OLIGOCENE FAN-DELTA DEPOSITS IN NORTHERN ITALY:
A SUMMARY

MARIO GNACCOLINI

Key-words: Fluvialite sedimentation - Littoral sedimentation - Oligocene.

Riassunto. Lungo le colline e le basse montagne al limite tra Piemonte e Liguria affiora un’unità oligocenica, prevalentemente conglomeratica, nota come Formazione di Molare o come Conglomerati di Savignone. Questa formazione si estende per più di 100 km, con direzione ENE-OSO, dai dintorni di Genova fin quasi a Cuneo. I conglomerati che la costituiscono rappresentano, per la maggior parte, conoidi alluvionali oligocenici depositesi al limite tra terraferma ed un bacino marino («fan-deltas»). Lo studio sedimentologico ha consentito l’individuazione di diciotto principali litofacies e la loro interpretazione. Per alcune delle più estese conoidi sono state riconosciute associazioni di litofacies indicative della zona prossimale, della zona intermedia, della zona distale (suddissiva in due sottozoo: aree di foce + parte superiore del pendio frontale del delta; aree comprese tra le foci) e della zona di prodelta.

A mainly conglomeratic formation, Oligocene in age, crops out in northern Italy at the boundary between Piemonte and Liguria. This unit is forming a more than 100 km elongated belt, roughly NE-SW oriented, and is known in literature as «Formazione di Molare» or «Conglomerati di Savignone» (the latter in the north-eastern part of the outcrop area). The conglomerates represent the first Cenozoic deposits resting unconformably on a basement constituted of pre-Cenozoic sedimentary and metamorphic rocks (Sacco, 1889-1890; Rovereto, 1939; Franceschetti, 1967; Lorenz, 1969; Ibbeiken, 1970; Bellinzona & Boni, 1971; Servizio Geologico d’Italia, 1969 a, b, 1970 a, b, 1971).

Most of these conglomerates have been interpreted as representing Oligocene alluvial fans, deposited partly in the sea (Gnaccolini, 1978 a, b, 1980, 1981; Gelati & Gnaccolini, 1978). In the present paper the main sedimentological characteristics of these fan-deltas will be summarized.

— Istituto di Geologia dell’Università di Milano, P.le Gorini 15, 20133 Milano.
— Lavoro eseguito con il contributo finanziario del Comitato per le Scienze Geologiche e Minerarie del C.N.R.
Main fans or groups of fans.

The thickest fan deposits outcrop at the eastern edge of the conglomeratic belt, between Ovada and the valley of the Borbera creek, some 35 km NNE of Genoa. Well developed fan sequences are present also near Rossiglione, Piana Crixia, Bagnasco, etc., towards the SW.

Based on their petrographic composition, five main fans or groups of fans have been identified (Fig. 1): A) Val Borbera-Val Vobbia fans, B) Cipollina-M. Reale fan, C) M. Alpe fan, D) M. Lanzone-Sottovalle fans and E) Bagnasco fan.

Fig. 1 - Outcrop area of the mainly conglomeratic formation known as «Formazione di Molare» or «Conglomerati di Savignone» (Oligocene). A) Val Borbera-Val Vobbia fans; B) Cipollina-M. Reale fan; C) M. Alpe fan; D) M. Lanzone-Sottovalle fans; E) Bagnasco fan.

The conglomerates of the Val Borbera-Val Vobbia fans are mainly characterized by calcilithite and calcilutite clasts (up to 100%), associated often with small amounts of ophiolites, quartz, etc. Their thickness is up to 2,500 m. The Cipollina-M. Reale fan is constituted of polimictic conglomerates: the main components are calcilithites and calcilutites (from 35% to 70%), and ophiolites (up to more than 50%, and generally represented by spilites). Marls, cherts, dolomites and calcite fragments have been generally observed in a lesser amount, but dolomitic or marly clasts may be locally very abundant. The maximum thickness is about 250 m. The clasts from the M. Alpe fan,
up to 250 m thick, are exclusively ophiolites. The conglomerates of the M. Lanzone-Sottovalle fans show a variable composition: ophiolites, generally serpentinites, are always present (from 20% up to 70% and more), associated with a variable amount of dolomites, limestones and calc-schists; dolomitic clasts may be locally dominant. The maximum thickness is 500-600 m. The clasts from the Bagnasco fan, up to 350-400 m thick, are mainly calcareous dolomites, dolomitic limestones, quartzites, quartz, micaschists, etc.; ophiolites are rare.

Main lithofacies: description and interpretation.

Sedimentological studies carried out on the conglomeratic sequences allowed to identify 18 main lithofacies, which are synthetically described following a scheme similar to that used by Miall (1978) for braided river deposits:

<table>
<thead>
<tr>
<th>Facies Code</th>
<th>Lithofacies and Sedimentary Structures</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>inversely graded conglomerates</td>
<td>sediment gravity flows: debris flows sensu Lowe (1979)</td>
</tr>
<tr>
<td>C 2</td>
<td>inversely-to-normally graded conglomerates</td>
<td>tentatively attributed to subaerial sediment gravity flows, owing to their stratigraphic relationships with other rock types; these conglomerates have been generally observed in subaqueous environments as deep sea fans (Walker, 1975, 1978) or delta-front slopes (Massari, 1978; Nemec et al., 1980)</td>
</tr>
<tr>
<td>C 3</td>
<td>normally graded conglomerates</td>
<td>subaqueous sediment gravity flows; or stream flow deposits (longitudinal bars, channel deposits)</td>
</tr>
<tr>
<td>C 4</td>
<td>massive, matrix supported conglomerates (muddy matrix)</td>
<td>sediment gravity flows (debris flows)</td>
</tr>
<tr>
<td>C 5</td>
<td>massive, very poorly sorted, coarse conglomerates (blocks up to few metres can be locally present)</td>
<td>sediment gravity flows: debris flows sensu Lowe (1979)</td>
</tr>
<tr>
<td>C 6</td>
<td>massive to crudely bedded conglomerates</td>
<td>stream flow deposits: sheet bars, longitudinal bars, lag deposits; locally, sediment gravity flows (delta-front slope)</td>
</tr>
<tr>
<td>C 7</td>
<td>conglomerates with well developed horizontal bedding, locally openwork (Smith, 1974)</td>
<td>stream flow deposits: sheet bars, longitudinal bars, lag deposits</td>
</tr>
<tr>
<td>Facies code</td>
<td>Lithofacies and sedimentary structures</td>
<td>Interpretation</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>C 8</td>
<td>sandy conglomerates, with low-angle cross-bedding or horizontal bedding</td>
<td>stream flow deposits: linguoid bars, deltaic growths, channel fills; longitudinal bars</td>
</tr>
<tr>
<td>C 9</td>
<td>layers of cobbles and boulders bored by Bivalves or encrusted by Corals or Oysters</td>
<td>coarse, fluviatile deposits, winnowed by waves, bored or encrusted by marine organisms</td>
</tr>
<tr>
<td>C 10</td>
<td>thin conglomeratic beds (disorganized or normally graded) and thin sandy turbidites interlayered with marine mudstones (M 1)</td>
<td>resedimented conglomerates and sandstones (prodelta deposits)</td>
</tr>
<tr>
<td>S 1</td>
<td>fossiliferous, pebbly sandstones, with low-angle cross-bedding</td>
<td>delta-front and upper delta-front slope deposits</td>
</tr>
<tr>
<td>S 2</td>
<td>cross-laminated to massive sandstones and pebbly sandstones, locally with mud intraclasts</td>
<td>stream flow deposits: dunes, linguoid, transverse bars, scour fills</td>
</tr>
<tr>
<td>S 3</td>
<td>massive sandstones, with clusters of marine fossils</td>
<td>beach deposits, backshore to fore-shore</td>
</tr>
<tr>
<td>S 4</td>
<td>fossiliferous sandstones, with horizontal lamination or low-angle cross-lamination</td>
<td>beach deposits, backshore to upper shoreface</td>
</tr>
<tr>
<td>S 5</td>
<td>bioturbated sandstones</td>
<td>beach deposits, lower shoreface</td>
</tr>
<tr>
<td>S 6</td>
<td>siltstones, mudstones and fine sandstones, with fine laminations and very small ripples; locally, fresh water organisms, abundant plant remains and coal lenses</td>
<td>lake and swamp deposits</td>
</tr>
<tr>
<td>M 1</td>
<td>massive mudstones, with marine fossils</td>
<td>marine deposits, sublittoral environment</td>
</tr>
<tr>
<td>M 2</td>
<td>massive mudstones, with no fossils, stream flow deposits (overbank, generally interlayered with S 2, C 7 backswamp deposits) or C 8</td>
<td></td>
</tr>
</tbody>
</table>

Fan-delta zonation and lithofacies associations.

In the mentioned fan-delta complexes four major zones have been identified: 1) Proximal zone, 2) Medial zone, 3) Distal zone (3a, Channels mouth area and upper part of the delta-front slope; 3b, Interdistributaries area), 4) Prodelta zone (Fig. 2).

The first zone is characterized by alternating stream flow and debris flow deposits; the second zone by different types of stream flow deposits; the distal zone by stream flow deposits and by beach to shallow marine sediments; the prodelta zone is represented by marine muddy sediments with some interbedded mass flow deposits.
Fig. 2 - The proposed fan-delta zonation which can be applied in the studied area during the Oligocene: 1) Proximal zone, 2) Medial zone, 3) Distal zone (3a, Channels mouth area and upper part of the delta-front slope; 3b, Interdistributaries area), 4) Prodelta zone.

The most complete facies association has been recognized in the M. Lanzone - Sottovalle fans (Fig. 4). The proximal zone is represented by lithofacies C 6 and C 1; the medial zone by lithofacies C 6 interbedded with C 3, C 8, S 2; the distal zone 3a by C 6, C 8, S 1 (seldom C 4) rhythmically interlayered with M 1; the distal zone 3b is represented by C 9, S 3, S 4, S 5 and M 1; the prodelta zone is characterized by M 1 or by M 1 and C 10.

The distal zone 3a has not been observed in the Cipollina - M. Reale fan, but the other parts of the fan are well developed (Fig. 3). The proximal zone shows the facies association C 6, C 2, C 1, locally C 7; the medial zone is testified mainly by C 6 and C 7, locally with C 8; the distal zone 3b by S 3, S 4, S 5 and M 1; lithofacies M 1 characterizes the prodelta zone.

Only the proximal zone has been identified in the M. Alpe conglomerates; this zone is represented by lithofacies C 5 and C 6, with rare lenses of S 2.
The Val Borbera - Val Vobbia fans (Fig. 3) show a well developed medial zone, represented mainly by C 6 and C 7, locally interbedded with S 2 and M 2; C 3 and C 5 have been seldom observed. The distal zone 3b shows the association C 9, S 3, S 4 and S 5, while the prodelta zone is characterized by M 1, with more or less developed intercalations of C 6 (often with muddy matrix) and C 4 (rare).

All the above mentioned fans were deposited partly under marine conditions. The Bagnasco fan, on the contrary, was deposited partly in a shallow lake. His proximal zone is testified by lithofacies C 5 and subordinately C 6; the medial zone is represented by C 6 and S 2, rhythmically interbedded and with very frequent erosional scours; the distal zone by S 6 and S 2, with some intercalations of C 1, C 6 and C 3; lithofacies S 6 testifies the lacustrine prodelta zone (Fig. 4).

Conclusions.

Based on those lithofacies associations, a zonation for the Oligocene fan-delta complexes identified in NW Italy may be proposed. The fan-deltas developed in areas with extremely steep gradients and high energy environments, resulting in very coarse sediments.

The proximal zone is characterized by the association of two or more of the following lithofacies: massive to crudely bedded conglomerates; inversely graded conglomerates; inversely-to-normally graded conglomerates; massive, very poorly sorted, coarse conglomerates; conglomerates with well developed horizontal bedding, locally openwork.

The medial zone is testified by the following lithofacies association: massive to crudely bedded conglomerates; conglomerates with well developed horizontal bedding, locally openwork; sandy conglomerates, with low-angle cross-bedding or horizontal bedding; normally graded conglomerates; cross-laminated to massive sandstones and pebbly sandstones, locally with mud intraclasts; massive, unfossiliferous mudstones may be locally interlayered.

The interdistributaries distal zone is represented by massive, fossiliferous sandstones, by fossiliferous sandstones with horizontal lamination or low-angle cross-lamination and by bioturbated sandstones; massive mudstones with marine fossils may be locally present.

The channels mouth area and the upper part of the delta-front slope are generally characterized by the following lithofacies association: sandy conglomerates, with low-angle cross-bedding; fossiliferous, pebbly sandstones, with low-angle cross-bedding; massive to crudely bedded conglomerates; massive mudstones, with marine fossils (these mudstones
Fig. 3 - Val Borbera-Val Vobbia fans and Cipollina-M. Reale fan: indicative stratigraphic sections. Scale bar = 1 m.
Fig. 4 - M. Lanzone-Sottovalle fans and Bagnasco fan: indicative stratigraphic sections. Scale bar = 1 m.
are rhythmically interlayered with the above mentioned deposits).

The prodelta zone is represented by marine fossiliferous mudstones, with some resedimented conglomeratic layers (thin conglomeratic beds, disorganized or normally graded; massive to crudely bedded conglomerates).

Acknowledgements.

Thanks are due to R. Gelati and I. Premoli Silva, who kindly read the manuscript and provided many useful comments.

REFERENCES

LOWE D. R. (1979) - Sediment gravity flows: their classification and some problems of application to natural flows and deposits. S.E.P.M., Sp. Publ. n. 27, pp. 75-82, 4 fig., Tulsa.

SERVIZIO GEOLOGICO D'ITALIA (1969 a) - Foglio 71 Voghera della Carta Geologica d'Italia 1:100,000, Roma.
