

EXPANDING THE RECORD OF LARVAE OF FALSE FLOWER BEETLES WITH PROMINENT TERMINAL ENDS

ANA ZIPPEL, CAROLIN HAUG CHRISTEL HOFFEINS, HANS-WERNER HOFFEINS & JOACHIM T. HAUG

SUPPLEMENTARY MATERIAL

Supplementary Fig. 1 - Factor loadings of the shape analysis.

era	specimen source	specimen nr.	Fig. in this study	I(tot) in mm	w(h) in mm	I(te) in mm	PC1	PC2
extant	ZFMK-TIS-2574081 (this contribution)	1	1F	_	_	-	2.94E+04	7.08E+03
extant	ZFMK-TIS-2574053 (this contribution)	2	1A	-	-	_	-7.45E+03	1.63E+03
extant	ZFMK-TIS-2573887 (this contribution)	3	1E	_	10-1	-	1.17E+02	-2.35E+01
extant	ZFMK-TIS-2568255 (this contribution)	4	1G	_	1-1	132	-2.02E+03	-3.41E+03
extant	ZFMK-TIS-2568253 (this contribution)	5	1C	-	10	1 -	-5.30E+03	-1.77E+03
extant	ZFMK-TIS-2568252 (this contribution)	6	1B	<u> -</u>	14	11-2	8.26E+03	-5.34E+03
extant	Boeving & Craighead (1931)	7	<u> </u>	-	-	1-	-6.77E+02	-2.77E+03
extant	Van Emden (1942)	8	_	4.20	0.48	0.78	1.41E+04	-1.86E+03
extant	Peterson (1951)	9	-	3.50	0.30	0.40	3.02E+04	-8.39E+02
extant	Hayashi after Lawrence (1980)	10	_	_	_	10-	1.90E+02	1.23E+04
extant	Švácha (1995)	11	-	5.00	0.42	0.71	-5.30E+03	2.78E+03
extant	Vanin et al. (1996)	12	-	7.47	0.69	1.09	-1.12E+04	7.23E+03
extant	Vanin et al. (1996)	13	-	7.13	0.70	1.15	-1.30E+04	2.53E+03
extant	Lawrence et al. (2011)	14	_	_	_	-	-1.28E+04	-9.10E+03
extant	bugguide 39846 (Haug & Haug 2019)	15	_	6.20	0.52	1.09	2.73E+04	-3.35E+03
extant	bugguide 175620 (Haug & Haug 2019)	16	_	6.00	0.59	0.85	2.09E+03	7.64E+01
extant	NHMUK 010133900 (this contribution)	17	1D	7.95	0.92	0.65	-3.68E+03	9.78E+02
Eocene	Weitschat&Wichard (2002)	18	_	9.00	0.82	1.90	-1.37E+04	-3.20E+02
Eocene	Gröhn (2015)	19	_	4.00	0.38	0.73	5.61E+04	1.76E+04
Eocene	SNSB-BSPG 2018 III 336 (this contribution)	20	5	2.69	0.34	0.75	-8.94E+03	2.73E+04
Eocene	SNSB-BSPG 2018 III 254 (this contribution)	21	3	3.60	0.33	0.69	-3.54E+03	-4.18E+03
Eocene	SNSB-BSPG 2018 III 228 (this contribution)	22	4	4.60	0.40	0.80	-5.57E+03	-4.15E+03
Eocene	SNSB-BSPG 2018 III 232 (this contribution)	23	2	1.82	0.24	0.44	-2.08E+04	-5.96E+03
Eocene	SMF_Be10735 (this contribution)	24	16	3.00	0.30	0.64	1.24E+04	-6.49E+03
Eocene	PED 0892 (this contribution)	25	11, 12	3.73	0.27	0.73	-2.46E+04	8.07E+03
Eocene	PED 0381 (this contribution)	27	7	2.82	0.27	0.64	-1.98E+04	-2.43E+03
Eocene	PED 0891 (this contribution)	28	10	- <u>-</u>		12	-7.55E+02	-2.13E+03
Eocene	CCHH 1228-4 (this contribution)	29	6	2.38	0.24	0.45	-1.59E+03	2.22E+02
Eocene	PED 0006 (Haug & Haug 2019)	30	_	2.05	0.26	0.45	-9.99E+03	-1.04E+04
Eocene	PED 0011 (Haug & Haug 2019)	31	_	1.49	0.17	0.34	-1.34E+04	-8.98E+02
Eocene	Larsson (1978)	32	1H	1.89	0.14	0.36	-2.63E+04	3.36E+03
Eocene	SMF_Be 10659 (this contribution)	34	15	2.11	0.27	-	_	-
Cretaceous	PED 0483 (this contribution)	26	8, 9	3.93	0.19	0.60	-1.64E+04	-7.57E+03
Cretaceous	PED 1108 (this contribution)	33	13, 14	4.05	0.58	0.61	4.66E+04	-1.81E+04

Supplementary Tab. 1 - PC values and measurements of all the specimens used in this study. Abbreviations (sorted by first occurrence in the table): l(tot) = total body length; w(h) = maximum width of head; l(te) = length of terminal end.