Himara Member overlain by green-grey calcareous siltstone and sandy limestone of the Nimra Member and the unconformable Cretaceous Kurnub Sandstone above. See Fig. 3 for detailed log.

Fig. 8 - Al Mamalih section 2, showing the Upper Permian Umm Irna Fm. fluvial sandstone (red beds) at the base, red siltstones and fine-grained sandstone of the Himara Member overlain by green-grey calcareous siltstone and sandy limestone of the Nimra Member. The fossiliferous sandy limestone (samples AN 19-24) forms a ridge dipping to the left in a drag fold. Note geologist for scale. See Fig. 4 for detailed log.
upward change to interbedded green fine-grained sandstone is accompanied by traces of thin-shelled bivalves, horizontal circular burrows and indeterminate linear surface-burrow traces. The boundary with the carbonate-rich Nimra Member is marked by green, green-grey and yellow-mauve, calcareous, fine-grained sandstone. Decalcified bivalves, conchostracans and burrow density increases upwards to the top of the ridge (Figs 4, 8) which is marked by a carbonate-rich bed (Samples AN 19 - AN 24). This bed is composed of partly dolomitized, fine-grained sandstone and packstone with fragments of echinoids, bivalves, crinoids; glauconite and phosphate peloids are common. Bedding planes reveal small domal stromatolites and abundant straight (or ‘cuniform’) surface burrows and casts of bivalves (Fig. 10). Foraminifera and conodonts are also present.

Section, 3 Dyke Plateau, Cliff/Track and Roadside Sections; Umm Irna and Ma’in formations.

As noted above, this revised section (Figs 5, 11a) is described in detail in Powell et al. (2016);
however, during the present study the Roadside Section was extended downwards by 2 m, and the carbonate-rich beds in both sections were re-sampled for microfossils (AN 2 - AN 12). The latter comprise fine-grained, sandy limestone, partly dolomitized, and packstone/wakestone with fragments of gastropods, echinoderms, bivalves, serpulid worm tubes and phosphate granules. Sparse foraminifera are present in the Roadside Section.

Biostratigraphy

Conodonts

Twenty-two samples (ca 3 to 4 kg) from the lower Nimra Member (Ma’in Formation) were investigated for conodonts (AN 2-24). Some of the samples (AN series) from the Dyke Plateau sections (Fig. 5) duplicate the samples reported in Powell et

Tab. 1 - Numeric distribution of conodonts in Al Mamalih Graben Section 1

<table>
<thead>
<tr>
<th>Conodont Species</th>
<th>AN13</th>
<th>AN14</th>
<th>AN15</th>
<th>AN16</th>
<th>AN17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadrodontina aequabilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S0</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>S1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>S2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>S3/4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Fragments</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Hadrodontina agordina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>S0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>S3/4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Fragments</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Indeterminated fragments</td>
<td>134</td>
<td>104</td>
<td>70</td>
<td>11</td>
<td>49</td>
</tr>
</tbody>
</table>

Section 4, Panorama Road Section; Upper Carbonate Member, Dardun Formation

The Ma’in Formation is overlain by the mixed carbonate-siliciclastic Dardun Formation (Bandel & Khoury 1981). The latter comprises three members, in upward sequence: the Lower Carbonate Member (11 m thick), the Dardun Sandstone Member (15 m thick) and the Upper Limestone Member (23 m). In the study area, the lower two members form a steep cliff that is largely inaccessible. However, the upper member is accessible adjacent to the Panorama Road and was sampled for microfauna to constrain the age of the beds above the Ma’in Formation. The section (Figs 6, 11) comprises yellow, laminated beds of partly dolomitized packstone and wakestone with thin shelled bivalves, gastropods, crinoids, ooids, peloids and quartz grains with foraminifera in the upper 12.5 m (see below); these are interbedded with softer green, mauve and brown laminated calcareous sandy siltstone and fine-grained sandstone. Ripple cross-lamination and desiccation cracks are present in the lower 10 m. Bedding planes in the uppermost 4 m reveal abundant bivalves.
al. (2016) (see MS series shown in Fig. 5). In addition, the carbonates and sandy limestones from the stratigraphically higher Upper Carbonate Member of the Dardun Formation were also sampled.

The CAI (Colour Alteration Index, Epstein et al. 1977), produced by low-grade metamorphism of the organic matter in the conodonts is 1 to 1.5 corresponding to a burial temperature of 50°-90°C. The conodont fauna is relatively abundant (Figs 12, 13) in the Mai’n Formation, but less abundant in the Dardun Formation (Tabs 1-5). Conodont identification took into account all the elements representing different locational notations in the conodont feeding apparatus. The abundant faunas have resulted in a refinement of the previous study (Powell et al. 2016). Elements in all stages of growth have been obtained in a good state of preservation. The abundance of fragments probably reflects winnowing and concentration of conodont apparatus in a shallow water environment. The conodont faunas in the Nimra Member (Ma’in Formation) are most-
there may be elements belonging to other species. *Hadrodontina aequabilis* is a form-species described by Staesche (1964) from the Werfen Formation in the Dolomites (Southern Alps). Perri (1991), grouping conodont elements from the type area of that form-species, hypothesised a reconstruction of that apparatus. *Hadrodontina agordina*, also found in the Werfen Formation, was described as a multielement species by Perri & Andraghetti (1987). Both apparatuses were interpreted to consist of six elements. The Jordan material has allowed identification of all elements of the apparatus of the two species as being septimembrate. In the lowest sample of the Al Mamalih section 2 (AN 19) the two species co-occur with *Hindeodus postparvus* described by Kozur (1990) “from the Induan *isarcica* Zone, but with its main occurrence above this zone”. Some forms previously included in *Isarcicella isarcica* Huckriede, 1958 (described from the Southern Alps) were excised and included in *Isarcicella staesbei* Dai & Zhang, 1989. The first occurrence of *Is. staesbei* is at stratigraphically lower levels. The former *isarcica* Zone was reconstituted as the *staesbei* and *isarcica* zones. These two marker taxa present morphologies that are easy to recognize and have short stratigraphical ranges. These species do not occur in sample AN 19. The *staesbei* and *isarcica* zones are the third and fourth biozones of the Early Triassic conodont biozonation proposed for the Southern Alps by Perri & Farabegoli (2003); they are easily correlatable with intervals in the Meishan D section, the GSSP of the Permian–Triassic boundary (Farabegoli et al. 2007; Farabegoli & Perri 2012). In the Southern Alps *Hadrodontina aequabilis* first occurs in the
Mazzin Member of the Werfen Formation in the staechei Zone but with its main presence with, or immediately above, the highest occurrence of *Isarcicella isarcica*. Hadrodontina aequabilis enters in the Siusi Member of the Werfen Formation at stratigraphical levels about twenty-seven metres higher (Bulla section, Perri 1991; Farabegoli & Perri 1998; Perri unpubl.). We correlate the conodont-bearing beds of the Nimra Member (Jordan) with those in the Southern Alps above the *isarcica* Zone where *Hadrodontina aequabilis* and *Hd. agordina* co-occur within, and above, the stratigraphic range of *Hindeodus postparvus*. The genus *Hindeodus* became extinct during the Induan (Orchard 2007). Consequently, we date the conodont faunas from the lower Nimra Member as mid Induan.

Conodont systematic palaeontology

Genus Hadrodontina Staesche, 1964

Type species Hadrodontina aequabilis Staesche, 1964.

Hadrodontina aequabilis Staesche, 1964

Fig. 12, 1-19

P element

1964 *Hadrodontina aequabilis* Staesche, p. 275, figs 11, 43-44.

1991 *Hadrodontina aequabilis* Staesche - Perri, Pa element, p. 36, pl. 2, figs 1a-c.

2004 *Hadrodontina aequabilis* Staesche - Perri et al., Pb element, figs 12a-b.

2012 *Hadrodontina aequabilis* Staesche - Farabegoli & Perri, Pa element, pl. 1, fig. 12.

2016 *Hadrodontina/Ellisonia* sp. - Powell et al., Pb element, fig. 9.9.

M element

2016 *Hadrodontina aequabilis* Staesche - Powell et al., Pb element, figs 9.2 (gerontic form), 9.3.

2016 *Hadrodontina aequabilis* Staesche - Perri et al., M element, p. 36, pl. 2, figs 3a-b, 4a-b, 5.

2004 *Hadrodontina aequabilis* Staesche - Perri et al., M element, fig. 16.

2012 *Hadrodontina aequabilis* Staesche - Farabegoli & Perri, M element, pl. 1, fig. 15.

S element

1991 *Hadrodontina aequabilis* Staesche - Perri, M element, p. 36, pl. 2, figs 3a-b, 4a-b, 5.

2004 *Hadrodontina aequabilis* Staesche - Perri et al., M element, fig. 16.

2012 *Hadrodontina aequabilis* Staesche - Farabegoli & Perri, M element, pl. 1, fig. 15.

S element

1991 *Hadrodontina aequabilis* Staesche - Perri, Sb element, p. 36, pl. 2, figs 6a-b.

2004 *Hadrodontina aequabilis* Staesche - Perri et al., Sb element, figs 17a-c.

2012 *Hadrodontina aequabilis* Staesche - Farabegoli & Perri, Sb element, pl. 1, fig. 13.

2016 *Hadrodontina aequabilis* Staesche - Powell et al., Sb element, figs 9.5 and 9.6.

S element

2016 *Hadrodontina aequabilis* Staesche - Powell et al., Pa element, figs 9.4a-c, figs 9.8a-c (gerontic forms).

S element

1991 *Hadrodontina aequabilis* Staesche - Perri, Sc element, p. 36, pl. 2, figs 7a-c, 8a-b.

2004 *Hadrodontina aequabilis* Staesche - Perri et al., Sc element, figs 15a-b.

2012 *Hadrodontina aequabilis* Staesche - Farabegoli & Perri, Sc element, pl. 1, figs 14, 15.

Diagnosis: Apparatus septimembrate comparable to the standard 15-element template of ozarkodinids by Purnell & Donovan (1998) with element notations following Purnell et al. (2000) and Donoghue et al. (2008). It is composed by robust elements bearing discrete denticles with a mainly circular cross-section. They are characterized by a wide, flat to slightly concave basal cavity. A thin groove traverses the wide basal area and, in some elements, expands into a ring surrounding the pit.

Original description: Apparatus seximembrate with Pa element digyrate, Pb digyrate, M digyrate, Sa alate, Sb digyrate, Sc bipennate (Perri 1991). Big units with the characteristic anterior or outer face rounded. Peg-like denticles circular in cross-section. A secondary row of denticles smaller, and alternating with those of the main row, may be present. Abundant white matter. The elements of the apparatus are characterized by a wide, open and flaring basal cavity longitudinally crossed by growth strips and by a deep basal groove. Pit well visible.

Revised description. Septimembrate apparatus composed by P1 angulate, P2 breviform digyrate, M breviform digyrate, S1 alate with posterior process, S2 extensiform digyrate, S2 breviform digyrate and S3/4 bipennate elements.

Fig. 12 - Conodonts from the Nimra Member (Ma‘in Formation) margins of the Dead Sea, Jordan.

Hadrodontina aequabilis Staesche, 1964.

1-4) P elements, a. inner, b. outer views, 1 and 2 sample AN10, Road Side section; 3. sample AN17, 4. sample AN13, Al Mamalih section 1. 5-9) P elements, 5. a., b. inner, c. outer, d. oral views respectively, 6 and 7. a. inner, b. outer views, sample AN17, 8. a. inner, b. outer views, sample AN15, Al Mamalih section 1; 9. a., b. inner, c. outer views, d. oral views respectively, sample AN20, Al Mamalih section 2. 10-12) M elements, a. inner, b. outer views, 10. sample 10, Road Side section; 11. sample AN13, 12. sample AN15, Al Mamalih section 1. 13) S1 element, a. anterior, b. posterior views of one antero-lateral process, sample AN13, Al Mamalih section 1. 14-16) S1 element, 14. a. inner, b. outer, c. oral views respectively, 15. a. inner, b. outer, c. aboral views, sample AN13, 16. a. inner, b. outer, h. oral views, sample AN15, Al Mamalih section 1. 17) S1 element, a., b. inner, c. outer, d. aboral, c. oral views respectively, sample AN13, Al Mamalih section 1. 18-19) S3/4 elements, a. inner, b. outer views, 18. sample AN10, Road Side section; 19. sample AN13, Al Mamalih section 1.

Scale bar 200 µm. All specimens at the same scale.
Upper Permian to Lower Triassic successions in the Al Mamalih area, Dead Sea, Jordan
Elements can reach noteworthy dimensions. Denticles are discrete presenting a mainly circular section. A secondary row of smaller denticles, characteristic of the genus Hadrodontina, may be present, parallel to the main row. The basal area is at its widest at the pit for \(P_1 \), \(P_2 \), M and S \(\frac{3}{4} \), and near it for \(S_1 \) and \(S_\frac{1}{4} \). Growth strips are well expressed. The morphology of the elements \(P_1 \), \(P_2 \), is similar. \(P_1 \) is essentially straight, sometime slightly twisted. \(P_2 \) has longer processes and their distal extremities twist in opposite directions. A characteristic expansion like an ear (sometimes of striking size) is always present in M elements. It occurs at the base of the cusp where the two processes join.

\(P_1 \) element: angulate element straight to slightly twisted. The anterior process bears 4 to 5 denticles and is longer than the posterior one, bearing 2 to 3 denticles. The posterior process bends slightly downwards (Fig. 12, 1-4).

\(P_2 \) element: digyrate element with approximately equal processes. Distal extremities of the two processes twist in opposite directions (Fig. 12, 5-9).

\(M \) element: digyrate, arched element with slightly unequal processes. Characteristically has wide expansion at the base of the cusp (Fig. 12, 10-12).

\(S_0 \) element: alate with posterior process. Anterolateral processes projected downwards, diverging at an angle of ca 90°. Each process bears 4 or 5 denticles (Fig. 12, 13).

\(S_1 \) element: extensiform digyrate with arched outline. Distal extremities of the two processes twist in opposite directions (Fig. 12, 14-16).

\(S_2 \) element: faintly arched, breviform digyrate with slightly unequal processes, bearing 3 or 4 denticles. The process anterior to the cusp is strongly bent inwards. Basal area wider below the cusp and sometimes considerably expanded (Fig. 12, 17).

\(S_{\frac{1}{4}} \) element: bipennate with two disequal processes. The shorter anterior process is slightly curved inwards, sometime downwards, and bears 2-3 denticles (Fig. 12, 18 and 19).

Remarks. On the basis of the description of the form-genus Hadrodontina by Staesche (1964), Sweet (1981) suggested a seximembrate apparatus “like that of genus Furnishius, but under sides of elements flattened rather than cuneiform and dimorphic Pa element”. Reconstruction of the apparatus of Hadrodontina was figured by Sweet (in Robison 1981, fig. 101,1). He selected the form-species Hadrodontina biseriatis Staesche, 1964 as Pa (= \(P_1 \)) element of the Hadrodontina apparatus (Sweet in Robison 1981, fig. 101 - Hadrodontina-1c). Subsequently he located this element in Pb (= \(P_2 \)) position (Sweet 1988, fig. 5.33). The form-species Hadrodontina biseriatis is an angulate unit with a secondary row of denticles on outer side, parallel to main denticle series. Sweet (1988) asserted that the genus Hadrodontina as well as Furnishius and Pachycladina joined during the Early Triassic in shallow-water environments where they were associated with the genus Ellisona, that had evolved during Pennsylvanian. The first three genera, illustrated by Sweet (1988, fig. 5.33), have a seximembrate apparatus with elements that are characterized by wide zones of recessive basal margin; the alate Sa elements lack a posterior process. Perri & Andraghetti (1987) and Perri (1991) reconstructed the apparatus of Hadrodontina anceps and Hd. aequabilis, respectively, from the Campil and Val Badia members and from the Mazzin and Siusi members of the Werfen Formation (Southern Alps). The material was collected from the type area where Staesche (1964) described the form-genus Hadrodontina and several form-species that formed the basis of the apparatuses in their reconstructions. According to Perri (1991) the elements of Hadrodontina aequabilis show a wide, open and flat basal area longitudinally crossed by a deep basal groove. Elements of the stratigraphically higher Hd. anceps display a wide recessive cuneiform basal area ending in a thin groove extending the entire length of the unit. The apparatus of Hadrodontina was described by Perri (1991) as seximembrate with robust elements bearing discrete peglike denticles containing white matter and a possible secondary row of denticles parallel to the main row. No element was known at that time for the \(S_1 \) location. Following Sweet (1988), Sa (= \(S_0 \)) was supposed to lack a posterior process. No \(S_0 \) of Hadrodontina anceps and Hd. aequabilis was identified and figured from the Werfen Formation; in fact, the element identified as Sa and figured by Perri & Andraghetti (1987, Pl. 31 figs 4 a-b) in the apparatus of Hadrodontina anceps was assigned to \(P_1 \), by Donoghue et al. (2008, Appendix 2: Positional homology assignments). Koike et al. (2004) and Koike (2016) in their beautifully preserved and elegantly reconstructed apparatuses of Hadrodontina figured all \(S_1 \) as alate with a posterior process. In the Jordan conodont faunas, unfortunately incomplete elements (but clearly referable to \(S_0 \)) showing traces of the posterior process are con-
sidered as belonging to the *Hadrodontina aequabilis* apparatus. Koike et al. (2004, p. 248, figs 8.1-8.8) on the basis of ellisoid elements collected from level 103 A of the Taho Formation, Shirokawa-cho, Higashi-uwa-gun, Ehime Prefecture, southwestern Japan, just below the Smithian–Spathian boundary, reconstructed an apparatus consisting of eight elements named *Ellisonia* sp. aff. *E. triassica*. Koike (2016, p. 164, figs 2.1-2.16) described and figured an apparatus also from the Taho Formation of Ehime Prefecture, but collected at Limestone Level 1612A and NK01 immediately below the Smithian–Spathian boundary. He referred this apparatus to *Hadrodontina aequabilis* including in the synonymy list all the elements of *Ellisonia* sp. aff. *E. triassica* and some of the apparatus reconstructed by Perri (1991). According to Koike (2016) *Hadrodontina aequabilis* is composed of angulate (palmate) *P*₁ and *P*₂, digyrate *M*, triramous *S*₁₀, extensiform digyrate *S*₁ and *S*₂₁, and bipennate *S*₅⁴, comparable to the standard 15-element template of ozarkodinids by Purnell & Donoghue (1998). Comparing *Hadrodontina aequabilis* figured by Koike (2016, fig. 2) with *Hadrodontina aequabilis* figured by Perri (1991, pl. 2, figs 1-8) and here in Fig. 12 the morphology of the elements of the two apparatuses is dissimilar. The apparatus of Perri (1991), assembled with elements from the Werfen Formation of the Southern Alps, is morphologically close to the form-species *Hadrodontina aequabilis* by Staesche (1964, p. 275, figs 43–44). According to Staesche the form-species is characterized by: “underside slightly concave. The denticles are mostly quite evenly shaped and all inclined towards one end of the branch. The shape is somewhat twisted in itself” “The branch is only weakly curved at the side, but slightly twisted. The lower surface is weakly concave and is longitudinally traversed by a flat keel. At the end of the posterior third of the length, it is expanded into a kind of ring in which the basal pit lies.”. The last feature is visible in Staesche (1964, fig. 44) and in Perri (1991, Pl. 2, fig. 1c). The elements of Koike’s apparatus - with the exception for that in Fig. 2.1 - seem to present reversed cuneiform basal areas closer to those of *Hadrodontina anceps* than to those of *Hadrodontina aequabilis* of Perri (1991). The stratigraphical distributions also seem to be different. In the Southern Alps the species enters in the Induan *staeschei* Zone of Perri and Farabegoli (2003) and seems to extend no higher than the earliest Olenekian (Perri unpubl.). In northernmost Pakistan *Hadrodontina aequabilis* occurs in the *staeschei* and *isarcica* zones at Sakirmul and Torman Gol (Perri et al. 2004). In southwestern Japan it was found immediately below the Smithian–Spathian boundary. We do not follow the systematics proposed by Yang et al. (2014) where *Hadrodontina aequabilis* was synonymised with *Parafurnishius xuanhanensis*. In Pakistan (Perri et al., 2004), in the Southern Alps (Perri & Andraghetti 1987; Perri 1991; Farabegoli & Perri 1998; Nicora & Perri 1999; Perri & Farabegoli 2003; Farabegoli et al. 2007; Farabegoli & Perri 2012) and in Jordan (Powell et al. 2016; present paper) the *P* element of *Parafurnishius xuanhanensis* has never been found, whereas elements of the apparatus of *Hadrodontina aequabilis* (Perri, 1991) are very abundant. On the basis of rich material from the Southern Alps, the reconstruction of the presumed apparatuses of the two species proposed in Perri & Andraghetti (1987) for *Hadrodontina agordina* and in Perri (1991) for *Hadrodontina aequabilis*, our opinion concern two distinct multielement species. The abundant material found in Jordan successions permits revision of both species with identification of all elements of the hypothesised apparatuses.

In the Jordan material, huge gerontic forms with the basal area exaggeratedly expanded have been found (Powell et al. 2016, figs 9.1, 9.2, 9.4, 9.7, 9.8, 9.11). Similar forms occur also in the *Siusi* Mb. of the Werfen Fm. in the Southern Alps (Perri unpubl.).

Occurrence. Ma’in Formation, Nimra Member: Al Mamalih Graben section 1, samples AN 13–AN 17; Al Mamalih section 2, samples AN 19–AN 22; Cliff/Track section, samples AN 4, AN 5 + MS 1, AN 6–AN 7 + MS 2; Separate Cliff section to the north, sample AN 1; Road Side section, samples AN 8 + MS 18, MS 17, AN 10. Dardun Formation, Upper Carbonate Member: Panorama Road section, samples AN 28, AN 30.

Age. Early Triassic, Induan to ?earliest Olenekian.

Hadrodontina agordina
(Perri & Andraghetti, 1987)

Fig. 13, 1-27

P element no synonymy.

P element

1991 *Ellisonia agordina* Perri & Andraghetti - Perri, *Pb* element, p. 34, pl. 1, figs 2a-b.
M element
1987 Ellisonia agordina Perri & Andraghetti, M element, p. 304, pl. 30, figs 3a-b.
1991 Ellisonia agordina Perri & Andraghetti - Perri, M element, p. 34, pl. 1, figs 3a-b.

Sₐ element
1991 Ellisonia agordina Perri & Andraghetti - Perri, Sa element, p. 34, pl. 1, fig 4.

S element
1987 Ellisonia agordina Perri & Andraghetti, Sb element, p. 304, pl. 30, figs 6a-b.
1991 Ellisonia agordina Perri & Andraghetti - Perri, Sb element, p. 34, pl. 1, figs 5a-b.

Sₐ/ₜ element
1987 Ellisonia agordina Perri & Andraghetti, Sc element, p. 304, pl. 30, figs 7a-b.

Original diagnosis: Species with a seximembrate apparatus characterized by an inflated rib at mid-height of the elements.

Revised diagnosis: Apparatus septimembrate comparable to the standard 15-element template of ozarkodinids by Purnell & Donoghue (1998) with element notations following Purnell et al. (2000) and Donoghue et al. (2008). Elements are short and mainly squat with discrete robust denticles. Elements have an inflated rib at about mid-height of the anterior side. The wide reversed basal area is flat to slightly protruding and traversed by a thin basal groove crossing a small pit; growth strips are easily discriminated.

Original description: Septimembrate apparatus constituted by a carminite Pa element, Ph digyrate and bowed out, M digyrate, Sa alate with posterior process, Sb digyrate, Sc bipennate with long posterior process and shorter laterally deflected anterior process (Perri & Andraghetti 1987).

Revised description. Septimembrate apparatus composed by P₁, angulate, P₂, breviform digyrate, M breviform digyrate, S₀, alate with posterior process, S₁, extensiform digyrate, S₂, breviform digyrate and Sₐₜ, bipennate elements.

P₁ element: angulate mainly squat and straight with maximum width at mid-unit, tapering along the posterior process. The anterior process bears 4 or 5 denticles increasing in size towards the cusp, the posterior bears 2 or 3 denticles. The posterior process bends slightly downwards. Basal area wide and flat, sometimes faintly arched. Swelling along the unit is characteristic (Fig. 13, 1-7).

P₂ element: breviform digyrate, presenting the anterior process twisted inwards and bearing 3–4 denticles. It is longer than the posterior process behind the cusp twisted outwards and bearing 2 to 3 denticles. Cusp well developed, clearly differen-
er process bends inwards at the point of juncture with the cusp. Swelling on the outer side characteristic, corresponding with the cusp, similar to that of the other S elements (Figs 13, 18-21).

\(S_{1/4} \) element: bipennate with the shorter anterior process bent inwards and bearing a few denticles. Posterior process with flat basal area. Swelling on the outer side characteristic, corresponding with the cusp (Figs 13, 22-27).

Remarks. Perri & Andraghetti (1987, p. 303, pl. 30) described the new species *E. agordina* from the Lower Triassic succession of the Southern Alps and hypothesised a seximembrate apparatus. The new species was found in the Siusi Member of the Werfen Formation. The presence of a posterior process in the Sa alate element induced Perri & Andraghetti to refer the new species to genus *Ellisonia*. According to Sweet (1988, p. 85) the alate Sa (=S\(_0\)) elements of *Hadrodontina* lack a posterior process - the converse in those of *Ellisonia*. Presence or absence of the posterior process in the S\(_0\) element is not diagnostic (Donoghue et al. 2008). According to Koike (2016, p. 167) “S\(_1\) element with slightly arched processes without bending in the outer lateral process is an important clue in distinguishing the genus *Ellisonia* from other genera of Triassic ellisionids”. Study of Lower Triassic material from Jordan has allowed the identification of seven morphologically distinct types of elements suggesting that the apparatus is septimembrate comparable to the standard 15-element template of ozarkodinids of Purnell & Donoghue (1998). The morphology of the elements constituting the apparatus induces us to assign the species to the genus *Hadrodontina* as also did Koike (2016, fig. 1) though questionably. The P\(_1\) element of *Hadrodontina agordina* is here described and figured for the first time. A P\(_1\) element was not found in the Southern Alps associations. Elements previously assigned to P\(_1\) (=Pa, Perri & Andraghetti 1987, pl. 30, figs 1a-b; Perri 1991, pl. 1, figs 1a-b) are now identified as juvenile S\(_0\) elements.

Occurrence. Ma’in Formation, Nimra Member: Al Mamalah Graben section 1, samples AN 13–AN 17; Al Mamalah section 2, samples AN 19–AN 22, AN 23; Cliff/Track section, samples AN 4, AN 5 + MS 1, AN 6–AN 7 + MS 2; Separate Cliff section to the north, sample AN 1; Road Side section, samples AN 8 + MS 18, AN 10. Dardun Formation, Upper Carbonate Member: Panorama Road section, sample AN 28.

Age
Early Triassic, Induan to ?earliest Olenekian.

Genus Hindeodus Rexroad & Furnish, 1964
Type species *Trichonodella imperfecta* Rexroad, 1937 (= *Spathognathodus crinitus* Youngquist & Miller, 1949).

Hindeodus postparvus Kozur, 1990

\(S_{1/4} \) element: bipennate with the shorter anterior process bent inwards and bearing a few denticles. Posterior process with flat basal area. Swelling on the outer side characteristic, corresponding with the cusp (Figs 13, 18-21).

Remarks. The only P\(_1\) element found is poorly preserved. We nevertheless assigned it to *Hindeodus postparvus* because its lower margin is arched in accordance with the widest point of the basal cavity and because of the robust, radially-arranged denticles. The species is rather rare. Kozur (1996) reported the species in Malaysia (in Metcalfe’s 1995 material) and in Transcaucasia it first appears in the *isarcica* Zone, but its principal occurrence is above this zone. He proposed a *postparvus* Zone immediately above the *isarcica* Zone; it correlates with the lower part of the *equabilis* Zone of Perri & Farabegoli (2003) in the Southern Alps. The *isarcica* Zone of Kozur (1996) is equivalent to the *staeschei* plus *isarcica* zones of Perri & Farabegoli (2003). Chen et al. (2009) reported *Hindeodus postparvus* in association with *Isarcicella staeschei* from the Daye Formation in the Dawen section, Great Bank of Guizhou, Guizhou Province, South China. Therefore, the first appearance datum (FAD) of the species is in the *staeschei* Zone. According to Kolar-Jurkovsek et al. (2011) in the Lukac section in western Slovenia, *Hindeodus postparvus* enters in the *staeschei–isarcica* Zone. The extinction of *Isarcicella isarcica* defines the base of the *postparvus* Zone, but its principal occurrence is above this zone. They define the upper limit of the biozone coincident with the last occurrence datum of *Hindeodus postparvus*.
vus. Brosse et al. (2015) report the species from the Griesbachian Luolou Formation in the Wuzhuan section (Nanpanjiang Basin, Guangxi, South China) from a level stratigraphically higher than Isarcicella isarcica in association with representatives of Hindeodus parvus. Lyu et al. (2017) define a Hindeodus postparvus Zone characterized by the co-occurrence of Hindeodus postparvus, Hi. parvus, and locally Clarkina planata in the upper Griesbachian of the western Hubei Province, South China. The range of the genus Hindeodus is Early Carboniferous (Tournaisian) to Early Triassic (Induan) (Orchard 2007). Hindeodus postparvus may be the last representative of the genus.

A few fragments found in association with the P₄ element showing characteristics of the ramiform species of Hindeodus have been tentatively identified as S₃/₄ of the Hindeodus postparvus apparatus.

Occurrence. Ma’in Formation, Nimra Member: Al Mamalih section 2, sample AN 19.

Age. Induan.

Foraminifera

Thin section analysis of thirty-five samples from the studied stratigraphical sections provides important biostratigraphical data from the foraminifera that allows us to define the age of the Nimra Member (Ma’in Formation) and the stratigraphically higher Upper Carbonate Member (Dardun Formation). The foraminiferal analysis was not performed on samples of the Cliff/Track section (Nimra Member) (Fig. 5) because the samples were not productive. In the other three analysed sections, the diversity of benthic foraminiferal assemblages is low, although they seem to be characteristic, and similar to those from other sections of the Tethyan domain (Song et al. 2016 with bibliography).

Foraminifers are present in the Dyke Plateau Roadside section (Powell et al. 2016) in samples AN 8 and 11 (Figs 5, 11a); they are sparse and are represented respectively by the taxa Postcladella gr. kalhori (Brönnimann et al. 1972) and Earlandia spp. This assemblage has been recognised in many regions around the world mostly within the microbialite microfacies that follows the Permian-Triassic extinction event (Altiner et al. 1980; Altiner & Zaninetti 1981; Groves et al. 2005; Groves et al. 2007; Song et al. 2009). On the basis of these co-occurrences, the studied interval of the Nimra Member (from sample AN 8 to AN 11; Dyke Plateau/Roadside sections) is referred to the Induan.

In the broadly coeval Nimra Member of the Al Mamalih sections (Figs 3-4, 7-8), we only record the presence of the new species *Ammodiscus jordanensis* n. sp. (Fig. 14) in samples AN 14 (Section 1) and AN 20 (Section 2). Their age has been indirectly referred to the Induan, because these samples are correlated with the similar carbonate beds of Nimra Member (Dyke Plateau Roadside section) which is considered Induan in age on the basis of the P. gr. *kalhori*-Earlandia spp. assemblage.

The Panorama Road section (Figs 6, 11b) through the Upper Carbonate Member of the Dardun Formation records important bioevents. The first occurrence (FO), in sample AN 29, of *Postcladella gr. kalhori* (Fig. 15), associated with *Ammodiscus jordanensis* n. sp., *Ammodiscus* spp., and *Glossopteriella* sp. indicates an Induan age. In the majority of lowest Triassic deposits of the Tethyan domain, after the P/T boundary, foraminifers are completely absent. The first record of foraminifers is represented by opportunistic, abundant, morphologically simple and long-ranging forms, such as *Earlandia* spp. and *Postcladella gr. kalhori* (Fig. 15). This assemblage can be identified as composed by ‘disaster forms’ (sensu Fischer & Arthur 1977) in which, based on similar characteristics, *Ammodiscus jordanensis* n. sp. can also be included. Sample AN 31, about 8 m above, records the FO of *Citaella pusilla* (Ho, 1959; Ueno et al. 2018) (Fig. 15) which is also present in AN 32. Taking into account that the assemblage *Postcladella gr. kalhori*-Earlandia spp.-*Ammodiscus jordanensis* n. sp. is considered as Induan in age, whilst *Citaella pusilla* is typical of the Olenekian (Broglia Loriga et al. 1990; Rettori 1995), the stratigraphic interval, from sample AN 29 to AN 32 of the Upper Carbonate Member, spans the Induan-Olenekian boundary interval.

Foraminifera Systematic Palaeontology

(V. Gennari and R. Rettori)

Sample AN 14 collected from 6.5 m above the base of the Nimra Member yielded a new foraminifera species, *Ammodiscus jordanensis* n. sp., described below.

Phylum **FORAMINIFERA** d’Orbigny, 1826

Class **SPIRILLINATA** Mikhalievich, 1992

(=Tubothalamea Pawlowski et al., 2012, part, in Adl et al., 2012)
Subclass **AMMODISCANA** Mikhailovich, 1980
Order **Ammodiscida** Mikhailovich, 1980
Superfamily Ammodiscoidea Reuss, 1862
Family Ammodiscidae Reuss, 1862
Type genus: **Ammodiscus** Reuss, 1862
Type species: **Ammodiscus infenus** Bornemann, 1874

Ammodiscus jordanensis n. sp.

Fig. 14, 1-7

1959 *Ammodiscus multivolutus* Reitlinger - Ho, p. 419, pl. 1, fig. 22-24
1959 *Ammodiscus multivolutus* Reitlinger - Ho, p. 420, pl. 2, fig. 1-2
1975 *Ammodiscus* sp. - Gazdzicki et al., pl. 1, fig. 1
1983 *Ammodiscus multivolutus* Reitlinger - Salaj et al., pl. 1, fig. 1, pl. 6, fig. 1-2
1987 *Ammodiscus* cf. *inaequabilis* Styk - Oravec-Scheffer, p. 165, pl. 15, fig. 2
1988 *Ammodiscus multivolutus* Reitlinger - He, p. 94, pl. 2, fig. 3-4
1997 *Ammodiscus multivolutus* Reitlinger - Bucur et al., p. 46, pl. 3, fig. 15

Derivation of the name: The new species is named from Jordan.

Holotype: The specimen in axial section figured in Fig. 14, 1, from sample AN 14 (Al Mamalih Section 1). The type material is deposited at the Dipartimento di Fisica e Geologia, University of Perugia (Italy).

Material: Specimens from sample AN 20 (Al Mamalih section 2) and from sample AN 29 (Panorama Road section).

Type level: Lower Triassic (Induan), about 6.5 m above the base of the Nimra Member (Ma’in Formation) in the Al Mamalih Section 1 (Fig. 3).

Type locality: Al Mamalih area, ca 5 km north of Wadi Mujib delta, Jordan.

Assemblage: In the type material the new species *Ammodiscus jordanensis* n. sp. has been recorded associated with *Postcladella* gr. *kalbiri* (Brönnimann et al. 1972), *Glomospirella* sp., *Ammodiscus* spp., thin shelled bivalves, echinoderm fragments and conchostracans.

Diagnosis: Species of the genus *Ammodiscus* characterised by six to seven whorls sometimes oscillating. Asymmetrical umbilical depressions. Tubular chamber rectangular to circular in the last whorl.

Description. Test free, discoidal, composed by 6 to 7 evolute whors. Globular proloculus followed by a second, undivided, tubular chamber, planispirally coiled, sometimes oscillating. Depressed umbilici and one umbilicus is more depressed than the other. The tubular chamber, rectangular in outline, slowly increases in width but not in height; in the adult forms, in the last whorl, the tubular chamber becomes nearly circular in outline. Aperture simple at the end of the tubular chamber. The wall is thin, grey, finely agglutinated.

Dimensions (µm)
Diameter of the test: 250-480.
Width of the test in the juvenile stage: 16-39.
Width of the test in the adult stage: 40-60.
Thickness of the wall: 4.5.

Remarks. The new species differs from *Ammodiscus multivolutus* Reitlinger, 1949 from the Carboniferous of Russia because the latter is characterised by the height of the tubular chamber, which gradually increases during the growth and by the presence of one flat side. Furthermore, regarding the nature of the wall, the species *multivolutus* seems not to belong to the genus *Ammodiscus* Reuss as stated by Krainer et al. (2005) who referred the species to the genus *Cornuspira* Schultze, subgenus *Turrispireidae* Reitlinger, (Miliolida). *Ammodiscus jordanensis* n. sp. can be distinguished from the Lower Triassic *Ammodiscus parapriscus* Ho, 1959 because the Chinese species has a small test size, the tubular chambers increase rapidly, and the number of whors is reduced. Ho (1959) also figured *Ammodiscus multivolutus* that we consider to be synonym of *Ammodiscus jordanensis* n. sp. under the name *Ammodiscus multivolutus*. Several other authors reported specimens recorded in the Triassic of Tethyan domain that we have, herein, included in the new species *Ammodiscus jordanensis* n. sp. The peculiar silhouette of the new species allows the taxon to be easily recognised. It could be erroneously confused with un-centred cross-sections of Triassic species of the genus *Glomospirella* Plummer, characterised by a very reduced initial glomospirid stage, such as specimens referred by Ho (1959) to *G. spirillinoidea* (Grozdilova & Glebovskaia, 1948) or *G. vulgaris* Ho, 1959. In the absence of any glomospirid initial stage in all the studied specimens and the finely agglutinated nature of the wall justify the attribution of the species *jordanensis* to the genus *Ammodiscus*.

Fig 14 - Foraminifera from the Induan Nimra Member (Ma’in Formation) (AN 8, 11, 14, 20) and Upper Carbonate Member (Dardun Formation) (AN 29); scale bar 50 µm

1) *Ammodiscus jordanensis* n. sp., Holotype AN 14;
2) *Ammodiscus jordanensis* n. sp. AN 20;
3) *Ammodiscus jordanensis* n. sp. AN 29;
4) *Ammodiscus jordanensis* n. sp. AN 29;
5) *Ammodiscus jordanensis* n. sp. AN 29;
6) *Ammodiscus jordanensis* n. sp. AN 29;
7) *Ammodiscus jordanensis* n. sp. AN 29;
8) *Glomospirella* sp. AN 29;
9) *Postcladella* gr. *kalbiri* (Brönnimann et al. 1972) AN 29;
10) *Postcladella* gr. *kalbiri* (Brönnimann et al. 1972) AN 29;
11) *Postcladella* gr. *kalbiri* (Brönnimann et al. 1972) AN 8;
12) *Earlandia* spp. AN 11.
Stratigraphic and geographic distribution. Induan of Jordan; Lower Triassic of South Szechuan, Jiangsu and Anhui Provinces (“Chialingchang Limestone” s.l.), China; Middle Triassic of western and southern Carpathians and of Transdanubian Central Range (Poland, Romania and Hungary).

Bivalves

The studied material was collected from bed NA 51 of the Al Mamalih section 2 (Nimra Member of the Ma’in Formation) (Fig. 16). The bivalves are mostly preserved as internal moulds and outer casts. All the specimens are disarticulated, but fragmentation is very low, suggesting their burial was rapid. The bivalve assemblage has a low diversity. It contains the following three genera: Claraia, Unioni-

ates and Eumorphotis. The latter genus is represented by only a left valve. Unioni-

tes is present as monotypic assemblages or is associated with the other two genera. Some Claraia valves are encrusted by tube-worms which can be referred to microconchids, a disaster taxon occurring both in shallow and deep marine environments (e.g., He et al. 2012).

The occurrence of a Claraia species (Claraia bittneri Ichikawa, 1958) of the C. aurita group allows the correlation of the Nimra Member Claraia beds with the Claraia aurita group subzone of the Do-

calhori bar. The dissolution of this biocenotic horizon follows He et al. (2007), Carter et al. (2011, 2008a).

This Dinerian biotic crisis is associated by depleted 13C values (Foster et al. 2017). In the Bulla section, the disappearance of Claraia occurs at about 70 m above the base of the Siusi Member (samples BU 49 – BU 50 of Farabegoli & Perri 1998; Posenato 2008a).

In this paper the adopted Bivalvia classification follows He et al. (2007), Carter et al. (2011, simplified) and Hautmann et al. (2013).

Bivalve Systematic palaeontology

Class **BIVALVIA** Linnaeus 1758 in 1758-1759

Order **Pectinida** J. Gray, 1854a

Superfamily **Pterinopectinoidea** Newell, 1938

Family **Pterinopectinidae** Newell, 1938

Genus Claraia Bittner, 1901

Type species: **Postcladella clarae** Emmrich, 1844

Claraia bittneri Ichikawa, 1958

Fig. 16, 1-6, Tab. 6

1901 **Pseudomonotis** (Claraia) tridentina Bittner, p. 589-591, pl. 24, figs 1-9.

1927 **Pseudomonotis** (Claraia) tridentina Bittner - Ogilvie Gordon, pl. 1, fig. 5a-e.

1935 **Claraia tridentina** Bittner - Leonardi, p. 62, pl. 3, fig. 10 (not fig. 9 = C. aurita).

1958 **Claraia bittneri** Ichikawa, p. 138.

1960 **Claraia tridentina** Bittner - Leonardi, pl. 8, fig. 6.

Material: A dozen valves represented by outer casts and internal moulds are available. Only few specimens are entire and not apparently deformed (five right and four left). The majority of valves are located on the lower surface of a fine-grained, cross-bedded sandstone bed (A 1- A 12). They are associated with rare Eumorpho-

tis and Unioni-

tes specimens. A right valve (E1), located on the upper surface of a small slab from a sandstone bed, is slightly deformed.

Measurements (in mm) are presented in Tabs. 6.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Length</th>
<th>Height</th>
<th>Thickness</th>
<th>LA</th>
<th>LV</th>
<th>L/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>45.9</td>
<td>43.1</td>
<td>8.5</td>
<td>18.5</td>
<td>LV</td>
<td>1.06</td>
</tr>
<tr>
<td>A5</td>
<td>42.9</td>
<td>36.3</td>
<td>3.5</td>
<td>13.7</td>
<td>RV</td>
<td>0.20</td>
</tr>
<tr>
<td>A7</td>
<td>37.4</td>
<td>35.5</td>
<td>6.6</td>
<td>12.7</td>
<td>LV</td>
<td>1.05</td>
</tr>
<tr>
<td>A8</td>
<td>41.4</td>
<td>35.1</td>
<td>4.3</td>
<td>13.9</td>
<td>RV</td>
<td>1.18</td>
</tr>
<tr>
<td>A9</td>
<td>37.0</td>
<td>37.3</td>
<td>5.5</td>
<td>10.6</td>
<td>RV</td>
<td>0.15</td>
</tr>
<tr>
<td>A10</td>
<td>34.0</td>
<td>32.2</td>
<td>4.5</td>
<td>12.4</td>
<td>RV?</td>
<td>-</td>
</tr>
<tr>
<td>A11</td>
<td>36.4</td>
<td>29.8</td>
<td>3.2</td>
<td>11.8</td>
<td>LV</td>
<td>-</td>
</tr>
<tr>
<td>A12</td>
<td>29.3</td>
<td>-</td>
<td>4.6</td>
<td>11.8</td>
<td>LV</td>
<td>-</td>
</tr>
<tr>
<td>B1</td>
<td>39.8</td>
<td>41.2</td>
<td>8</td>
<td>14.5</td>
<td>LV</td>
<td>0.97</td>
</tr>
<tr>
<td>E1</td>
<td>35.8</td>
<td>30.2</td>
<td>5.5</td>
<td>11.5</td>
<td>LV</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Tab. 6 - Shell measurements for **Claraia bittneri** Ichikawa, 1958.

Abbreviations: LA, distance of the umbo from the anterior margin; LV, left valve; TV, type of valve.

Fig. 15 - Foraminifera from the Induan-Olenekian Upper Carbonate Member (Dardun Formation) (AN 29, 30,31, 32); scale bar 50 µm

1) **Postcladella** gr. **kalhori** (Brönnimann et al. 1972) AN 29; 2) **Ammodiscus** spp. AN 29; 3) **Ammodiscus** spp. AN 29; 4) **Postcladella** gr. **kalhori** (Brönnimann et al. 1972) AN 29; 5) **Ammodiscus** spp. AN 29; 6) **Postcladella** gr. **kalhori** (Brönnimann et al. 1972) AN 29; 7) **Glomospirella** sp. AN 30; 8) **Citaella** pusilla (Ho, 1959) AN 31; 9) **Citaella** pusilla (Ho, 1959) AN 31; 10) **Citaella** pusilla (Ho, 1959) AN 31; 11) **Citaella** pusilla (Ho, 1959) AN 31; 12) **Citaella** pusilla (Ho, 1959) AN 31.
Description. The shell is large (maximum length of 46 mm and 43 mm in height), slightly retrocrescent, ovoid in outline and slightly longer than high (length/height ratio from 1.05 to 1.2). If compared to the most part of *Claraia* species, both valves are strongly inflated. The left valve inflation (T/H ratio) is about 20% of valve height, slightly greater than that of the right valve (12-15% of valve height). The left umbo extends slightly above hinge (Fig. 16, 6a) and is located one-third to two-fifths of the valve length behind the anterior margin. The left anterior ear is not detectable; the left posterior ear is undeveloped (Fig. 16, 1a). The right anterior ear is well defined and clearly separated from the disc (Fig. 16, 3). The byssal notch is deep and slightly oblique, with a keyhole shape (Fig. 16, 3). The right posterior ear is undeveloped. The right umbonal region shows a wide depression, which extends about one third of valve height (Fig. 16, 2). The valves are almost smooth. Irregular concentric lines and rare wrinkles are sometimes detectable along the marginal regions (Fig. 16, 2, 5). Radial ornaments have been observed in only one left valve (Fig. 15, 1b). They are barely detectable and represented by a few,
widely spaced and narrow costae occurring at the centre of the valve.

Discussion. The genus *Claraia* contains more than a hundred species and subspecies, which reflects an excessive taxonomical splitting (Newell & Boyd 1995), related to high genetic plasticity (Broglio Loriga et al. 1983), taxonomic provincialism (Assereto et al. 1973) and taphonomic bias. Therefore, the *Claraia* classification must be done applying a population-species concept (Posenato et al. 1996).

The *Claraia* population from Jordan belongs to the *Claraia aurita* group (Group 3 of Ichikawa 1958; Nakazawa 1977), the species of which are characterized by prevailing concentric ornamentation, represented by fine concentric lines and rare concentric folds; radial ribs are very weak or absent. The *C. aurita* group was divided by Nakazawa (1977) into two subgroups defined on the occurrence (3a) or absence (3b) of the posterior auricle. The here studied *Claraia* sample falls in the subgroup 3b, which contains the following species: *Claraia bittneri* Ichikawa, 1958, *Claraia griesbachi* (Bittner, 1899), *Claraia perthensis* Dickens & McTavish, 1963 and *Claraia zhenanica* Chen & Liu, 1964. The Jordanian *Claraia* differs from *C. zhenanica*, because the latter species has concentric and radial ornaments decidedly more developed (Chen & Liu in Gu et al. 1976, pl. 32, figs 7-8). *Claraia perthensis*, from western Australia, differs by the presence of a slight sinus along the posterior ear and a byssal notch “largely obsolete” at the adult stage (Dickins & McTavish 1963, pl. 1, figs 2-8). *Claraia griesbachi* has an almost flattened right valve and a byssal notch with subparallel or anteriorly divergent dorsal and ventral margins (Bittner 1899, pl. 1, figs 3, 4).

Claraia bittneri was proposed by Ichikawa (1958) to replace *Pseudomonotis tridentina* Bittner, 1901, an invalid species because of the occurrence of the senior homonym *Pseudomonotis tridentina* Tommasi, 1895 from the Middle Triassic Marmolada Limestone. *Claraia bittneri* was found in the Werfen Formation of Southern Alps (Val di Centa, Valsugana). The Jordanian species of *Claraia* and *C. bittneri* are characterized by the same ornamentation pattern, strong valve inflation, umbonal depression on the right valve, and a deep, obliquely oriented byssal notch represented by a narrow slit with parallel margins (Bittner 1901, pl. 24, fig. 3) or with a keyhole shape (Bittner 1901, pl. 24, fig. 2).

The ornamentation and outline of the Jordanian species of *Claraia* are also similar to *Claraia intermedia* Bittner, 1901, a species proposed on a syntype of *Posidonomya aurita* Hauer (Hauer 1850, pl. 3, fig. 6), which shows intermediate characters between *C. clarai* and *C. aurita*. However, all these three species are characterized by a left posterior auricle clearly separated from the disc (*C. aurita* subgroup 3a of Nakazawa 1977).

Considering the high intraspecific variability of *Claraia*, the great morphological affinities between the Jordanian population and the *C. bittneri* illustrated material, and the occurrence, among the figured *C. bittneri* syntypes, of a valve with an ovoid outline (Bittner 1901, pl. 24, fig. 5), the Jordanian population can be referred to *C. bittneri*.

Age. In the Iranian Elikah Formation, *Claraia aurita* is recorded in the *Gyronites* zone (lower Dienerian; Brühwiler et al. 2008), above *C. intermedia* and *C. radialis* beds (Nakazawa 1977). In the Werfen Formation of the Dolomites (Italy), *C. aurita* is recorded within the *Claraia aurita* beds (Leonardi 1960), which corresponds to the last Alpine *Claraia* subzone (middle Siusi Member) representing the last Alpine *Claraia* subzone (Broglio Loriga et al. 1983, 1990). The upper boundary of the *Claraia aurita* group subzone corresponds to a 6°C negative anomaly, which occurs at about 130 m above the base of Werfen Fm in the Bulla section, within the Dienerian *obliqua* Zone (Horacek et al. 2007; Foster et al. 2017). The lower boundary of the *C. aurita* group subzone corresponds to the disappearance of *C. clarai*, which subzone, corresponding to the lower Siusi Member, has been considered late Griesbachian – earliest Dienerian in age (Broglio Loriga et al. 1983). Therefore, *C. bittneri* suggests an early-middle Dienerian age.

Superfamily Heteropectinoidea Beurlen, 1954

Family Heteropectinidae Beurlen, 1954

Genus *Eumorphotis* Bittner, 1901

Type species *Pseudomonotis telferi* Bittner, 1898

Eumorphotis multiformis (Bittner, 1899)

1899 Pseudomonotis multiformis Bittner, p. 10, pl. 2, figs 15–22.
1986 Eumorphotis multiformis (Bittner, 1899) - Broglio Loriga and Mi- rabella, p. 257-261, pl. 1, fig. 2.
2009 Eumorphotis multiformis (Bittner, 1899) - Kumagae & Nakazawa, p. 162, fig. 144.17 (with synonymies).
2014 Eumorphotis multiformis (Bittner, 1899) - Hoffmann et al., p. 18-19, fig. 11J-L.

* Only selected citations are reported.
Material and measurements: Only a left valve is available. It is represented both as external cast and internal mould with the anterior and posterior margins not completely preserved. The auricles are missing. The valve is about 23 mm long and 26 mm high.

Description. The left valve is moderately inflated, almost equilateral and with a pyriform outline. The umbo is probably orthogyrate; beak, hinge line and auricles not preserved. The ornamentation consists of numerous, slightly knobbed radial ribs of different order, increasing in number by intercalation. About 10 first-order ribs are irregularly intercalated by minor-order ribs. The rib formula, describing the intercalation order among the primary ribs (1, in bold), secondary ribs (2) and riblets (3,4) (e.g. Broglio Loriga & Mirabella 1986), observed along the central part of ventral region, is as follows: 1, 4, 4, 2, 4, 3, 4, 4, 1, 4, 4, 2, 4, 3, 4, 1. The valve is also ornamented by fine growth lines and a deep commarginal growth break which occurs at about 5 mm from the ventral margin. Right valve and internal structure not present or observed.

Discussion. The pyriform outline and an ornamentation pattern characterized by only slightly knobbed, intercalated and multi-order radial ribs are typical of *Eumorphotis multifornis* (Bittner, 1899), a species characterized by a great morphological variability. This species and its varieties and synonymies have been described and discussed in detail by Broglio Loriga and Mirabella (1986). The species has a cosmopolitan distribution (e.g., Kumagae & Nakazawa 2009).

Age. *Eumorphotis multifornis* ranges from the lower Induan (Griesbachian) to lower Olenekian (Smithian). In the Dolomites it appears in the upper Griesbachian *Claraia clara* subzone of the lower Siusi Member and disappears in the Gastropod Oolite Member (Broglio Loriga & Mirabella 1986), latest Dienerian – early Smithian in age (Posenato 2008a, b).

Order *Unionoida* Stoliczka, 1871
Superfamily Anthracosioidea Amalitsky, 1892
Family Anthracosiidae Amalitsky, 1892
Genus *Unionites* Wissmann (in Münster), 1841
Type species: *Unionites muenteri* Wissmann (in Münster), 1841

Unionites bittneri (Frech, 1907)
Upper Permian to Lower Triassic successions in the Al Mamalih area, Dead Sea, Jordan

However, the classification of *Unionites fassaensis* has sometimes been difficult because specimens from the Alps have an almost straight ventral margin, a marked posterior carina and an almost straight ventral margin. In the Jordanian bivalves, an almost straight ventral margin occurs only in an incomplete left (?) valve, but the other characters are not detectable for the specimen incompleteness (Fig. 16, 6b).

Wissmann (in Münster 1841) figured three “Myacites” *fassaensis* syntypes (Wissmann, Unionites bittneri (Frech) and *Unionites* sp. from Jordan. The Jordanian population has a L/H ratio within the range of *Unionites* bittneri (Frech).

The distinction between *Unionites* *fassaensis* and *U.? canadensis* is sometimes difficult because they are characterized by a broad variability, related to population variability, taphonomic bias and inaccurate original diagnosis. *Unionites* *canadensis* is characterized by an elongated and subrectangular outline, an umbo located at about two fifth of dorsal margin, a marked posterior carina and an almost straight ventral margin. In the Jordanian bivalves, an almost straight ventral margin occurs only in an incomplete left (?) valve, but the other characters are not detectable for the specimen incompleteness (Fig. 16, 6b).

Tab. 7 - Shell measurements for *Unionites* *bittneri*.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Length (mm)</th>
<th>Height (mm)</th>
<th>LA</th>
<th>L/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissmann 1841 lectotypus</td>
<td>33.00</td>
<td>21.00</td>
<td>12.00</td>
<td>1.57</td>
</tr>
<tr>
<td>Hauer 1850</td>
<td>27.00</td>
<td>17.00</td>
<td>12.00</td>
<td>1.59</td>
</tr>
<tr>
<td>Bittner 1899</td>
<td>25.00</td>
<td>15.00</td>
<td>12.00</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>19.00</td>
<td>12.00</td>
<td>6.00</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>17.00</td>
<td>12.00</td>
<td>6.00</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>16.00</td>
<td>10.50</td>
<td>5.00</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>13.00</td>
<td>6.00</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>12.00</td>
<td>7.00</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>16.00</td>
<td>11.00</td>
<td>6.00</td>
<td>1.45</td>
</tr>
<tr>
<td>Wittenburg 1908</td>
<td>37.00</td>
<td>24.00</td>
<td>12.00</td>
<td>1.54</td>
</tr>
<tr>
<td>Ogilvie Gordon 1927</td>
<td>29.00</td>
<td>19.00</td>
<td>12.00</td>
<td>1.53</td>
</tr>
<tr>
<td>Leoniardi 1935</td>
<td>20.00</td>
<td>14.00</td>
<td>7.00</td>
<td>1.43</td>
</tr>
<tr>
<td>Newell & Kummel 1942</td>
<td>34.00</td>
<td>21.00</td>
<td>7.00</td>
<td>1.62</td>
</tr>
<tr>
<td>Ciriacks 1963</td>
<td>32.00</td>
<td>21.00</td>
<td>7.00</td>
<td>1.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Length (mm)</th>
<th>Height (mm)</th>
<th>LA</th>
<th>L/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bittner 1901</td>
<td>8.50</td>
<td>6.50</td>
<td>3.00</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>8.50</td>
<td>3.00</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>11.50</td>
<td>9.00</td>
<td>3.50</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>13.00</td>
<td>10.00</td>
<td>4.00</td>
<td>1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Length (mm)</th>
<th>Height (mm)</th>
<th>LA</th>
<th>L/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freech 1907</td>
<td>25.00</td>
<td>20.00</td>
<td>7.00</td>
<td>1.25</td>
</tr>
<tr>
<td>Ogilvie Gordon 1927</td>
<td>15.00</td>
<td>11.50</td>
<td>5.00</td>
<td>1.30</td>
</tr>
<tr>
<td>Leoniardi 1935</td>
<td>18.00</td>
<td>14.00</td>
<td>7.00</td>
<td>1.29</td>
</tr>
<tr>
<td>Neri & Posenato 1985</td>
<td>23.00</td>
<td>12.00</td>
<td>1.00</td>
<td>1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Length (mm)</th>
<th>Height (mm)</th>
<th>LA</th>
<th>L/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan specimens</td>
<td>15.10</td>
<td>12.30</td>
<td>6.50</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>8.20</td>
<td>6.50</td>
<td>3.60</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>10.40</td>
<td>7.60</td>
<td>4.20</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>19.50</td>
<td>14.60</td>
<td>9.00</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>21.80</td>
<td>15.90</td>
<td>10.00</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>14.70</td>
<td>10.90</td>
<td>5.00</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>19.10</td>
<td>14.30</td>
<td>7.80</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>13.30</td>
<td>10.00</td>
<td>3.50</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>27.20</td>
<td>21.80</td>
<td>11.70</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>9.60</td>
<td>7.80</td>
<td>4.00</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Tab. 7 - Shell measurements for *Unionites* *bittneri*.

The specimens from the literature, accepted here as reference for the species, have been measured on the author's figures from the literature; in bold, the here proposed lectotypes. Abbreviations: LA, distance of the umbo from the anterior margin. The measurements have been plotted in the scatter diagram of Fig. 17.
considered the lectotype of "M." fassaensis, because Wissmann (in Münster 1841) described it as not deformed. It is a right valve with a rather elongated ovoid outline (L/H ratio of 1.65). The specimen of fig. 2c (considered as deformed by Wissmann in Münster 1841) is smaller and has a suborbicular outline (L/H ratio 1.08), while the specimen of fig. 2b is clearly deformed. "Myacites" fassaensis has been subsequently described and figured by many authors (see Kumagae & Nakazawa 2009 for a complete synonym list). The specimens included within this species have a L/H mean of 1.5 (from 1.4 to 1.6; e.g., Hauer 1850; Bittner 1899; Wittenburg 1908; Ogilvie Gordon 1927; Leonardi 1935; Fig. 17).

The Jordanian specimens show affinities with the figured material of "Myacites" fassaensis (e.g., Wittenburg 1908; Ogilvie Gordon 1927; Leonardi 1935). However, the former has a lower L/H ratio, ranging from 1.23 to 1.37. The Jordanian "Myacites" have an ovoid outline shorter than the most part of the illustrated specimens of "M." fassaensis. A short ovoid outline characterizes "Myacites" fassaensis var. brevis Bittner 1901 from the Early Triassic of Transdanubian Mountain (Hungary). Frech (1907) noted that the Bittner's subspecies was a juvenile homonym of an Agassiz's species. Moreover, there is another Unionites var. brevis in literature. It is a species created by Schauroth (1857) on material from the Middle Triassic of Germany, which has a L/H ratio of 1.6. Frech (1907) replaced the name of Bittner's variety as follows: Anoplophora fassaensis mut. bittneri Frech, 1907.

The Jordanian specimens are not affected by relevant deformation, therefore their biometric values record a population variability without taphonomic bias. On the basis of the L/H ratio range lower (from 1.24 to 1.32) than that (from 1.42 to 1.67) of the specimens referred in the classical literature of the 19th and 20th centuries to Unionites fassaensis this population is classified into the Frech's variety, here raised at specific level.

Age. Unionites brevis has a wide stratigraphic distribution. In the Werfen Formation, it has been reported from the Induan Claraia Zone (Leonardi 1935) to the upper Olenekian Dinarites beds (Neri & Posenato 1985; Posenato 1992).

Palynology of the Umm Irna Formation

No new palynological data was obtained during the present study because organic-rich claystone beds that previously yielded palynomorphs and plant macro-flora from the Upper Permian Umm Irna Formation in the Dead Sea coastal exposures are absent in the Al Mamali area. In summary, the palynological (Stephenson & Powell 2013, 2014) and plant macro-fossil data (Kerp et al. 2006; Abu Hamad et al. 2008) from the Dead Sea exposures including the common occurrence of the distinctive trisulcate pollen Pretricolpollenites bharadwaji suggests an age range from latest Permian to Triassic for the Umm Irna Formation.

Discussion

Previous studies (Stephenson & Powell 2013; Powell et al. 2016) demonstrated that the Permian-Triassic (P-T) boundary in Jordan is marked by a major sequence boundary which is equivalent to Arabian Plate lowstand and overlying transgressive systems tract Tr 10 of Sharland et al. (2001, 2004). It separates the underlying alluvial plain lithofacies (Umm Irna Formation), of late Permian age, from the shallow marine lithofacies (Ma’in Formation) of Early Triassic age (Powell et al. 2016). These authors suggested that the constrained age of the section between the top of the Umm Irna Formation (based on palynomorphs and plant macro-flora) and the lowest limestone bed in the Nimra Member (Ma’in Formation) (based on conodonts and foraminifera) indicates that the section contains the Permian-Triassic boundary either within the hiatus represented by the sequence boundary or within the lower marine beds (i.e. the Himara Member and lowermost Nimra Member) above the sequence boundary. This stratigraphical interval, about 15 m thick, appears to span the most significant extinction event in the Phanerozoic (Wignall 2001; Benton & Twitchett 2003; Heydari & Hassanzadeh 2003). A latest Permian age based on the presence of abundant Pretricolpollenites bharadwaji has been determined for the uppermost alluvial plain sediments preserved immediately below the sequence boundary (Stephenson & Powell 2013, 2014). Powell et al. (2016) demonstrated the presence of conodonts (e.g. Hadrodontina aquabilis) and foraminifera (e.g. "Cornuspira" mahajeri) from thin wackestones in the lower Nimra Member exposed near the Dead Sea shore, that indicated an Early Triassic (Induan) age for the Nimra Member.
Coeval Upper Permian to Lower Triassic rocks were first described earlier (Powell & Moh’d 1993) from the Al Mamalih area located about 7 km inland and to the south-east of the Dead Sea sections, but their precise age was not known. Re-sampling of the limestones from the previously reported Dead Sea sections and detailed logging and sampling of the Al Mamalih sections has revealed an abundant, but low diversity fauna of conodonts, bivalves and foraminifera from the Lower Triassic beds. Abundant elements of the conodont apparatus have allowed a better understanding of the morphology of the key taxa *Hadrondontina aequabilis* Staesche, 1964 and *Hadrondontina agordina* (Perri & Andraghetti 1987). These species are known to have favoured shallow water environments and were euryhaline, thus tolerant of restricted marine environments. Similarly, the wackestones yielded a low diversity foraminifera assemblage from the Nimra Member in the Al Mamalih sections, represented by the new species *Ammodiscus jordanensis*. This taxon together with “*Cornuspira* mahajeri” reported previously from the Dead Sea sections (Powell et al. 2016) is also interpreted as opportunistic ‘disaster species’ (Groves et al. 2005) characteristic of the survival phase after the latest Permian mass extinction event. Other disaster taxa are represented by the bivalves *Claraia, Eumorphotis* and *Unionites*, which dominate the shallow benthic marine communities throughout Tethys and Panthalassa realms. These bivalves thrived mostly during the Induan, in the aftermath of the end Permian extinction (Hallam & Wignall 1997). The presence of low angle cross-stratification in the limestones together with crinoid, echinoid, gastropods fragments, abraded fragments of conodonts and glauconitic/phosphatic peloids further indicate a high energy, shallow water depositional environment.

The red/mauve Himara Member (Figs 7, 8, 9), above the sequence boundary, is faunally barren except for sparse, surface trace fossils in ripple-marked siltstones and fine-grained sandstones (Fig. 9b). Wave ripples and desiccation cracks indicate a shallow water setting and temporary emergence. Red colouration may be due to reworking of the underlying Umm Irna alluvial red-beds rather than primary oxidative reddening. Sedimentary structures, trace fossils and macro/micro-fauna indicate a shallow, restricted marine environment. Following the initial marine transgression in Early Triassic (Induan) time the shallow marine environment became increas-ingly conducive to shallow marine faunas (high abundance/low diversity bivalves and conchostracans) with opportunistic colonisation of substrates (surface burrows). Foraminifera and conodonts as well as fragmental echinoderm, marine bivalves (e.g., *Claraia* and *Eumorphotis*), gastropods and tubeworms (microconchids), as well as stromatolites indicate the establishment of shallow marine conditions during deposition of the Nimra Member.

The limestone beds of the Nimra Member can be correlated over 7 km between the Al Mamalih area and the Dead Sea outcrops located to the west, but they wedge-out northwards from these outcrops indicating that these shallow-water carbonate environments were present only at the southern margin of the basin during Induan times. The precise timing of events over Permian (Umm Irna Formation) to Triassic (Ma’in Formation) transition in the Levant is still the subject of debate. Palynological data indicate a latest Permian age for the uppermost Umm Irna Formation based on the presence of abundant *Pretricolpimorphotis bharadwajii* (Stephenson & Powell 2013, 2014). Furthermore, Powell et al. (2016) demonstrated the presence of conodonts (e.g. *Hadrondontina aequabilis*) and foraminifera (e.g. “*Cornuspira* mahajeri”) from the limestones in the lower Nimra Member exposed near the Dead Sea shore, that indicated an Early Triassic (Induan) age for the Nimra Member. The current study of the Al Mamalih sections adds the discovery of a middle Induan Claraia species to our knowledge of the biostratigraphically significant conodont foraminifera and bivalves and confirms the age of the lower Nimra Member (*ca* 15 m above the sequence boundary) as equivalent to the beds above the *isarcica* Zone in the Southern Alps where *Hadrondontina aequabilis* and *Hd. agordina* co-exist within and above the stratigraphic range of *Hindeodus postparvus*, that is, mid Induan. The presence of the new foraminifera species *Ammodiscus jordanensis* n. sp. in samples AN 14 (Section 1) and AN 20 (Section 2) is also thought to be Induan in age because these samples are correlated with the similar carbonate beds of the Dyke Plateau/Roadside sections near the Dead Sea which are considered Induan in age on the basis of the *P. gr. kalbortii- Earlandia* spp. assemblage (Powell et al. 2016).

Sample AN 31, of the stratigraphically higher Upper Carbonate Member (Dardun Formation) in the Panorama Road section, records, the FO of
Citaella pusilla (Ho, 1959), also present in AN 32. Since the foraminifera assemblage *Posteladella gr. kahlori-Earlandia* spp.-*Ammodiscus jordanensis* n. sp. is considered as Induan in age, whilst *Citaella pusilla* is typical of the Olenekian (Broglio Lorìga et al. 1990; Rettori 1995), the stratigraphic interval, from sample AN 29 to AN 32 of the Upper Carbonate Member (Dardun Formation), spans the Induan-Olenekian boundary interval.

The Umm Irna-Ma’in sequence boundary was interpreted by Powell et al. (2016) as equivalent to the Tr 10 Arabid Plate unconformity taken at the base of the Khartam Member of the Kuff Formation in the Unayzah area of central Saudi Arabia (Sharland et al. 2004), and in the subsurface near the top of Kuff B (Le Nindre et al. 1990). At outcrop in the Unayzah area, the Triassic marine flooding event (Tr 10) is similarly marked by marine shales with an open marine fauna, overlying channelized fluvial sandstones with plant remains (Sharland et al. 2004, fig. 4.32). This suggests a widespread and rapid transgression across the low topographical gradient of the Arabian Plate in early Induan times, a response to rapidly rising sea-levels.

Basinwards, in the Negev area and below the present-day coastal plain of Israel, deep boreholes (Avdat 1, Pleshet 1 and David 1) proved proximal to distal marine siliciclastic and carbonate successions spanning the Permian to Triassic transition (Hirsch 1975, 1992; Korngreen et al. 2013; Korngreen & Zilberman 2017). Here, the strata are characterised by distal siliciclastic and ramp carbonates. Avdat 1 represents the most proximal succession and the Upper Permian interval is considered here to be coeval with the lower part of the Dead Sea/Al Mamalih succession (Umm Irna Formation), the latter representing deposition in coeval alluvial environments in the hinterland (Stephenson & Powell 2013). Reconstruction of the locations of the Maktesh Qatan 2 and Avdat 1 boreholes in the Negev (Hirsch 1975; Korngreen et al. 2013) to take account of ca 105 km left-lateral movement along the Dead Sea Transform (Freund et al. 1970) places these successions about 50 km to the north and northwest, respectively, of the Al Mamalih outcrops. This suggests a relatively rapid basinward transition during the latest Permian, from a low-gradient alluvial coastal plain (Jordan) with high sinuosity and meandering rivers to shallow marine environments (Israel). In Jordan, the transgressive marine environment appears to have been established in earliest Triassic time (probably early Induan = Himara Member) when rapid sea-level rise resulted in the initial marine flooding of the Arabian Plate. Previously, it has been suggested that the boundary between the Upper Permian Umm Irna and Lower Triassic Ma’in formations, represents a hiatus (Stephenson & Powell 2013; Powell et al. 2016). However, the basal unit, the Himara Member has not yielded biostratigraphically useful fauna or flora and may represent the post-recovery interval above the P-T boundary when biota was sparse due to stressed environments. Consequently, the upper part of the Umm Irna Formation may be indeed latest Permian in age, equivalent to the shallow marine strata proved basinwards in the boreholes (Israel), with the sequence boundary (Jordan) representing the P-T boundary which is known to be a short interval of low δ13Corg (Korngreen & Zilberman 2017) followed by a faunally barren Himara Member.

Powell et al. (2016) suggested that the lithofacies, faunas and biostratigraphy indicate the Himara Member, above the sequence boundary, represents a recovering marine phase and progressive transgressive systems tract that post-dates the P-T extinction event. The paleoclimate during deposition of the uppermost Umm Irna Formation (Late Permian) was humid-tropical, but with seasonal fluvial discharge and a fluctuating groundwater regime resulting in highly evolved pisolitic ferruginous paleosols on the interfluves. Fluvial systems evolved through time from low- to high-sinuosity rivers where in the latter organic material and macro-plants were preserved on point bars within channels (Makhlouf et al. 1991; Abu Hamad et al. 2008; Stephenson & Powell 2013). However, in contrast to the Dead Sea outcrops, the Umm Irna Formation in the Al Mamalih area is devoid of the organic-rich, laterally-accreted point-bar deposits that yielded abundant, well-preserved macrofossils at Dyke Plateau. Although separated by only 7 km, this suggests a higher energy fluvial regime in the Al Mamalih area with deposition predominantly by low sinuosity rivers, compared to a lower energy meandering regime preserved in the uppermost part of the Umm Irna Formation of the Dead Sea outcrops. Clearly, the fluvial systems suggest there was a fluctuating climate regime during the late Permian in the region. A warm, arid climate during the early Triassic in this region is also supported by reddening (perhaps secondary in origin) and desiccation features in the...
shallow marine Himara Member and the presence of shallow water carbonates in the Nimra Member, adding to isotope evidence, such as 87O profiles (Korngreen & Zilberman 2017), for the region lying about 15 to 20 degrees south of the paleo-equator at the northern margin of the Arabian Plate during a period of global warming through the Permian to Triassic transition (Stampfli & Borel 2002; Korngreen & Zilberman 2017).

Conclusions

The Al Mamalih outcrops represent the Late Permian to Early Triassic transition and confirm that the Permian-Triassic boundary is constrained either within the hiatus represented by the sequence boundary between the alluvial Umm Irna Formation and the overlying shallow marine Ma’in Formation, or within ca 15 m of marine beds overlying the boundary (Himara Member). The sequence boundary can be traced over a wide area and the absence of a paleotopography immediately below the boundary suggests that the marine transgression advanced rapidly across a low-lying coastal/alluvial plain. Alluvial lithofacies (Jordan) passed basinwards, over a distance of about 50 km, to coeval shallow marine siliciclastic and carbonate environments proved in boreholes in the Negev and Mediterranean coast of Israel.

The Al Mamalih outcrops are preserved in pre-Cretaceous paleograbens bounded by late Jurassic extensional faults so that the outcrops are not contiguous. However, detailed logging allows correlation between the paleograbens and Dead Sea outcrops. Reddened, shallow-marine beds characterised by ripple cross-laminated, siltstone/sandstone with desiccation cracks and sparse surface burrows mark the initial Triassic (presumed early Induan) marine transgression (Himara Member) above the sequence boundary. Absence of both body fossils and vertical infaunal burrows reflects low-diversity, ecosystems following the Permian-Triassic extinction event, and/or because of stressed shallow marine environments. A gradational upward increase in grey, green and yellow siltstones beds (Nimra Member) accompanied by a concomitant increase in bioturbation (surface traces and infaunal vertical burrows), decalcified bivalves, stromatolites, conchostracans and lingulids in the lower part of the Nimra Member indicates colonisation of the substrate under shallow marine conditions during the recovery phase following the P-T extinction event. A high energy, shallow-water marine environment is indicated by the presence of two thin limestone (packstone) beds with shallow scourbs and bivalve lags with shell fragments of the newly described Claraia, in the Dead Sea outcrops and coeval wake-packstones and sandy limestones in the Al Mamalih area.

The carbonate-rich lithologies in the Nimra Member yielded an abundant, low diversity assemblage of conodonts (e.g. Hadrodontina aequabilis and Hd. agordina) and a foraminifera assemblage (Postel-della gr. kalbori-Claraia spp.-Ammodiscus jordanensis n. sp.) that are interpreted as euryhaline recovery taxa that characterize the Induan. Abundant new material has allowed revision of the conodont apparatus of the taxa, and the foraminifera include a new species Ammodiscus jordanensis n. sp. of Induan age. The lithofacies and faunas are similar to the Lower Triassic Werfen Formation of the Southern Alps, suggesting post-extinction recovery sediments were deposited over a wide area on the northern and southern margins of Paleo-Tethys. This Early Triassic marine transgression (Tr 10 of Sharland et al. 2004) can also be traced widely eastwards across the Arabian Plate where overlying thick carbonates (Khuff Formation) represent one of the world’s most prolific hydrocarbons reservoirs.

A humid-tropical climate during the Permian to Triassic transition is suggested by the presence of highly evolved paleosols (interfluves) and abundant macro-plant fossils as well as palynomorphs preserved within high-sinuosity channels in the uppermost Permian sediments near the Dead Sea, and the presence of reddened, ripple marked siliciclastics with desiccation cracks in the earliest Triassic sediments. Carbonate faunas in the overlying beds also point to a warm, shallow sea during the Induan recovery phase.

Acknowledgements: We thank Simon Ward and Ian Longhurst for preparing the figures. John Powell and Mike Stephenson publish with the permission of the Executive Director, British Geological Survey (NERC). The authors thank the anonymous reviewers for their helpful comments and suggestions. We acknowledge Agostino Rizzi for photos at SEM, CNR Dipartimento di Scienze della Terra “Ardito Desio”. We are grateful to the Department of Earth Sciences “Ardito Desio”, University of Milano and the University of Ferrara for financial support.
REFERENCES

Kozur H. (1996) - The conodonts Hindeodus, Isarricella and Swetothishindeodus in the Uppermost Permian and Lower-
International field conference on “The continental Permian of the Southern Alps and Sardinia (Italy), Regional reports and general correlations” 15-25 September 1999, Brescia, Pavia, Italy.
Upper Permian to Lower Triassic successions in the Al Mamalih area, Dead Sea, Jordan

