OF HIS BONES ARE CRINOID MADE: TAPHONOMY AND DEADFALL ECOLOGY OF MARINE REPTILES FROM A PELAGIC SETTING (MIDDLE-UPPER JURASSIC OF NORTHEASTERN ITALY)

GIOVANNI SERAFINI1, SILVIA DANISE2, ERIN E. MAXWELL3, LUCA MARTIRE4, JACOPO AMALFITANO5, MIRIAM COBIANCHI6, URSULA THUN HOHENSTEIN7, 8 & LUCA GIUSBERTI5

1Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
2Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira, 4, 50121, Firenze, Italy
3Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany.
4Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35, 10125 Torino, Italy
5Dipartimento di Scienze della Terra, Università degli Studi di Padova, Via Gradenigo 6, 35131 Padova, Italy
6Dipartimento di Scienze delle Terre e dell’Ambiente, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
7Dipartimento di Studi Umanistici, Università degli Studi di Ferrara, Corso Ercole I d’Este, 44121, Ferrara, Italy
8Museo di Paleontologia e Preistoria “Piero Leonardi”, Sistema Museale di Ateneo, Università degli Studi di Ferrara, Italy.

Associate Editor: Lucia Angiolini.

To cite this article: Serafini G., Danise S., Maxwell E.E., Martire L., Amalfitano J., Cobianchi M., Thun Hohenstein U. & Giusberti L. (2024) - Of his bones are crinoid made: taphonomy and deadfall ecology of marine reptiles from a pelagic setting (Middle-Upper Jurassic of northeastern Italy). Riv. It. Paleontol. Strat., 130(1): 97-128.

Abstract. Modern cetaceans are considered the best anatomical and ecological analogue for many Mesozoic secondary aquatic reptiles. Such similarities extend also after the death of these phylogenetically distant amniotes, when the sinking and decomposition of large carcasses in marine environments (deadfalls) follow common biostratinomic processes. Most taphonomic studies on Mesozoic deadfalls have been limited to shallow-water settings, often neglecting deeper waters. Here we provide a detailed taphonomic survey of ichthyosaurs, pliosaurs and metriorhynchoids from the pelagic Middle-Upper Jurassic Rosso Ammonitico Veronese (RAV) of northeastern Italy. Our taphonomic revision of the RAV tetrapod record highlights a common poor state of preservation of the bones, often associated with abundant macrofossils, consistent with a prolonged exposure of carcasses on a well-oxygenated seafloor. For the first time we confirm the role of nautiloids as active mobile scavengers by means of tens of beak elements found closely associated with, or even piercing, the bones. Hexanchiform shark teeth are also found associated with the carcasses, supporting a distinctive deep-water mobile scavenging community. Echinoids, sponges and other bioeroders are identified as representative of the enrichment-opportunist stage, and a high concentration of belemnites is believed to be indicative of mass-spawning deaths in the surroundings of the carcasses. Abundant crinoids are recognized as part of the reef stage by colonization of the eroded bones. While some of our data deviate from previous Mesozoic reptile-falls from shallow-waters, they are consistent with findings at Recent whale-falls in bathyal zones, and overall represent a precious window into the complex ecology of Jurassic open seas.

Keywords: Mesozoic deadfalls; marine taphonomy; pelagic reptiles; Rosso Ammonitico Veronese; deep-sea setting.

INTRODUCTION

In modern oceans, sunken carcasses of large vertebrates play an essential role in the flux of carbon, nitrogen, sulfur and phosphorus in deep-water (i.e., below the shelfbreak) settings, providing different classes of nutrients during different stages of decay (Smith et al. 2015). Thanks to such transfer of energy, vertebrate deadfalls generate peculiar though ephemeral ecosystems around them (Allison et al. 1991; Smith & Baco 2003; Higgs et al. 2014; Smith et al. 2015), with highly specialized organisms attract-
ed by the massive availability of nutrients released during the carcass break down. These successions are diverse in taxonomic composition, ranging from bacteria to vertebrates, and represent true islands of species and individual abundance in otherwise poorly biodiverse zones (Glover et al. 2005; Treude et al. 2009; Smith et al. 2015). Any large vertebrate-fall (also fish-falls, e.g., whale sharks or manta rays; Higgs et al. 2014) could provide enough nutrients for the development of specialized ecological communities, but only in the case of cetaceans (particularly mysticetes) an exceeding amount of fats, proteins, sugars and minerals can sustain a deadfall community for decades (Smith & Baco 2003; Goffredi et al. 2008; Treude et al. 2009). Within the specific case study of whale-falls, Smith & Baco (2003) formalized four stages of ecological community succession during carcass exploitation in deep-water settings:

1) Mobile scavenger stage: the removal of soft tissue on the carcass when floating in the water column or at the seafloor by the activity of nektic necrophages such as sharks, fishes, myxines, isopods and cephalopods (Martini 1998; Clua et al. 2013; Smith et al. 2015).

2) Enrichment-opportunist stage: colonization of the skeletonized carcass and surrounding enriched sediment by invertebrates and microbial mats. This phase often features ampharetid and hesionid polychaetes, decapod crustaceans, ophiuroids, bivalves, Beggiatoa microbial mats, and, most distinctively, osteophagous siboglinid polychaetes of the genus Osedax (Glover et al. 2005; Smith et al. 2015; Georgieva et al. 2023).

3) Sulfophilic stage: microbial metabolization of bone lipids by sulfur-reducing bacteria (e.g., Desulfoarchaeum) and competing/coexisting methanogenic archaea (Goffredi et al. 2008; Goffredi & Orphan 2010). This initial microbial wave is usually followed by the activity of hydrogen sulfide-oxidizing chemosynthetic bacteria, either free living or as symbionts of metazoans such as lucinid, thyasirid and vesicomylid bivalves (Treude et al. 2009; Goffredi & Orphan 2010; Smith et al. 2015).

4) Reef stage: once the skeleton has exhausted all its organic nutrients, it is used as a hard substrate for the growth of encrusting filter-feeding organisms (e.g., ostreids, serpulids; Danise & Dominici 2014; Smith et al. 2015).

All four stages were indirectly observed in the fossil record of whales, framing these specialized ecological successions in deep time (see Danise et al. 2012; Danise & Dominici 2014 and references therein). Besides their pure biomass, cetacean deadfalls ensure rich and prolonged ecological successions due also to the high lipid content of their bones; lipid availability is pivotal for the development of communities that exploit skeletal remains (Smith & Baco 2003; Danise et al. 2014) and highly cancellous bone serves as a storage for fats essential to the buoyancy and high metabolism of fully pelagic secondarily aquatic amniotes (Houssaye et al. 2014, 2018; De Buffrénil et al. 2021). Since the very beginning of whale-fall studies, it was speculated that Mesozoic marine reptiles could have played a similar role to that of cetaceans after death, possibly triggering the evolution of whale-fall specialist precursors or of their analogues as far back as the Jurassic (Martill et al. 1991; Hogler 1994). Ichthyosaurs, metriorhynchids, some plesiosaurs and mosasaurs share anatomical similarities with modern cetaceans, such as an anteriorly shifted center of mass, reduced limb girdles (with the exception of plesiosaurs), hydropedal limbs and an osteoporotic-like bone microstructure that could host high amounts of lipids (Houssaye et al. 2018; Gutarra & Rahman 2021). These anatomical analogies imply a similar taphonomic pathway and the possibility of producing similar deadfall communities. Although most of our knowledge of modern whale-fall communities comes from the deep sea (Smith & Baco 2003; Fujiwara et al. 2007; Smith 2015), most previous taphonomic studies on fossil marine reptiles from Europe were carried out on material from epicontinental Fossil-Lagerstätten, namely the Oxford Clay of the UK (e.g., Martill 1985), the Posidonia Shale of southern Germany (e.g., Martill 1993; Beardmore et al. 2012; Beardmore & Furrrer 2016) and the Slottsmøya member in Spitsbergen (Delsett et al. 2016). The most detailed studies to date focusing specifically on Mesozoic deadfall communities (Danise et al. 2014; Dick 2015; Delsett et al. 2016; Maxwell et al. 2022) come from the same shallow deposits. Outside Europe, taphonomic surveys on marine vertebrates also focused mostly on shallow-water settings (e.g., Schmeisser McKean & Gillette 2015), with very few exceptions from continental slopes (Kaim et al. 2008; Stinnesbeck et al. 2014; Sato & Jenkins 2020). As a consequence, very little is known on preservation patterns and deadfall ecology from epipelagic to abyssopelagic settings during
the Mesozoic. Pelagic deposits are usually not suited for vertebrate preservation, since slow sedimentation rates preclude fast burial of the remains (Allison et al. 1991; Serafini et al. 2020); these units can, however, yield precious taphonomic and paleoecological insights on the role of large carcasses in deep-water trophic networks, as slow sedimentation rates may ensure enough exposure time of the remains for the development of deadfall ecological successions.

Here we present a detailed taphonomic revision of the tetrapod record from the Rosso Ammonitico Veronese (henceforth shortened to RAV) of northeastern Italy, a pelagic deposit opened to oceanic circulation on the western side of the Tethys Ocean and ranging from the Middle to Upper Jurassic (Bajocian-Tithonian). Despite its rather poor record, RAV marine reptiles have been the subject of several taxonomic and evolutionary studies in the past (e.g., Cau & Fanti 2011, 2014, 2016; Cau 2019) but only recently has attention been brought to the taphonomy of individual specimens (Serafini et al. 2020, 2022, 2023a,b). First, our analysis subdivides the record into specific taphofacies based on a characterization of their skeletal and dental tissue preservation. Then, ichthyosaurs, thalattosuchians and pliosauroids are surveyed for their associated fossil fauna to reconstruct deep-water deadfall stages.

Geological Setting

The marine tetrapod record surveyed for this study comes from three separate areas of the Southern Alps of northeastern Italy (Fig. 1A, B): the Asiago Plateau (Vicenza Province), from where most of the specimens derive, the Belluno area, and the S. Ambrogio di Valpolicella area (Verona Province). Starting from the Early Jurassic (Hettangian), all the aforementioned areas were part of the T Trento Platform (Fig. 1A), a carbonate platform bordered by the deeper Lombardian and Belluno basins (e.g., Winterer & Bosellini 1981; Fig. 1A). In the Middle Jurassic, this structural high, a horst block of the southern continental margin of the Tethys, definitively drowned, becoming an articulated current-swept plateau with reduced pelagic sedimentation, leading to the deposition of the Rosso Ammonitico Veronese (RAV: Winterer & Bosellini 1981; Massari & Westphal 2011). The RAV extends from the upper Bajocian to the upper Tithonian (Winterer & Bosellini 1981; Martire 1996; Martire et al. 2006; Fig. 1C). It is a lithologically very distinctive pelagic limestone, with a whitish- to dark-red color, frequent nodular texture and common ammonite internal molds (e.g., Clari et al. 1984; Pavia et al. 1987; Sarti 1993; Martire 1996). This limestone has been actively quarried in northern Italy since Roman times (Barbieri & Ginevra 1995). Martire et al. (2006) formalized three lithostratigraphic subdivisions of the unit: the Rosso Ammonitico Inferiore (RAI; upper Bajocian–upper Callovian), characterized by massive and calcareous lithology and pseudonodular facies, the Rosso Ammonitico Medio (RAM; middle Callovian–middle Oxfordian), characterized by thin-bedded, planar-parallel- to flaser-bedded limestones locally associated with nodules and layers of red chert, and the Rosso Ammonitico Superiore (RAS; middle Oxfordian–upper Tithonian), which consists of pink-red, nodular, ammonite-rich limestones (Martire 1996; Martire et al. 2006). RAI commonly contains microbialites, sporadically occurring also in the lower part of the RAS (e.g., Martire et al. 2006; Massari & Westphal 2011). Macrofaunal elements of RAV mostly include ammonites (usually preserved as internal molds), belemnites, bivalves (mostly thin-shelled forms), gastropods, brachiopods, aptychi and rhyolites, rare nautiloid internal molds, small solitary thecocyathid corals, crinoidal elements and scattered echinoids (e.g., Martire 1996; Massari & Westphal 2011). The RAS grades into the Maiolica (upper Tithonian–lower Aptian), a formation represented by thin-bedded, whitish, cherty, pelagic limestones originated, with noteworthy facies homogeneity, from the widespread deposition of calcareous nannofossil and calpionellid oozes (Martire et al. 2006). The Cretaceous pelagic sedimentation ends in the area with the deposition of the alternating limestone/marlstone whitish and grayish sediments of Scaglia Variegata Alpina, and the pink and reddish limestones and marly limestones of Scaglia Rossa.

RAV Paleoenvironment and Depth Speculations

The open marine RAV succession has been regarded as mostly deposited in an aerobic setting (holoaerobic sediment), as testified by the oxidized (ferric) state of iron and by the great density of burrows and lack of trace fossils indicative of low
levels of oxygenation (e.g., Martire 1996; Massari & Westphal 2011). Sedimentation rates are considered very slow, in the range of a few mm/kyr, even if the reduced thickness of RAV (max 30 m) seems due to strong compaction and frequent and prolonged gaps more than to extremely low sediment accumulation rates (e.g., Martire & Clari 1994). Based on the interpretation as precessionally-controlled RAV rhythmic nodular-microbial couplets, Massari and Westphal (2011) hypothesized a significantly higher sedimentation rate than the value calculated by Martire & Clari (1994). Being deposited on horst blocks far from the continent and surrounded by deeper basins, the only source of sediments of...
RAV was represented by slow pelagic rain plus a certain benthic and nektonic component (Martire et al. 2006). Certain areas of the Trento Plateau and some RAV intervals show sedimentary structures indicating high energy episodes in a background of gentle and more or less constant bottom currents (Massari & Westphal 2011) or, more generally speaking, intermittently active currents (e.g., Martire et al. 2006). Lacking a present-day analogue for the Rosso Ammonitico facies, unambiguous proof of the paleodepth of RAV is so far wanting and literature is divided into “shallow” versus “deep water” factions (e.g., Winterer & Bosellini 1981; Zempolich 1993; Winterer 1998; Massari & Westphal 2011). Such controversy is however quite artificial, as the Rosso Ammonitico facies can form at different bathymetries (e.g., Prát et al. 2011). The presence of microbialites is by no means a proof of RAV shallow water origin (i.e., deposition still located in the photic zone; see Massari & Westphal 2011) because such structures can be produced by a variety of microorganisms (bacteria, archaea and eukaryotes) both in shallow and deep water (except for Cyanobacteria) and therefore they can form regardless of the sunlight (e.g., Winterer 1998; Flügel 2010). Even some RAV sedimentary features, such as sand-size layers with normal grading and planar to hummocky cross bedding, evoked as proxies of “shallow” paleodepth (e.g., Massari 1981; Zempolich 1993; Massari & Westphal 2011), are ambiguous and only diagnostic of the strength and directions of bottom currents because they are known from essentially all depths in the ocean (Winterer 1998). Regardless of various interpretations, it is plausible that RAV was deposited at a few hundred meters depth (i.e., in the upper bathyal zone), the more conservative estimation proposed by Winterer (1998), taking into account a marked variability depending on the area of deposition (“lows” and “highs” generated by block faulting) on the Trento Plateau (Martire 1996).

Tapho-osteological and associated fauna analysis

Skeletal elements of each specimen were measured to the nearest millimeter to estimate the in-vivo size of the animals. Total length was estimated for crocodylomorphs by cranial or femoral length using the equations in Young et al. (2012); for ichthyosaurs, total length was estimated by comparing measurements to more complete specimens of closely related taxa. Mass in ichthyosaurs and plesiosaurs was estimated following the volumetric method using the formula: Mass = volume x 1025 kg/m³ (density of seawater); Volume = (taxon-specific shape constant x total length)³; shape constants were derived from Gutarra et al. (2019: ichthyosaurs; 2022: plesiosaurs). The volumetric technique for mass estimation relies on the assumption that marine reptile carcass density is equal to that of seawater. As this assumption appears unlikely to be met (Reisdorf et al. 2012), these should be considered minimum estimates; therefore, estimates of total mass were rounded up to the nearest 10 kg.

Skeletons were subdivided into anatomical units (head, anterior column, posterior column, pectoral girdle-forelimbs, pelvic girdle-hindlimbs; modified after Beardmore et al. 2012) to evaluate their potential displacement relative to the rest of the body and to assess specific taphonomic parameters. Scoring ranged from 0 to 4 (0% = 0; 1-25% = 1; 25-50% = 2; 50-75% = 3; 75-100% = 4; Beardmore et al. 2012; Cleary et al. 2015) to account for: Cp = completeness (scoring for percentage of completeness for each anatomical unit); Ar = articulation
(scoring for percentage of articulation for each anatomical unit); E = erosion (scoring for percentage of eroded compact bone for each anatomical unit).

Pictures of the specimens were taken with either a Canon 700D or a Sony ILCE-7RM3 camera. For most specimens, UV-induced fluorescence was used for the identification of histological and taphonomical details of the skeletal tissue, as well as the discrimination of the associated calcitic fauna from the surrounding matrix. UV-A (peak emission at 368 nm), UV-B (peak emission at 318 nm) and UV-C (peak emission at 254 nm) wavelengths were produced with a 95 W discharge lamp from WayTooCool LLC.

Associated faunal components were counted from the specimen slabs in the proximity and on the same stratigraphic layer as the remains, but a specific threshold distance from the skeletal material (see Danise et al. 2014) was not set. Following the approach of Maxwell et al. (2022), invertebrate taxa found in the proximity of the remains were considered part of the deadfall if there was direct evidence of encrustation or bioerosion, or if their occurrence is relatively rare in RAV lithologies; in addition to this, common RAV invertebrate taxa were considered as part of the deadfall community if their numbers were exceedingly high (e.g., belemnites).

To evaluate the presence of microbial microborings and the presence of spongiosa-localized pyrite, three histological sections were obtained from MPPPL 18797 (unidentified fragment), V7101 (rib fragment) and MCLSC T1 (vertebral? fragment). Bone fragments were embedded in epoxy resin and cut to 30 µm thick slides. Thin sections were then analyzed with either a SEM Jeol JSM-6010 plus/LA at 20kV, 10 mm WD and with a spot size of 30 nm at the University of Modena and Reggio Emilia or a variable pressure Environmental Scanning Electron Microscopy (ESEM Zeiss EVO MA 15) at the University of Ferrara (Tecnopolo Ferrara).

Micropaleontological analysis

In the framework of previous descriptive studies (Serafini et al. 2020, 2023b) and for novel data, small samples of matrix were extracted from the specimen slabs. From three samples (V7101, V7102, MGP-PD 32438), three 30 µm slices were produced for microfacies analysis. To analyze the calcareous nanofossil content, samples were processed according to the smearing technique (Bown & Young 1998) or according to the modified settling technique of Flores and Sierro (1997). Calcareous nanofossil assemblages were semi-quantitatively estimated by counting all the coccoliths and nannoliths recorded in 300 fields of view. Relative species abundances are reported as abundant (A, >1 individual every 1–10 observation fields), common (C, 1 individual every 1–10 observation fields), frequent (F, 1 individual every 10–30 observation fields) and rare (R, 1 individual every >30 observation fields). Biostratigraphy is described with reference to the biozonation scheme of Casellato (2010). These analyses were performed using a polarized light microscope under a magnification of 1250× at the University of Pavia.

Institutional abbreviations

MGP-PD: Section of Geology and Palaeontology of the Museum of Nature and Humankind, University of Padova; MCSNV: Museo Civico di Storia Naturale of Verona; MGGC: Collezione di Geologia (Museo Giovanni Capellini), University of Bologna; MPAMC: Museo Padre Aurelio Menin in Chiampo (Vicenza); Museo Paleontologia e Preistoria “Piero Leonardi” (MPPPPL; University of Ferrara); Museo Civico della Laguna Sud di Chioggia (Venezia); MCLSC: Fondazione Museo Civico di Rovereto (FO-MCR, Trento).

Abbreviations of lithostratigraphic names

RAV: Rosso Ammonitico Veronese; RAI: lower member of the Rosso Ammonitico Veronese (Rosso Ammonitico Inferiore); RAM: middle member of the Rosso Ammonitico Veronese (Rosso Ammonitico Medio); RAS: upper member of the Rosso Ammonitico Veronese (Rosso Ammonitico Superiore).

RESULTS

All surveyed RAV specimens are here reported in stratigraphic order (Fig. 1C), with details on their taxonomy, size estimation, horizon, and source locality. The taphonomy of each specimen is also reported, framing the degrees of articulation, completeness, and erosion. If present, associated fauna is listed, together with bite or bioerosion traces. Below, six of the more representative deadfalls were selected for a more extensive description. The remaining specimens are listed in Table 1.

MCLSC T2: Metriorhynchoidea indet. (Thalattosuchia)

Generality – Upper Bajocian metriorhynchoid from the RAI of (most likely) Sasso d’Asiago (Vicenza province), recognized in Pellestrina (Venezia Province) breakwaters in the 1990s. The specimen
Taphonomy and deadfall ecology of marine reptiles from a Jurassic pelagic setting

Specimen	**Taxonomy**	**Age**	**Locality and Horizon**	**Composition**	**Size**	**Preservation**	**Landing**	**Associated fauna/traces**
MCLSC T2 | Metriorhynchidae (Thalattosuchia) | Middle-Late Bajocian | Asiago Plateau, RAV | Dorsal-sacral column, pelvic elements, femur | ETL=3.5m | Sem.art., opisthocoelous, eroded elements | Lateral | 23 rhyncholites 1 belemnite 117 cirrhus
MM 25.5.1.078 | Metriorhynchidae (Thalattosuchia) | Middle-Late Bajocian | Asiago Plateau, RAV | Sectioned dentigerous rami, teeth | n.a. | Isolated fragments, eroded bone/enamel | n.a. | Sponges/endothelial fungul borings in bone and teeth
RS T1 | Pliosauridae (Plesiosaursa) | Late Bajocian | Asiago Plateau, RAV | Partial skull, mandibles, teeth, vertebrae | n.a. | Flattened eroded skull | Ventral | 1 shark tooth 9 rhyncholites 5 belemnites 4 echinoids 5 cirrhus
MGGC 8846/1UC12 3a-b | Neoplagiosaurus ammoniticus (Metriorhynchidae, Thalattosuchia) | Late Bajocian–Early Bathonian | S. Ambrogio di Valpolicella, RAI | Sectioned skull and mandibles, cervical centra | ETL=4.3m | Almost complete and articulated skull, eroded enamel | n.a. | 7 rhyncholites 2 laevaptychius 1 camaraptychius 78 belemnites 92 cirrhus
MGP-PD 32438 | Metriorhynchidae (Thalattosuchia) | Late Bajocian–Late Bathonian | Cima del Porco, Asiago Plateau, RAV | Partial skull roof, mandibles, cervical centra/ribs, 1 tooth | ETL=2.7m | Cranial imprints, flattened eroded skull, sem.art. column | Dorsal | 4 rhyncholites 2 laevaptychius 1 camaraptychius 5 belemnites 3 cirrhus
FOSO2839 | Metriorhynchidae (Thalattosuchia) | Late Bajocian–Callovian | Vallerula, Asiago Plateau, RAV | Sectioned dentigerous rami, teeth | n.a. | Isolated fragments, bone tissue well preserved | n.a. | Microfossils
MPPPL 18797 | Anguinus spongiosus (Pliosauridae, Plesiosaursa) | Early-Middle Oxfordian | Kailerhals, Asiago Plateau, RAV | Partial skull, mandibles, left propodials, epipodials | ETL=3.4m | Flattened, heavily eroded elements | Lateral? | 5 shark teeth 16 rhyncholites 17 echinoids 1 camaraptychius 596 cirrhus
MGP-PD 26552 | *Stenurosaurus* berCONNECT | Middle-Late Oxfordian | Trechi, Asiago Plateau, RAV | Partial skull roof, mandibles, teeth | ETL=3.7m | Rostral imprint, flattened eroded skull, art. mandibles, vertebrae | Ventral | 8 rhyncholites 1 camaraptychius 2 cirrhus
MGP-PD 6753 | Plesiosaursa indet. | Latest Oxfordian–Kimmeridgian | Cesuna, Asiago Plateau, RAV | 5 isolated centra | n.a. | Loose elements | n.a. | 2 cirrhus on 6757 and 6759 matrices
V7105 | Ophthalmosaurus (Ichthyosaurs) | Early Kimmeridgian | Monte Intenratto, Asiago Plateau, RAV | Partial column with ribs, pectoral girdle elements | ETL=3.35m | Flattened, heavily eroded elements | Lateral/anterior | 2 shark teeth 1 reptile tooth 3 rhyncholites 7 laevaptychius 3 camaraptychius
V7102 | Ichthyosaurs indet. | Early Kimmeridgian | Monte Intenratto, Asiago Plateau, RAV | Partial anterior column with ribs | ? | Sem.art. column, flattened ribs | Lateral | None
MCLSC T1 | Ophthalmosaurus (Ichthyosaurs) | Kimmeridgian | Asiago Plateau, RAV | Partial skull, mandibles, cervical centra | ? | Disarticulated | Anterior | 26 rhyncholites 2 belemnites 3 camaraptychius 6 laevaptychius 2 cirrhus 4 clavate erosions
MGP-PD 27566 | *Aeolodontomys* indet. (Thalattosuchia) | Late Kimmeridgian–Early Tithonian | Ponte Serra, Belluno RAV | Thoracic, sacral and caudal vertebrae, ribs/gastralia, ischium, osteoderms | 1.5m | Regurgitale | Clustered mass | Possible bone elements of other ingested taxon
V7104 | Thermosaurus indet. (Ichthyosaurs) | Early Tithonian | Erbezzo, Verona, RAV | Rostrum tip | n.a. | Loose broken nostrum tip | n.a. | Echinoderm grazing traces

Tab. 1 - Surveyed specimens dataset. Abbreviations: ETL = estimated total length; sem. art. = semi-articulated; art. = articulated. *the specimen MGP-PD 6752 is an artificial composite of plesiosaurid neural arch and undetermined sauropod centrum (see Serafini et al. 2023b).**

Consists of a partial and articulated vertebral column, one femur and portions of the pelvic and pectoral girdles (ischium, pubis and a dubious coracoid) on a RAV boulder (Fig. 2A, B; for detailed anatomical description see Serafini et al. 2023b). The specimen was not prepared. Estimated total length: about 3.3 m. Estimated mass: not available.

Taphonomy and preservation – The taphonomy of this specimen is reported in Serafini et al. (2023b), where MCLSC T2 is described as laterally orientated on the surface of a RAV boulder, distinctly arched dorsally in an opisthotonotic position (Fig. 2B). Completeness and articulation are low in the anterior column (Cp=1; Ar=2), anterior girdles-forelimbs (Cp=0; Ar=0/4), and posterior girdles-hindlimbs (Cp=2; Ar=0), but relatively higher in the posterior column (Cp=2; Ar=4). Most of the ribs are not preserved, as well as other small and thin elements (e.g., epipodials); this condition is inconsistent with the action of bottom currents, as centra, the femur and pelvic elements would have been scattered. Every preserved anatomical unit is uniformly heavily erod-
ed (E=4), with widespread exposed cancellous bone. The paucity of elements prevented speculation on the landing of the carcass on the seafloor, but (assuming the boulder surface to match the polarity of the stratum) it eventually settled on the left side (Fig. 2B).

Associated fauna – Abundant nautiloid rhyncholites (n=23, both Gonatocheilus and Leptocheilus-like...
morphotypes; Fig. 2B–E) and a single belemnite rostrum are preserved in close proximity of the skeletal remains. Tens of crinoid elements (n=117) encrust most of the vertebrae. Stalk or holdfast fragments are found deeply embedded between the trabeculae as gray circular objects (Fig. 2B, F–H), slightly raised from the surrounding bone tissue. Despite most of the articula lacking diagnostic features, some are consistent with Phyllocrinidae (Hess 2012), already reported in RAV lithologies (e.g., Clari et al. 1990; Laub 1994). While the presence of the single belemnite rostrum can be considered coincidental, both rhyncholites and crinoids are here recognized as part of the metriorhynchoid deadfall (see discussion below on fall stage attribution).

PLS T1: Pliosauridae indet. (Plesiosauria)

Generality – Upper Bajocian pliosaurid plesiosaursian from the RAI of (most likely) Sasso d’Asiago, Asiago Plateau (Vicenza province), recognized in 2008 on a boulder used in the breakwater of Pellestrina (Venezia). The specimen was found on a RAV boulder situated in a seaway dam in Pellestrina (Venezia Lagoon) where it currently still resides. A preliminary report was made by Cau & Bizzarini (2020), who attributed the specimen to Pliosauridae pending extraction and preparation. We surveyed the boulder in situ and for the first time we provide its datation by means of calcareous nannofossil analysis. The specimen consists of a partial skull roof in dorsal view, three dislodged teeth, an isolated vertebra and neural arch, a mandible, and several unidentified and eroded fragments on a RAV boulder (Fig. 3A, B). Estimated total length: not available. Estimated mass: not available.

Age determination – The calcareous nannofossil assemblage, moderately preserved and diversified, is composed of Watznaueria aff. W. manivitae Bukry, 1973 (C), W. communis Reinhardt, 1964 (R), W. manivitae (R), W. britannica (Stradner, 1963) Reinhart, 1964 (R), W. aff. W. britannica (R), W. gae-tanii Erba in Visentin et al., 2023 (R), W. contracta (Bown & Cooper, 1989) Cobianchi et al., 1992 (R), Cyclagelosphaera margerelii Noël, 1965 (R), Latharingius velatus Bown & Cooper, 1989 (R). The presence of W. manivitae and the absence of Carniolithus superbis (Deflandre in Deflandre & Fert, 1954) Prins in Grün et al., 1974 and Watznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968 allow the sample to be ascribed to the upper Bajocian subzone NJT10b (Casellato 2010) (Fig. 1C).

Taphonomy and preservation – Most of the skeletal material is lost, either as a consequence of the taphonomic history of PLS T1 or due to recent weathering by the sea (the boulder is a few centimeters from the water). With this ambiguity, articulation, completeness, and erosion parameters lose significance. Histologically, the skeletal tissue is represented only by cancellous bone, while the tooth enamel, although cracked and flaked, is still preserved above the dentine. If the boulder surface matches the upper polarity of the stratum, we can infer that the specimen, at least the head, landed and settled ventrally (Fig. 3B).

Associated fauna – Surprisingly, PLS T1 still hosts a relatively diverse associated fossil fauna (Fig. 3C–H): nine rhyncholites (the most complete being Gonatocheilus-like) were found on the boulder close to the skeletal material, one of which is stuck between the lateral margin of the left frontal (Fig. 3B, D). Five belemnites are present in the proximity of the remaining bones and 4 crinoid elements were found embedded in the skull (Fig. 3B, G). Echinoid spines are also present (n=4) next to the skull roof, mandible and vertebra (Fig. 3B, F). Most interestingly, a shark tooth was found below the isolated rib: only the tip of the crown is preserved (Fig. 3B, C), hampering taxonomic attribution. As with the pliosaur teeth, the shark tooth enameloid is well preserved.

MGGC 8846/1UCCI123a, MGGC 8846/1UCCI123b, MPPPL 35, MPPPL 39: Neptunidraco ammoniticus (Thalattosuchia)

Generality – Upper Bajocian-lower Bathonian metriorhynchid from the RAI of S. Ambrogio di Valpolicella (Verona province), found in Portomaggiore in 1955. The specimen consists of a partial skull, mandibles, and cervical vertebrae on four different sectioned and polished slabs of RAV (Fig. 4A). All slabs together represent the holotype and the only known specimen of the species Neptunidraco ammoniticus Cau & Fant, 2011. Besides polishing, the specimen was not prepared. Estimated total length: 4.3 m. Estimated mass: 340 kg, calculated based on estimates for Metriorhynchus spp. published by Foffa et al. (2014: supplement).

Taphonomy and preservation – Most of the taphonomic survey on the specimen was carried out on
MGGC 8846/1UCC123a and MPPPL 35 exposed sides (Fig. 4A, B), being the two slabs with more preserved skeletal elements. The anatomical unit of the head scores high values of completeness (Cp=3).
and articulation (Ar=3), with connected sutured bone and with mandibular rami in anatomical association. The anterior column is poorly represented (Cp=1) yet discreetly articulated (Ar=2). This degree of articulation of the preserved elements indicates little disturbance at the seafloor. Since the specimen is two-dimensionally exposed, erosion cannot be evaluated, but, as for MM 25.5.1078, UV-ABC induced fluorescence highlights enamel-specific response only in a few replacement crowns, implying chemical dissolution at the water-sediment interface (Serafini et al. 2023b). The paucity of elements, together with the ambiguous polarity of the polished slab, prevent a univocal determination of the carcass landing at the seafloor (either dorsal or ventral).

Associated fauna – The holotype of *Neptunidraco ammoniticus* is by far the RAV tetrapod with the highest number of associated belemnite rostra (n=78, *Hi bolites*; Fig. 4B–D); most of them are consistent in-
size and without any preferential orientation (which supports a low influence of currents at the sea-floor). Belemnites are generally common in RAV lithologies (Sarti 1993; Martire et al. 2006), but such an abundance has to be considered unusual, and is here interpreted as linked to the carcass ecological succession (see discussion below). Between the mandibular and maxillary rami, numerous crinoid elements (n=92, likely underestimated, as counted on a single slab) can be seen exclusively under UV radiation (Fig. 4B, E). These crinoid elements were reported as unidentified calcitic spheres by Serafini et al. (2023b). Rhyncholites are also present (n=7), although the cut of the slab prevents full observation of their morphology. Finally, three ammonite aptychi occur in the proximity of the cranium (two Laevaptychus and one Lamellaptychus). Ammonite internal molds were not considered to be associated fauna, as they are principal components of the RAV lithologies.

MPPPL 18797: Anguanax zignoi (Plesiosauria)

Generality – Oxfordian pliosaurid plesiosaur from the RAM of Kaberlaba, Asiago Plateau (Vicenza province), found in the 1980s. The specimen consists of a partial skull and mandibles, isolated teeth, cervical, dorsal, and caudal vertebrae, the right scapulocoracoid, femur, epipodial elements and isolated metapodials (Figs. 5, 6A) on multiple RAV pieces (Cau & Fanti 2014). MPPPL 18797 is the holotype of the species Anguanax zignoi Cau & Fanti, 2016. The specimen was prepared in the 1980s, with some elements being chiseled from the matrix and with the application of glue and cement. For the first time we provide here the precise dating of the specimen by means of calcareous nanofossil analysis. Estimated total length: 3-4 m (Cau & Fanti 2014). Estimated mass: 340-800 kg, based on a similar body shape to that of a large block containing the partial caudal series, with still-associated neural spines and chevrons (Fig. 5C). This block is peculiarly facing the right-side judging from the orientation of the neural spines and arches (Cau & Fanti 2014); this is inconsistent with most of the skeleton lying on the right-side. It is unclear if the column segment detached and rolled into a separate position (possibly due to scavenging; see evidence below) or if it is outcropping (or was prepared) from the underside. Erosion is consistently high throughout the skeleton (E=4), with only few shreds of compact bone remaining (e.g., coracoid surface). Teeth are surprisingly well preserved in their histological structure, with preserved enamel and dentine, largely intact crowns, and well-defined apical ornamentation (Fig. 5E, F). UV-induced fluorescence of the bones is moderate, possibly indicating partial silicification of the original apatite lattice (Fig. 5A, C, E, F). In comparison, calcitic elements of the invertebrate fauna are much more reactive under ultraviolet light (Fig. 5B).
presence of Si on the bone tissue is also supported by SEM-EDS analysis, and silica infilling can also be observed in the roots of some teeth. SEM analysis on the 3D vertebral fragments did not reveal the presence of pyrite framboids; despite sulfur and iron peaks having been detected with EDS (File S1), distinct crystalline agglomerates of pyrite were not morphologically recognized inside the spongiosa. The same result occurred with the optical analysis of the histological thin section. From SEM imaging, microborings can however be recognized in the trabecular surface (File S1).

Associated fauna – MPPPL 18797 is the RAV deadfall so far recovered with the most abundant associated fauna (Fig. 6). Identification of the calcitic associated fauna was conducted under UV light, as it is almost impossible to distinguish calcitic elements in the red matrix and white bone under nat-
ural light. The specimen preserves two shark teeth underneath the right mandible (Fig. 6A, C, D); one small crown is consistent in morphology with an upper lateral tooth of *Sphenodus* sp. (Fig. 6D). The cusp is slender and very pointed, bent distally. The labial face is convex transversely, especially in its central region, almost forming a crest. The cutting edges are very acute and prominent, extended laterally by short oblique heels. Characters correspond to the generic description provided by Cappetta (2012: p. 100). The other tooth is larger and more intact (Fig. 6C) and belongs to cf. *Pseudonotidanus* sp. (ca. 1.1 to 1.6 cm wide). Three additional hexanchiform teeth were retrieved and extracted from the carcass as isolated crowns or cusps that are seemingly referable to the same taxon (e.g. Fig. 6B). The cusp is labio-lingually compressed, not curved lingually and devoid of any ornamentation. The crown does not
overhang the root labially. The teeth are strongly asymmetrical, suggesting an anterior position (the tooth with a nearly erect main cusp) and a lateral position (the one with a strongly inclined and slightly sigmoidal main cusp) in the jaw. The main cusp is rather broad, triangular and bent distally. The heels are well-developed and bear numerous mesial and distal cusplets, lower than the main cusp, with the mesial cusplets well separated from the main cusp. Distal cusplets are more developed than the mesial ones. All cusplets are sharp and separated one from the other by deep and sharp notches. Cutting edges are well developed and continuous. The root is pseudopolyaulacorhize and moderately thick when preserved (see the larger tooth underneath the right Anguana mandible). There is a robust lingual bulge and some irregularly spaced foramina, with faint vertical folds separating them. The characters are almost consistent with the description provided by Cappetta (2012: p. 104) for Pseudonotidanus teeth; the stratigraphic distribution is also consistent (Toarcian-Oxfordian; Cappetta 2012). 16 rhyncholites are found dispersed in most of the surveyed blocks (Fig. 6A), one of which (Gonatochelus-like) still contacts the distal end of a rib (Fig. 6E). 1 Lamellaptychus was identified, but more (also Lavaptychus) could be represented by smaller sections embedded in the sediment. 17 echinoid elements were observed on MPPPL 18797 between spines and plates (Fig. 6A, F, H); one of the more complete spines found in a notch dorsal to the posterior end of the skull shows distinct thorns on the shaft (Fig. 6H). MPPPL 18797 stands out for the extreme abundance of crinoid articula embedded in the cancellous bone, with 596 counted elements. All the brightly yellow-fluorescent circular or pentagonal objects found in the matrix, on the bones, and between trabeculae were identified as crinoid elements (Figs. 5B; 6F). An unidentified bivalve was also found encrusting an isolated bone fragment (Fig. 6G).

MCLSC T1: Ophthalmosaurus indet.

Ichthyosauria

Generality – Kimmeridgian ophthalmosaurian ichthyosaur from the RAS of (most likely) Sasso d’Asiago, Asiago Plateau (Vicenza province), recognized in 1997 in the breakwaters of Pellestrina (Venezia). Besides a brief report by Bizzarini (2003), the specimen still lacks an official description (and a catalog number), so we briefly discuss its anatomy and taxonomic affinities herein to better frame its taphonomy. As with MCLSC T2 and PLS T1, MCLSC T1 was found in a seaway dam in Pellestrina (Venezia Lagoon) on a RAV boulder quarried from the Asiago Plateau (Bizzarini 2003). The specimen is composed of the partial cranium in ventral view and anteriormost elements of the axial skeleton (Fig. 7). Estimated total length: ~3.6 m total length (~510 kg), estimated based on similarities in parabasisphenoid size and general morphology to Gengasaurus and ophthalmosauromorpha, however a proportionately larger skull relative to the body, as in many platypterygines, yields total length estimates centered around 2.5–2.9 m.

Skull – The preserved skull roof consists of one postorbital, one postfrontal, the two supratemporal and a single parietal that might include a frontal contribution (Fig. 7B–E, G). The left supratemporal is the best preserved of the pair; it is preserved in dorsal view and appears robust and thickened medially (Fig. 7E). The parietal presents a long, slender supratemporal process and borders a distinctly oval parietal foramen (Fig. 7D). The palatal series is represented by an isolated pterygoid underneath the right supratemporal (Fig. 7C). A large, flat, isolated bone above the mandibles might be interpreted as a palatine (left?; Fig. 7C), but its preservation hampers a definitive identification. The chondrocranium is represented by the parabasisphenoid (PBS) in ventral view (Fig. 7E); this element appears squarish, with broad, anterolaterally directed basipterygoid processes and posterovertrally situated foramen for the internal carotid arteries (ICF). Bizzarini (2003) reports the presence of sclerotic ossicles, and four quadrangular elements still in connection to the right of the parabasisphenoid might be consistent with this interpretation (Fig. 7D).

Mandibles – The lower jaw is mostly represented by the two elongated pairs of angular and surangular bones still close to anatomical association (Fig. 7B). Additional fractured elements are recognizable between the two mandibles (splenials?) but their poor preservation hampers accurate identification (Fig. 7B, G). The anteriormost preserved portion of the rostrum is found isolated in the left bottom corner of the boulder, consistent with both the premaxilla and the dentary (Fig. 7G).

Axial skeleton – The preserved axial skeleton is comprised of a distinct bone mass separated
Fig. 7 - Overview and anatomical details of MCLSC T1 (Ophthalmosaurus indet). A) Overview of the RAV block with the specimen. B) Close-up of the skull in ventral view. C) Close-up under UV-AC light of disarticulated palatal elements. D) Detail of palatal, skull roof and axial elements. E) Parabasisphenoid complex and supratemporal. F) Preserved centra of the specimen. G) Anatomical drawing of the specimen with color differentiation of the cranial and postcranial axial elements. Abbreviations: an, angular; icf, internal carotid foramen; pa, parietal; pbs, parabasisphenoid; pl, palatine; pty, pterygoid; sa, surangular; sc.r, sclerotic ossicles; sp, splenial. Scale bars: A, D) 10 cm; B, C, E) 5 cm; F) 4 cm; G) 20 cm.
from the cranium in the right bottom corner of the boulder (Fig. 7F, G). Ten amphicoelous centra can be identified on the boulder, but several undetermined fragments may also belong to additional vertebrae. About ten, mostly fractured, neural arches and neural spines can be found below the vertebral row, possibly corresponding to the preserved centra. Three fragmentary ribs are also present, with only one displaying a recognizable capitulum as well as a tuberculum of similar size. Judging by size and relative position of the vertebrae and ribs, the vertebral column segment appears to belong to the anteriormost dorsal series.

Taxonomy – No genus-level attribution can be reached due to the paucity and poor preservation of the remains; however, it is noteworthy that the combination of the PBS shape (squarish-subpentagonal; Fig 7E), the posteroventral position of the ICF, the anterolaterally oriented basipterygoid processes and the long and slender supratemporal processes of the parietal (Fig 7D) is consistent only with *Brachytyphagnostus* and *Gengasaurus* amongst ichthyosaurs from the Kimmeridgian-Tithonian of Europe (Moon & Kirton 2018; Paparella et al. 2017). The following coeval European taxa can be excluded: *Ophthalmosaurus iconicus* Seeley, 1874, *Arthropterygius ehrismannii* (Russell, 1993) (different ICF position; Moon & Kirton 2016; Maxwell 2010), *Nannopterygius* spp. (inconsistent PBS and parietal; Zverkov & Jacobs 2021), *Palvannia boyergeti* Druckenmiller et al., 2012, *Janusaurus lundi* Roberts et al., 2014 (inconsistent parietal), *Thalassodraco etchesi* Jacobs & Martill, 2020 (body of the parietal subequal to the length of the supratemporal process, vs. much longer in MCLSC T1, Jacobs & Martill 2020), *Undorosaurus gorodischensis* Efimov, 1999 (parietal inconsistent, but PBS identical; Zverkov & Efimov, 2019), *U. kristiansenae* (Druckenmiller et al., 2012) (inconsistent PBS; Delsett et al. 2019). Re-examination of a cast of the neotype of *Aegirosaurus leptospalpaulus* (Wagner, 1853) leads us to conclude that the parietal morphology is very similar to that of MCLSC T1, although potentially slightly broader; the PBS of *Aegirosaurus* is unknown. The *Aegirosaurus* neotype is substantially smaller than MCLSC T1. *Gengasaurus* might be a good candidate for referral due to similar PBS morphology, similar body size (based on PBS dimensions) and a sympatric distribution (Paparella et al. 2017); however, the PBS of the holotype and only specimen is not exposed in ventral view. Due to these uncertainties, MCLSC T1 is here referred to *Ophthalmosaurus* indet., as it was reported in Bizzarini (2003).

Age determination – The calcareous nannofossil assemblage shows high total abundance (more than 3 specimens for each field of view) and moderate preservation. The taxonomic composition is dominated by the *Watznauera* species that are known as resistant to dissolution. They are *Watznauera* aff. *W. manivitae* (A), *Watznauera communis* (C), *Watznauera manivitae* (large) (C), *Watznauera* aff. *W. britannica* (C), *Watznauera britannica* (F). Rare specimens of *Cylagelopshaera margerelii* and rare fragments of *Faviconus multicolomnatus* Bridger et al., 1989 have also been recognized. For the high abundance of *W.* aff. *W. manivitae* and *W. manivitae* (large, > 12 micron), the occurrence of *F. multicolomnatus* and the absence of *Zeugobatodotus embergeri* (Noël, 1959) Perch-Nielsen, 1984, the assemblage can be referred to the Kimmeridgian portion of the biozone NJT14 (Fig. 1C).

Taphonomy and preservation – MCLSC T1 scores a medium level of cranial completeness (Cp=2) but is largely disarticulated (Ar=0); the anterior column unit scores similarly (Cp=1; Ar=1), while erosion is equally moderate in all elements (E=2). The landing type of the specimen is difficult to frame due to the paucity and general disarticulation of the remains; the tip of rostrum is broken; no teeth are preserved and the entire preserved skull roof and chondrocranium is disarticulated. We propose that this disposition might be the consequence of a fast anterior landing, with a head-first arrival on the seafloor and possible breakage of the anteriormost rostrum (see Wahl 2009). Histologically, MCLSC T1 is not too poorly preserved, with a large extent of compact bone still intact; however, the skeletal tissues are diagenetically altered: UV-induced fluorescence can help in the distinction of merged skeletal elements, but the response light is weak, possibly due to SiO2 encrustation (Fig. 7C).

Associated fauna – Twenty-six rhyncholites are found in close proximity of the skeletal remains (Fig. 8A), two of them can be observed piercing the lateral margin of the parabasisphenoid (Fig. 8B, B’). Six laevaptychi and two lamellaptychi are also present (Fig. 8C, D), but most of them are grouped in a slightly more depressed area to the right of the skull, possibly emerging from a lower level of the boulder not synchronous with the ichthyosaur
deposition. Two belemnite rostra (Fig. 8E) and two crinoidal elements also occur, one of which set on the right surangular (Fig. 8F). In addition, subcircular and clavate erosions, possibly attributable to boring bivalves, can be observed aligned on the left surangular (Fig. 8G, H). The histological section produced from a ?vertebral fragment revealed the widespread presence of microborings on most of the trabecular surfaces: borings range from circular to unbranched-elongated, all in the 10-20 µm size range, which is consistent with a bacterial or fungal origin (Trueman & Martill 2002).

V7101: ?Ophthalmosaurus indet. (Ichthyosauria)

Generality – Lower Kimmeridgian ?ophthalmosaurian ichthyosaur from the RAS of Monte Interrotto, Asiago Plateau (Vicenza province). The specimen consists of an articulated vertebral column (anterior dorsal to mid dorsal section), associated ribs, putative unidentified pectoral elements and a possible ischiopubis (Fig. 9A, B). For detailed anatomical and morphometrical description see Serafini et al. (2020). Estimated total length (measured along axial skeleton): 3–3.5 m. Estimat-
ed mass: 300–470 kg, based on an assumed body shape similar to that of *Ophthalmosaurus* (Gutarra et al. 2019).

Taphonomy and preservation – V7101 scores high values of completeness and articulation (Cp=3; Ar=4) only for the anatomical unit of the anterior column, while other preserved elements are too damaged or fragmentary for feasible evaluation. The absence of the skull and girdles-limbs is more consistent with scavenging activity or flotation decay rather than bottom current-scattering, as smaller elements like ribs are still found in anatomical position (Fig. 9B). Except for some posterior centra, almost all skeletal elements of V7101 are heavily eroded to the cancellous bone (E=4). The specimen landing mode could have either been anterior, lateral, or dorsal, but eventually the carcass settled laterally on the right side (Serafini et al. 2020). The specimen then underwent strong lateral lithostatic compression that made its anterior half almost two-dimensional (Serafini et al. 2020).

Associated fauna – V7101 hosts a relatively diverse associated fossil fauna (Fig. 9B–H), with rhyncholestes (n=3, all of the *Gonatocheilus*-like morphology) closely associated with the left side of the ribcage (Fig. 9B, F), *Laevaptychus* apyechi (n=7;
Fig. 9B, H), Lamellaptychus aptychi (n=3; Fig. 9B, G) in the proximity of the skeleton, two Notidanodon shark teeth (Hexanchidae) close to the ribs of the left side of the ribcage (Fig. 9B, D, E), and an ichthyosaur tooth (most likely from a different specimen) still embedded in one of the ribs (Fig. 9C) of the left ribcage (Serafini et al. 2020). As with MCLSC T1 (Fig. 10A), SEM analysis on the histological section revealed the widespread presence of elongated microborings (Fig. 10B).
DISCUSSION

Comparative preservation

With very few exceptions (V7158 and the Ce-suna vertebrae; Serafini et al. 2023a, b), all the studied marine tetrapods from the RAV share a poor state of preservation. None is found complete and few preserve at least discretely complete anatomical units. Multiple factors in marine environments affect the completeness of vertebrate carcasses, most notably floating and scavenging (Schmeisser & McKean & Gillette 2015). Floating consequent to microbial fermentation and bloating (Schmeisser et al. 2020, 2023b) and consistent with previous studies that applied floating models in marine reptiles, this phenomenon would only occur under specific environmental conditions (e.g., high temperature, shallow depth; Reisdorf et al. 2012; Beardmore et al. 2012). These restrictions would seemingly exclude some negatively buoyant taxa (e.g., ichthyosaurs) from having floated up from a deep-water setting such as the RAV; however, we cannot confirm if the surveyed specimens died in their final depositional context or if they were transported by currents from a shallower environment. Therefore, floating cannot be excluded for any RAV specimens. In contrast, we find strong evidence of scavenging, which occurred either during floating or at the seafloor (see discussion below on mobile scavengers).

Overall, the preserved anatomical units are substantially articulated, and where disarticulation occurs (e.g., the anterior centra-ribs of MCLSC T2, skull of MCLSC T1, mandibles and dorsal centra of MGP-PD 32438) loose elements are not scattered across the slabs but instead are found close to their anatomical position and without a preferential orientation. This disposition suggests little disturbance at the seafloor by current activity (Martill et al. 1996; Martire et al. 2006). Floating consequent to microbial fermentation and bloating exposes carion to subaerial decay, whereby weaker anatomical units can detach and disperse far from the body (Schäfer 1972; Shultz et al. 2022). According to previous studies that applied floating models in marine reptiles, this phenomenon would only occur under specific environmental conditions (e.g., high temperature, shallow depth; Reisdorf et al. 2012; Beardmore et al. 2012). These restrictions would seemingly exclude some negatively buoyant taxa (e.g., ichthyosaurs) from having floated up from a deep-water setting such as the RAV; however, we cannot confirm if the surveyed specimens died in their final depositional context or if they were transported by currents from a shallower environment. Therefore, floating cannot be excluded for any RAV specimens. In contrast, we find strong evidence of scavenging, which occurred either during floating or at the seafloor (see discussion below on mobile scavengers).

The predominance in many specimens of exposed cancellous bone points to erosional processes acting on the bone tissue. Erosive phenomena can be explained by chemical dissolution of the bones above the sediment-water interface during a prolonged exposure of the remains on the seafloor before burial. This process is supported by the extremely slow sedimentation rates hypothesized for the RAV depositional settings (few mm/kyr; Martire et al. 2006). Besides chemical dissolution, large-scale bioerosion of the skeletal tissues might have contributed to the histological degradation (Hedges 2002; Trueman & Martill 2002). Extensive bioreactive phenomena are in fact highlighted in the histological sections, where even small fragments of cancellous bone exhibit dense traces of microbial exploitation (Fig. 10A, B; File S1) as well as larger borings (Fig. 10C, D). Moreover, with greater action of microborers, the dissolution rates in corrosive settings are usually higher (A. Collareta, pers obs). Dental tissues are also affected by superficial erosion. Interestingly, it appears that a preferential dissolution of the enamel occurred in some RAI specimens (all thalattosuchians: MGGC 8846/1UC-C123a, MGGC 8846/1UCC123a-b; MPPPL 35-39, MM 25.5.1078, FOS03839): thanks to UV-induced fluorescence, the enamel response is found absent in the functional crowns of these specimens, while it is present only in some of the replacement teeth still embedded in the alveolus/functional tooth root (Fig. 4E). In the same specimens, dentine and compact/cancellous bone are seemingly intact. Contrarily, in other RAI (PLS T1), RAM (MPPPL 18797) and RAS (MGP-PD 26552, V7101) reptiles, the opposite situation occurs, where tooth enamel and dentine (or enameloid for the associated shark teeth) are preserved (sometimes pristinely) while the bone is critically eroded. Despite being made of the same materials (hydroxyapatite), enamel is structurally very different from other hard tissues in vertebrates, with a very rigid and compact structure of larger apatite crystals, lower collagen content and negligible porosity (‘hypermineralized’; e.g., Boyde 1971; Kendall et al. 2018); in this perspective, it is not surprising to identify chemical dissolution phenomena specific to this hard tissue. It is, however, very peculiar to find both the presence and absence of such preferential erosion in the same paleoenvironment. Such specimen-based differences could be related to specific biologically-mediated erosive phenomena (e.g., bacterial or fungal activity; Trueman & Martill 2002).
Finally, post burial and diagenetic modifications of the RAV skeletal elements are mostly represented by strong lithostatic compression, in some cases resulting in the merging of distinct elements in a single surface (MPPPL 18797, V7101, V7102). Mineralogical alterations can be present in the form of silica impregnation and possible recrystallization (MPPPL 18797, MCLSC T1). Abrasion is rarely reported, most likely linked to recent weathering.

Within the frame of these reported preservational differences in a common taphonomic context, we propose four different taphofacies (see Table 2) based on modes of preservation of vertebrate hard tissues in the RAV. These taphofacies (listed as TAF-1 to TAF-4) are specimen-based rather than characteristic of specific stratigraphic levels (e.g., Boessneck et al. 2014), and some overlap between the three RAV members. Major discriminating characters between taphofacies are the preservation of enamel (absent in TAF-1), compact bone (severely eroded in TAF-3, well preserved in TAF-4) and of the trabecular structure in the cancellous bone (collapsed in TAF-3).

Preferential occurrence of large adults

There is a remarkable body size consistency among the most complete deadfall specimens, with all likely representing adult or near-adult individuals between 3–5 m total length and with estimated carcass masses of >300 kg. There are some ecological and some taphonomic explanations for such homogeneity. Carcass persistence on the seafloor is thought to protect the skeleton from environmental degradation (Serafini et al. 2022). That said, the RAV also represents a pelagic offshore palaeoenvironment, and as such it was likely frequented by adult individuals of larger species, with neonatal and small juvenile individuals possibly occupying shallower habitats closer to the paleo-coastline. A similar habitat partitioning between adults and juveniles can be observed in modern cetaceans (e.g., in *Balaenoptera acutorostrata* Lacépède, 1804; Robinson et al. 2023). As such, the biased fossil composition might be also partially related to ecology.

Deadfall ecology

Three of the four ecological stages described in modern whale-fall communities were cumulatively observed in RAV marine amniotes (Figs. 10, 11), based on either direct or indirect evidence. Interestingly, despite the small sample size, some components of the deadfall communities appear exclusive of some taxonomic groups. Cephalopods seem to be non-selective, exploiting carcasses of all three major groups of marine reptiles. Echinoid elements are instead only associated with the pliosaaurid carcasses. Likewise, shark teeth are entirely absent from thalattosuchian deadfalls, but are present on both the pliosaurs and one of the two ichthy-
osaurus. Of the three groups, thalattosuchians have the lowest mass per unit length (i.e., a more slender body profile, and a greater surface area to volume ratio). This more elongated body might result in a more dispersed carcass-fall community, resulting in a decreased rate of detection for a given area of rock. Moreover, whereas ichthyosaurs and plesiosaurs likely had an endothermic thermophysiology, metriorhynchids maintained a cooler body temperature (Séon et al. 2020) and possibly lacked a thick blubber layer. Thus, as well as containing less mass per unit length, metriorhynchoid carcasses may also have represented less nutrient-rich habitats and attracted a less diverse exploiting fauna. Associated fauna is found in most of the RAV carcasses, with some taxa being more abundant and common than others (Fig. 11A–D).

Mobile scavenger stage – Shark teeth are confidently assigned to the mobile scavenger stage (Smith & Baco 2003; Smith 2015), with their occurrence being verified for three marine reptile ocyctocoonoses (PLS T1; MPPPL 18797; V7101) and possible bite marks on MGP-PD 6761 (Fig. 10E). Elasmobranch teeth are not common in the RAV (Serafini et al. 2020), and with the exception of Strophodus (once commonly reported as Astera canthus) and dubious lamniform teeth (Sirna et al. 1994), hexanchiforms comprise the majority of the finds (D’Erasmo 1922; Sirna et al. 1994). The close association of such rare finds with marine reptile remains can be parsimoniously attributed to scavenging activity rather than coincidental occurrence. Besides scavenging, active predation by hexanchiform sharks should not be completely ruled out, as modern Hexanchidae are also recognized as occasional predators of marine mammals (Heithaus, 2001). Among Hexanchiformes, here we report the presence of Hexanchidae as a component of the reptile-falls (Fig. 11E). Orthocodontidae (Sphenodus) either included in Hexanchiformes (Cappetta 2012) or in Synechodontiformes (Klug 2010), is also reported with a single tooth. Hexanchiforms are renowned for their ecological role as scavengers, both in Cenozoic-Recent forms (e.g., Hexanchidae; McNiels et al. 2016; Merella et al. 2021; 2022) and Mesozoic taxa (Bogan et al. 2016; Paparella et al. 2017; Serafini et al. 2020). Previous reports of hexanchiforms scavenging marine reptile carcasses allow this association to be traced back to the Upper Cretaceous (Bogan et al. 2016) and the Upper Jurassic (Kimmeridgian; Paparella et al. 2017; Serafini et al. 2020). Our survey extends the record of this ecological role for the group earlier in time, with its occurrence at least from the middle Oxfordian and possibly from the upper Bajocian. Furthermore, evidence for a trophic interaction between hexanchiform sharks and a plesosaur carcass is also reported herein for the first time.

The second category of mobile scavengers that we recognize in the RAV tetrapod record are cephalopods (Fig. 11A, E). Rhyncholites (s.l.) are isolated calcified pointed elements from the upper jaw (tip of the upper beak) of nautiloids and some ammonoids (Nixon 1988; Riegraf & Moosleitner 2010). Calcified jaw tips (rhyncholites and conchorhyncs, respectively upper and lower jaw tip) were historically attributed exclusively to nautiloids (McFar lan & Campbell 1991) but some ammonoids were, more recently, also recognized as possessing such structures (Phylloceratina, Lytoceratina; Tanabe et al. 2015). The best-known calcified beak-bearing ammonoids are from the Upper Cretaceous (e.g., Hypophyllloceras, Phyllocerbyceras, Tetrarhonites; Tanabe et al. 2015), but the presence of a possible thin calcareous layer over the lower jaw of a Middle Jurassic Phylloceratina was also reported by Mironenko & Gulyaev (2018). Rhyncholites are well known from the RAV (Dieni 1975; Martire 1996) and were historically attributed to the paragenera Gonatocheilus and Leptotrichus (Laub 1994). Interestingly, rhyncholites are more common than nautiloid internal molds in the RAV (Laub 1994; Fig. 11F) and it is possible that the calcified tips of the beak were shed during feeding. All the jaw elements that we identified from RAV vertebrate carcasses are here listed as rhyncholites, but for the smaller specimens (fragmentary tips) we cannot exclude the presence also of some conchorhyncs. Due to their poor preservation, we cannot confidently assign these rhyncholites to any paragenus; however, they more closely resemble the nautiloid morphotypes (arrowhead shape, also found in the modern Nautilus; Nixon 1988; Klug 2001) rather than the Cretaceous ammonoid mor-
photype (Tanabe et al. 2015; C. Klug pers. comm. 2023; G. Schweigert pers. comm. 2023). We cannot completely exclude the possibility that some of the surveyed cephalopod beak tips might belong to ammonoids, but since the only confirmed, highly calcified ammonoid jaws are known in situ from the Upper Cretaceous, we find it safe to assume these are most likely from nautiloids. Here we present strong evidence that these nautiloid jaw elements are linked to scavenging of RAV marine reptile carcasses from the upper Bajocian to the Kimmeridgian. Besides the high numbers of rhyncholites that occur near the surveyed specimens, we also provide evidence of beak tips piercing the bone in two separate cases (PBS of MCLSC T1 and frontal of PLS T1; Figs. 3D, 8B), which suggests active exploitation of the carcasses. Although already speculated from traces on bones (Maxwell et al. 2022), to our knowledge this is the first reported occurrence of direct active scavenging by nautiloids on Mesozoic marine reptiles, including thalattosuchians, pliosaurs and ophthalmosaurian ichthyosaurs. Extant nautiloids are known to scavenge fish carcasses (e.g., Dunstand et al. 2011), where upper and lower beaks are used to scrape the meat, aided by labial tentacles (Sasaki et al. 2010). Rhyncholites are by far more represented than shark teeth in RAV reptile-falls (Fig. 11A), possibly suggesting a common and predominant occurrence of nautiloids as scavengers in Middle-Upper Jurassic deep-water settings.

The last representative of the mobile scavenger stage that we recognized is a single ichthyosaur tooth found stuck on a rib of V7101 (unlikely to represent predation based on crown size and shape, discussed in detail in Serafini et al. (2020)), suggesting that other marine reptiles also took advantage of necrophagy, possibly when the carcasses were floating.
Enrichment-opportunist stage – Opportunistic exploiters of the surveyed RAV carcasses are more difficult to frame. We are confident in assigning echnoids to the enrichment-opportunist stage (Smith & Baco 2003; Smith 2015). Echinoids are rare from RAV deposits, so finding them in relatively large numbers associated with a carcass (Fig. 11C) is a strong indication of their specific occurrence in nutrient-rich conditions. Known echnoids from the RAV are the irregular taxa Cyclolampas and Cardiolamnpas (Sarti 1993), but we cannot advance any reliable attribution of our material (outside being regular echinoids, possibly cidaroids) due to incompleteness. Previously reported RAV echinoids are bathyal taxa (Sarti 1993); therefore, their presence is still consistent with a deep-water paleoecological interpretation of the deposit. Echinoids were attributed to the enrichment opportunist stage in an Upper Jurassic deadfall by Danise et al. (2014), where distinctive traces of their grazing activity (possibly for foraging microbial mats) were recognized on the bones. Similarly, Maxwell et al. (2022) attributed to the same stage echnoids from Lower Jurassic Posidonia Shale carcasses. It is likely that the echinoid elements that we report here belonged to similarly opportunistic grazers of the skeletonized carcasses; the presence of superficial bioerosion in the compact bone of a RAV ichthyosaur rostrum (V7158; Serafini et al. 2023a; Fig. 10F) might support this grazing exploitation hypothesis, although other invertebrate producers (e.g., sponges) cannot be ruled out.

In the context of bioerosion, the unbranched and millimetric borings found in the maxilla and teeth of MM 25.5.1078 (Serafini et al. 2023b; Fig. 10C, D) can be confidently assigned to the enrichment-opportunist stage (Fig. 11E). Producers of similar traces are clionid sponges (Wisshak et al. 2019; Jamison-Todd et al. 2023) and (only by shape but inconsistently with sizes) endolithic marine fungi (Martill 1989; Golubic et al. 2005). Borings appear to penetrate the compact and cancellous bone in a straight line (Fig. 10C), while when they affect teeth they penetrate the dentine in a circle, contouring the pulpal cavity. Such a deep and localized penetration appears to be indicative of active nutrient exploitation rather than alteration during encrustation of the bones. A similar exploitation can be traced microscopically on the trabeculae of MPPPL 18797, V7101 and MCLSC T1, with bacterial and fungal microborings (Fig. 10A, B; see also Danise et al. 2012).

The last association that could be linked to the opportunist stage are belemnite rostra and ammonite aptychi. Both cephalopod elements are common in the RAV, so their presence needs to be carefully discriminated from coincidental occurrence. We do not have strong evidence that ammonite aptychi are related to the deadfall ecology, since they could just represent the preserved parts of ammonites (the aragonite shell dissolves while calcitic parts remain). However, they could also be indicative of the presence of ammonoids attracted by the enriched environment around the carcass, possibly for foraging on other smaller invertebrates. Belemnites (Hibolites) could be considered coincidental, if not for the case of the N. ammoniticus holotype (Figs. 4B, 10B): the high abundance of belemnites associated with MGGC 8846/UCC123a (and the other holotypic slabs) is unusual for their close proximity to the skull (sometimes with individuals set between cranial bones) and for the absence of a preferential orientation of the rostra. High density of belemnites in RAV hardgrounds is typical of condensed layers, but in such conditions the rostra follow the same orientation, usually parallel to the stratum polarity (Sarti 1993; Martire 1996). Mass deaths of belemnites (belemnite “battlefields”) are speculated to be either the result of catastrophic events (e.g., sudden anoxia, volcanic eruptions), gut contents of teuthophagie predators or related to the mass mortality after spawning typical of coleoids (Doyle & McDonald 1993). This last scenario is perhaps the more plausible for the N. ammoniticus specimen, where a large group of Hibolites might have gathered for mating in the surroundings of the nutrient-rich metriorhynchid deadfall. In modern schooling squids (e.g., Doryteuthis opalescens (Berry, 1911)) the reproductive effort results in the death of the adults (Fields 1965; Perretti et al. 2016), which sink from a few hours after spawning and up to 11 days after mating to the seafloor without a preferential orientation (Doyle & McDonald 1993). Perretti et al. (2016) describe show some adults cease movement and die in a few hours after spawning, while some males engage in egg-guarding behavior, which both justify the large occurrence of dead adults in the same surroundings as the spawning ground. The presence of a post-spawning mass mortality in the proximity of a deadfall is likely not coincidental. Adults might have exploited trophic resources from the carcass, but we also believe it is plausible that the deadfall enriched
surroundings might have been selected as a resource for the hatchling paralarvae (Perretti, pers. comm, 2024) as modern *D. opalescens* adults stop feeding right before and after mating (Perretti et al. 2016). This is, however, speculative and needs further research. While impossible to assess for all *Hibolites* preserved in the slab due to differently oriented cuts, many specimens are consistent in size, which would seemingly support the preferential occurrence of sexually mature individuals. We assign this possible deadfall-exploitation during mating gathering to the enrichment opportunistic stage; this attribution consequently makes belemnites from other RAV deadfalls possible opportunists of pelagic reptile carcasses.

Sulfophilic stage – The sulfophilic stage was not detected in the RAV sample (File S1). Mesozoic taxa known for hosting chemosynthetic sulfur-reducing bacterial symbionts (e.g., lucinid or solenmyid bivalves; Jenkins et al. 2013) were not identified in association with the surveyed carcasses. Similarly, pyrite framboïds, a proxy for sulfur microbial mobilization during lipid decay, were not found inside the bone spongiosa of MPPPL 18797, V7101 and MCLSC T1. We believe that the lack of evidence for this stage could be environmental, as pyrite framboïds, which were found in bones of both shallower (Danise et al. 2014) and deeper (Serafini et al. 2023c) settings might not had formed (or preserved) due to the constant oxic conditions at the RAV seafloor.

Reef stage – Suspension feeders that can be assigned to the reef stage are crinoids and possibly boring bivalves (Figs. 10G, 11E). Crinoid elements (most likely from Phyllocrinidae) are widespread between the cancellous bone of many RAV specimens (Fig. 11D). Such severe colonization of bare bones by crinoids has not been reported in previous deadfall studies (Fujiwara et al. 2007; Dick 2015; Maxwell et al. 2022). Dick (2015) reported the presence of crinoid elements in the surroundings of ichthyosaur carcasses from the Posidonia Shale, which were later considered rare by Maxwell et al. (2022). It is likely that encrusting crinoids growing on bones could be exclusive, or usually limited, to deep-water settings, such as the RAV. The only scenario that we can feasibly hypothesize for the occurrence of crinoid stem articula deeply embedded within cancellous bone (Fig. 10G), is that the crinoid planktonic larvæ might have landed on an already deeply eroded unburied skeleton on the seafloor and grown into the sessile adult form, erupting from the trabecular structure. Modern crinoid larval stages (auricolaria-like and doliolaria) are about 700 µm long and 400 µm wide (Nakano et al. 2003), therefore capable of fitting in intratrabecular spaces.

Gastrochaenolites-like clavate erosion can be found on the mandibular ramus of MCLSC T1 (Fig. 8G, H); these traces could be produced by boring bivalves (e.g., Pholadidae), common reef-stage components of vertebrate deadfalls (Belaústegui et al. 2012; Amalfitano et al. 2019; Maxwell et al. 2022). The only physical bivalve that could be found on a RAV carcass (Bivalvia indet. on MPPPL 18797; Fig. 6G) might be interpreted as a possible encrusting suspension feeder.

Differences with shallow-water deadfall communities

RAV deadfall communities are different from previously described reptile carcass-associated faunas (Danise et al. 2014; Dick 2015; Maxwell et al. 2022), with faunal association poorer in both taxonomic composition and individual abundance. This low diversity can be explained by the strong preservational bias characteristic of the RAV deposit, with dissolution phenomena also affecting the associated fauna. However, it is also possible that the RAV record is indicative for an environmentally driven lower diversity of carbonate contributors to the deadfall community compared to shallower settings. The reef stage is usually better and more commonly represented in epicontinental deposits (Danise et al. 2014; Maxwell et al. 2022), with a distinctive contribution of bivalves (mostly ostreids) and serpulid polychaetes in the encrustation of skeletal elements. In RAV deadfalls, crinoids appear to occupy the reef stage niche, possibly outcompeting other encrusting suspension feeders. Ophiuroids, a common deadfall opportunist (Maxwell et al. 2022), were not found in the proximity of RAV carcasses; this absence most likely reflects a preservational effect rather than an ecological difference between shallow and deep-water deadfall communities since, in modern oceans, ophiuroids are also found associated with whale falls from outer shelf and bathyal settings (Bennet et al. 1994; Fujiwara et al. 2007). RAV mobile scavengers also deviate from Mesozoic fossil deadfalls; hexanchiforms are usually not reported in shallow-water deadfalls, which instead appear to have been more often exploited by hybodont sharks during the Middle Jurassic (Martill...
The abundance of hybodonts had declined in open marine assemblages by the Late Jurassic (Rees & Underwood 2008), which may have made deep-water scavenging niches available for the neoselachian hexanchiforms. Lamniforms and carcarhinids dominate the early scavenger niche in extant (Clua et al. 2013) and fossil (e.g., Bosio et al. 2021) coastal settings, with multiple reports also in the Mesozoic (e.g., in the Upper Cretaceous of the Western Interior Seaway: Schwimmer et al. 1997; Konishi et al. 2014). In contrast, hexanchids are common scavengers in Recent deep-water settings (McNiels et al. 2016), with only juveniles inhabiting shallow coastal waters, most likely to avoid intraspecific competition and cannibalistic predation (Rodríguez-Cabello et al. 2018). Exceptions to this deep-water segregation have been reported for hexanchiforms (Merella et al. 2021; Bisconti et al. 2023), but only in Cenozoic marine mammal-falls. Cephalopods have not previously been described as playing such a predominant role in Mesozoic mobile scavenger stages such as in RAV deadfalls: we believe that this might also represent a shallow-water bias, since modern cephalopods are known to exploit whale carcasses in bathyal zones in large numbers (e.g., Mussoctopus in Monterey Bay on a baleen whale; Nautilus live.org). Moreover, the presence of nautiloids is also strongly indicative of a deep-water environment, as the group is known to inhabit maximum depths between 200 and 800 m depending on the species, based on estimates of shell implosion limits (e.g., Dunstand et al. 2011; Hoffmann et al. 2019). Future studies on the paleobathymetry of the RAV might also consider extrapolating depth information from nautiloids, if diagnostic specimens are retrieved. Thanks to the vertebrate taphonomic data and deadfall composition, we provide new evidence in favor of a bathyal, deep-water interpretation of the RAV depositional setting as previously proposed elsewhere (e.g., Winterer 1998).

Conclusions

With the present study, we provide the first inclusive taphonomic revision of the marine tetrapod record from the Middle-Upper Jurassic of the Rosso Ammonitico Veronese (RAV). Our survey revealed:

A common poor state of preservation consistent with the prolonged exposure of carcasses on a well-oxygenated seafloor. This aspect is particularly evident in the erosion of compact bone in almost every specimen.

Evidence of chemical dissolution of hard tissues, unexpectedly also of enamel exposed at the water-sediment interface.

Different specimen-based taphofacies based on the mode of preservation of vertebrate hard tissues (enamel, dentine, acellular cementum, compact bone, cancellous bone).

Moreover, based on the analysis of the associated fossil fauna, we were able to identify deadfall stages analogous to modern whale-falls. Our results show:

A mobile scavenger stage witnessed by hexanchiform sharks (*Notidanodon* sp., cf. *Pseudonotidanus* sp., and *Sphenodus* sp.), nautiloid beak elements and rare teeth of marine reptiles. For the first time we unambiguously document the active trophic interaction of Mesozoic nautiloids with marine reptile carcasses during scavenging.

An enrichment opportunist stage that features deep-water echinoids, bioeroders compatible with sponges or marine fungi, possibly ammonoid aptychi, and occasionally large occurrences of belemnites (cf. *Hibolites*) believed to have died in large numbers after a spawning congregation in the surroundings of an organic-enriched carcass.

A reef stage almost exclusively dominated by crinoids (cf. Phyllocrinidae) as suspension feeders encrusting the skeletal elements. We hypothesize that the planktonic larvae could have landed in the cancellous bone already exposed by chemical erosion and then grown into the adult sessile form deeply embedded inside the bone itself. We report this peculiar encrustation with large numbers of individuals affecting tetrapod bones for the first time. Clavate erosions similar to *Gastrochaenolites* are also interpreted as reef-stage suspension feeders similar to modern pholadid bivalves.

While some of our results deviate from other Mesozoic deadfalls set in shallow waters, they are consistent with Recent whale-falls in pelagic-bathyal zones. These data support a bathyal interpretation of the RAV paleoenvironment. Our survey systematically characterized the taphonomy and deadfall ecology of a pelagic deposit from the Mesozoic, an environment often neglected due to the paucity...
of specimens and their poor preservation. Future studies on similar or deeper environments can further help us to better frame the evolution of deadfall-specialist clades in deep time, together with a better understanding of the ecological role of large pelagic reptiles in the Mesozoic oceans, during and after their lives.

CRediT authorship contribution statement

Giovanni Serafini: Conceptualization, Investigation, Methodology, Writing – original draft, Writing – review and editing, Data curation, Formal analysis, Visualization, Funding acquisition. Silvia Danise: Conceptualization, Investigation, Methodology, Supervision, Writing – review and editing. Erin E. Maxwell: Formal analysis, Investigation, Methodology, Supervision, Writing – review and editing. Luca Martire: Supervision, Writing – review and editing. Jacopo Amalitano: Investigation, Writing – review and editing. Miriam Cobianchi: Investigation, Formal analysis, Methodology, Writing – review and editing. Luca Giussberti: Conceptualization, Data curation, Supervision, Writing – original draft, Writing – review and editing, Project administration.

Acknowledgments: Mariagabriella Formasiero (MNH), Michela Contessi (MGGC), Valentina Carpanese, Cinzia Rossato (MPAMC), Luciano Frizziero and Daniela Ballarin (MCLSC), are deeply thanked for the access on the material under their care. Thanks also to Oliver Rauhut (BSPG) for access to the cast of the Aegirosaurus neotype for comparative purposes. Cristina Penzo (Chioggia municipality), Cecilia Rossi (SABAP of Venezia and its Lagoon), and Cristina Nisi (SMA Bologna University) are also thanked for the necessary authorizations. Fabrizio Bizzarini is greatly thanked for leading GS and LG to PLS T1 in Pellestrina. Andrea Cau is thanked for helping in tracing back the specimen MPPPL 18797 inside the collections of the MPPPL. Irene Tomelleri is kindly thanked for providing additional pictures of V7101. Negar Eftekhari is thanked for performing the analysis at the ESEM of Ferrara. Christian Klug and Guenter Schweigert are deeply thanked for discussing cephalopods’ beak morphologies, which greatly helped our identification of nautiloid rhyncholites. Max Whissak is thanked for discussing the bioerosions found on MM 25.5.1078. Charles Perretti is thanked for discussing modern Doryteuthis opalescens spawning behavior. Cesare Andrea Papazzoni is kindly thanked for providing constructive suggestions to the early draft of the manuscript. Lene Liebe Delsert is thanked for providing suggestions on the RAW taphofacies during the revision of GS PhD thesis. Rene Lauer and Bruce Lauer from the Lauer Foundation for Palentology, Science and Education (PSE) are heartily thanked for providing one of the authors (GS) with the professional triple-wavelength UV lamp and photographic filters used in this study as a sponsor of his current PhD project. The editors, an anonymous reviewer and reviewer Alberto Collareta are greatly thanked for their constructive and insightful comments on the manuscript. The Palaeontological Association provided support to GS with the award of the Small Grant Scheme (Sylvester-Bradley Award PA SB202104).

REFERENCES

Taphonomy and deadfall ecology of marine reptiles from a Jurassic pelagic setting

Taphonomy and deadfall ecology of marine reptiles from a Jurassic pelagic setting

Serafini G., Gordon C.M., Foffa D., Cobianchi M. & Giusberti L. (2022) - Tough to digest: first record of Teleosauroidea (Thalattosuchia) in a regurgitalite from the Upper Jurassic of north-eastern Italy. Palaeontology, 8: 1–22.
Serafini G., Gordon C.M., Foffa D., Cobianchi M. & Giusberti L. (2022) - Tough to digest: first record of Teleosauroidea (Thalattosuchia) in a regurgitalite from the Upper Jurassic of north-eastern Italy. Papers in Palaeontology, 8: 1–22.
Serafini G., Foffa D., Young M.T., Friso G., Cobianchi M., Giusberti L. (2023b) - Reappraisal of the thalattosuchian crocodylomorph record from the Middle-Upper Jurassic Rossic Ammonitico Veronese of northeastern Italy: age calibration, new specimens and taphonomic biases. Plos One, 18(10): e0293614.