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Abstract: Calcareous nannofossil investigations were conducted on Lower and Middle Triassic marine succes-
sions from South China. Coccoliths, nannoliths and calcispheres are relatively frequent and moderately preserved, 
showing an increase in diversity from the Smithian (Olenekian) to the Ladinian. The oldest nannofossils, dated to the 
Smithian, include Eoconusphaera hallstattensis and very simple coccoliths attributed to a sp. A morphogroup. Nannoliths 
of  Prinsiosphaera triassica and Carnicalyxia, along with rare specimens of  Tetralithus pseudotrifidus and Crucirhabdus cf. C. 
minutus are present in the Spathian-Pelsonian (Olenekian-Anisian) and Longobardian (Ladinian) samples, respectively. 
A total of  10 new morphotypes are also described. The Smithian coccoliths documented here significantly narrow 
the temporal gap between molecular clock estimates for the origin of  calcifying coccolithophores and their first fossil 
record. Our data represent the oldest known nannofossils and push back the onset of  coccolithophore calcification 
by approximately 40 million years, shortly after the end-Permian mass extinction. The Olenekian primitive, simple and 
tiny coccoliths from South China suggest that early coccolithophores emerged in a coastal environment of  the eastern 
Tethys Ocean. The onset of  calcification in Calcihaptophycidae may have been facilitated by suppressed atmospheric 
CO2 levels, coupled with increased nutrient availability following the emplacement of  the Siberian Traps. The emer-
gence of  this new phytoplanktonic group correlates with the earliest recovery of  benthic calcifiers, potentially shaping 
post-extinction marine biodiversity and influencing the evolution of  the ocean toward modern conditions.
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Introduction

Coccolithophores, golden-brown algae with 
red “plastids” (chlorophyll c as an accessory pig-
ment) of  Phylum Haptophyta, secrete submicrosco-
pic low-Mg calcite crystals to construct coccoliths 
adjusted into an exoskeleton, named coccosphere, 
around the cell (Lohman 1902). Along with diatoms, 
phytoplanktonic cyanobacteria and dinoflagellates, 
coccolithophores are a foremost constituent of  
the marine functional groups responsible for pri-
mary productivity, energy transfer to higher trophic 
levels, export of  biogenic particles to the seafloor 
and exchanges with the atmosphere. Coccolitho-
phore biomineralization converts Ca and inorganic 
C (bicarbonate ions) into calcite at very fast (days 
to weeks) reproduction rates, making this phyto-
planktonic group most effective calcite producers 
on Earth since Mesozoic times (Bown et al. 2004; 
Erba & Tremolada 2004; Erba, 2006; Suchéras-Marx 
et al. 2019). Living coccolithophores can secrete 
both coccoliths and nannoliths (Young et al. 1999) 
that are consistently found in various proportions in 
Recent to Jurassic sedimentary sections. Coccolith, 
nannolith and coccosphere accumulation on the sea-
floor is a large long-term C sink that contributes to 
the vertical CO2 gradients in the ocean on geologi-
cal time scales. Arguably, the invention of  coccolith 
calcification by the Subclass Calcihaptophycidae (De 
Vargas et al. 2007) must be regarded as a fundamen-
tal step towards the modern ocean. 

While molecular studies on coccolithophores 
are crucial for reconstructing their biological origin 
and evolution, micropaleontological investigations - 
although undoubtedly incomplete relative to living 
coccolithophore populations (Bown et al. 2004) - re-
main the only direct way to date coccolithogenesis 
origin and development. Specifically, the most an-
cient coccolith unequivocally dates the initial secre-
tion of  calcite liths above organic baseplates (Young 
& Henriksen 2003). The oldest record of  calcare-
ous nannofossils consists of  nannoliths and calci-
spheres dated as Carnian (Late Triassic) followed by 
coccoliths in the Norian (Bown 1998). These rela-
tively common nannofossils indicate that biological 
processes analogous to those operating today were 
already in place in Late Triassic times (Young et al. 
1999; Bown et al. 2004; Young & Henriksen 2003; 
Falkowski et al. 2004). Based on revised stratigraphy 
(Gardin et al. 2012), the oldest nannoliths are docu-

mented in Carnian layers, while the oldest coccoliths 
occur in uppermost Norian sediments from the 
Austrian Alps, suggesting that perhaps the Western 
Tethys was the birthplace of  coccolithophores. De-
mangel et al. (2020, 2023) confirmed the first occur-
rence of  the coccolith species Crucirhabdus minutus 
and Archaeozygodiscus koessenensis in the upper Norian 
interval of  the Northern Calcareous Alps (Austria), 
although unspecified coccoliths – not determined at 
the species level – were observed in middle Norian 
samples. After the appearance in the Carnian, ac-
cording to Demangel et al. (2023) Prinsiosphaera trias-
sica became rock-forming in the upper Rhaethian 
as documented in the Northern Calcareous Alps. 
Bottini et al. (2016) documented calcareous nanno-
fossils in the Rhaethian of  the Southern Alps. Find-
ings of  Upper Triassic calcareous nannofossils from 
areas outside the Tethyan Realm are limited to the 
Wombat Plateau, north-western Australia (Bralow-
er et al. 1991, 1992), the Queen Charlotte Islands, 
western Canada (Bown 1992), the Neuquén Basin 
in west-central Argentina (Pérez Panera et al. 2023a) 
and the East Andes in northern Peru (Pérez Panera 
et al. 2023b).

The study of  Lower and Middle Triassic 
samples from South China provides evidence of  
the potential occurrence of  calcareous nannofossils 
in earliest Mesozoic, constraining the beginning of  
coccolithogenesis and documenting nannofloral di-
versity through the Triassic.

Stratigraphic setting

In South China marine sequences of  Early-
Middle Triassic age revealed the occurrence of  ex-
tremely diversified and well-preserved marine fau-
nas, including reptiles, fishes, conodonts, daonellid 
bivalves, and ammonoids (Motani et al. 2008; Jiang 
et al. 2005, 2009, 2016; Sun et al. 2013; Tintori et al. 
2014; Zou et al. 2015). The South China Lower and 
Middle Triassic marine sequence was, therefore, thor-
oughly studied in the past few decades, because of  
such exceptional paleontological records preserved 
in many Lagerstätten intervals, as reviewed by Ben-
ton et al. (2013). The Lower Triassic sequence ex-
posed at Pingdingshan-Majiashan in Chaohu, Anhui 
Province is a complete Induan and Olenekian suc-
cession deposited in a relatively deep-water slope set-
ting (200 to 500 m) on the northern border of  the 
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Yangtze Platform connecting the eastern Tethys and 
western Panthalassa oceans (Tong & Yin 2002; Sun 
et al. 2009; Tong & Zhao 2011) (Fig. 1).

The basal Triassic Yingkeng Formation, over-
lying the Permian Dalong Formation and overlaid by 
the Helongshan Formation, is composed of  black 
shales, light grey, green, yellowish mudstones and 
shales intercalated with thin-bedded muddy lime-
stones and nodular limestones. The Induan/Ole-
nekian boundary was proposed to be at the base of  
Bed 24-16 of  the Pingshan section, defined by the 
first appearance of  conodont Neospathodus waageni 
(Tong & Zhao 2011). 

The Smithian Helongshan Formation is well 
exposed at Majiashan and represents a highly cyclic 
sedimentation of  alternating pyrite-rich marlstones 
and bivalve wackestones. It is subdivided into two 
members. The Lower Member comprises yellowish 
grey-purple, thin-bedded, nodular limestones, cal-
careous mudstones, and light grey, medium-bedded, 

muddy limestones. The Upper Member mainly con-
sists of  grey thin-bedded limestones intercalated 
with yellowish-green, thin-bedded, nodular lime-
stones. The uppermost beds are black shales and 
dark grey, thin-bedded marlstones, yielding nodules 
(calcareous concretions) containing abundant fishes, 
ammonoids and bivalves. The Smithian/Spathian 
boundary, defined by the first appearance of  con-
odont Neospathodus pingdingshanensis is in the upper-
most part of  the Helongshan Formation (Liang et 
al. 2011).

The Lower Qinglong Formation - compris-
ing alternating thin-bedded muddy limestones, cal-
careous mudstones and limestones - is equivalent to 
both the Yinkeng Formation (Griesbachian to early 
Smithian) and Helongshan Formation (late Smithi-
an) at Chaohu (Chen et al. 2011; Benton et al. 2013). 

The Spathian Nanlinghu Formation is subdi-
vided into three members. The Lower Member is 
characterized by light grey, thick-bedded limestones. 
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Fig. 1 - Left: Stratigraphic framework for the Early-Middle Triassic with the samples investigated for calcareous nannofossils. Right: at the 
top a Smithian paleogeographic reconstruction with indication of  the studied area. Spathian marine reptiles: A = Endemic Ichthyo-
sauriformes genera (Grippia-Parvinatator-Utatsusaurus-Gulosaurus); B = Eosauropterygia (Majiashanosaurus); C = Ichthyosauromorpha 
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The Middle Member consists of  reddish, medium-
thick-bedded, nodular limestones. The Upper Mem-
ber consists of  dark grey, thin-bedded marlstones 
and muddy limestones intercalated with yellowish 
green calcareous shells (lower part), and dark grey 
to black, thin-bedded marlstones and limestones in-
tercalated with bituminous shells and carbonaceous 
shells (upper part).

The Anisian Guanling Formation mainly 
comprises clastic rocks and carbonates. The Low-
er Member contains yellow-green fine sandstones, 
silty mudstones and mudstones intercalated with 
muddy dolomites interpreted to reflect a transition 
from restricted-evaporitic tidal flat to shallow ma-
rine facies, whereas the Upper Member comprises 
light-grey to dark-grey, nodular micritic limestones, 
muddy limestones and cherty micritic limestones 
with bands of  dolomites. 

The Illyrian-Fassanian (Anisian-Ladinian) Yan-
gliujing Formation corresponds to ‘the Member III 
of  the Guanling Formation’ of  Zhang et al. (2009). It 
is strongly dolomitized and interpreted as the Ladin-
ian evaporative tidal sediments that comprises medi-
um- to thick-bedded dolostones or calcite dolostones 
intercalated with pseudomorphs of  gypsum- and 
evaporate-solution breccias.

The Longobardian Zhuganpo Member of  
the Falang Formation is well exposed near the vil-
lage of  Nimaigu (Wusha District) and consists of  
dark-grey to grey, medium-bedded, micritic lime-
stones, nodular limestones and argillaceous layers. It 
is dated as late Ladinian based on ammonoids (Zou 
et al. 2015) and conodonts (Sun et al. 2016). Radio-
metric dating based on zircon U-Pb was achieved 
for tuff  at the bottom of  Layer 47, providing an age 
of  240.8 ± 1.8 Ma (Lu et al. 2018). 

Samples and Methods

Calcareous nannofossils were analysed in 
samples from the Longtan, Majiashan, Luoping and 
Nimaigu sections (Fig. 2) previously investigated for 
marine faunas and available at the Department of  
Earth Sciences of  the University of  Milan (Italy). 
The study was conducted on limy and marly beds 
of  the Quinglong Formation (Smithian) at Long-
tan (Anhui Province), the Nanlinghu Formation 
(Spathian) at Majiashan (Anhui Province), the Up-
per Member of  the Guanling Formation (Pelsonian) 

at Luoping (Yunnan Province) and the Zhuganpo 
Member of  the Falang Formation (Longobardian) 
at Nimaigu (Wusha District, Guizhou Province) 
(Figs. 1 and 2). Specifically:

a) Nannofossil MAST sample derives from a 
fish-bearing nodule collected from the upper part 
of  the Lower Qinglong Formation at Longtan. The 
detailed lithostratigraphy of  the Longtan section 
is described by Liu et al. (2020) who performed a 
high-resolution conodont biostratigraphy providing 
a latest Smithian age.

b) Nannofossil samples 605 and 680 are from 
the Middle Member and Upper Member, respec-
tively, of  the Nanlinghu Formation outcropping 
at Majiashan (Motani et al. 2015).  Based on am-
monoid biostratigraphy a middle Spathian age was 
derived (Ji et al. 2015). 

c) Nannofossil samples C1, C3 and C4 were 
taken from the Panxian Level and samples L2, L5 
and L6 are from the Luoping Level in the Upper 
Guanling Formation outcropping at Luoping.  A 
Pelsonian age is based on conodonts and ammo-
noids (Zhang et al. 2009). 

d) Nannofossil samples 29b to 224 were col-
lected from the Nimaigu section. The investigated 
interval was dated as late Ladinian (Longobardian) 
based on ammonoids (Zou et al. 2015) and con-
odonts (Sun et al. 2016).

Calcareous nannofossils were investigated 
in smears slides by light polarizing microscope at 
1250X magnification. Smear slides were prepared 
using the standard technique (Monechi & Thier-
stein 1985), without centrifuging cleaning/concen-
tration in order to retain the original sediment com-
position. A small quantity of  rock was powdered in 
a mortar with bidistillate water and mounted on a 
glass slide with Norland Optical Adhesive. A total 
of  23 samples were investigated through analyses 
of  2 smear slides/sample for a total of  160 traverses 
(24000 fields of  view) for each sample. In addition, 
samples MAST, 680, C1, L6, 35, 41 and 224 were 
also analyzed under Scanning Electron Microscope 
(SEM) Cambridge S-360 at the University of  Milan.

Results

Coccoliths, nannoliths and calcispheres were 
observed in 22 out of  23 samples (Fig. 3): in general, 
marlstones yield relatively richer assemblages with 
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more abundant tiny coccoliths, whereas limy litholo-
gies are enriched in nannoliths and calcispheres. Cal-
careous nannofossil preservation is generally moder-
ate and diversity increases upwards: both coccoliths 
and nannoliths, although with low abundance, are 
present in the lowermost sample (Smithian). Some 
of  the observed taxa are attributable to species or 
morphotypes previously documented in Upper Tri-
assic sequences (Figs. 3 and 4), but most coccoliths 
and nannoliths found in South China have not been 
recorded before. Among the established Triassic nan-
nofossil taxa, we observed Eoconusphaera hallstattensis, 
Carnicalyxia sp., and Prinsiosphaera triassica (small and 
large forms). Plates 1-3 illustrate the Early-Middle 
Triassic nannofossil taxa and morphotypes identified 
in this study; the taxonomy is detailed in the Appen-
dix I.  

The Smithian lowermost sample contains E. 
hallstattensis and very simple coccoliths (sp. A) (Figs. 
1 and 3). Other coccoliths and nannoliths were de-

tected in the Spathian samples and an increase in di-
versity continues in the Anisian reaching a total of  
16 forms in the Ladinian (Figs. 3 and 4). In Spathian 
and Pelsonian samples nannoliths of  P. triassica and 
Carnicalyxia were also observed. Rare specimens of  
Tetralithus pseudotrifidus and Crucirhabdus cf. C. minutus 
are present in the Ladinian interval (Fig. 3).

The small size (2-2.5 μm) and simple structure 
of  sp. A coccoliths observed in the Smithian sample 
are compatible with early primitive liths. They are 
consistently present through the studied interval and 
a few coccospheres were observed from the Smithian 
sample upwards, thus indicating that coccolithogen-
esis was already operating in the Early Triassic, some 
249 Ma. The sp. A coccoliths do not resemble any 
specimens previously documented from the Upper 
Triassic, while the sp. D coccoliths are similar to un-
determined specimens described from the Northern 
(Gardin et al. 2012) and Southern (Bottini et al. 2016) 
Alps (Fig. 4).
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Our findings document the oldest coccoliths 
found to date and bring the minimum age of  coc-
colithophorid calcification back by ~40 million years. 
Although this discovery is based on only one area, we 
deduce that the production, deposition and preserva-
tion of  phytoplankton carbonate - at least in a coastal 
location of  an open ocean environment - began al-
ready in Early Triassic times. The relatively diversi-
fied assemblages found in the Olenekian samples of  
South China presumably imply an even older origi-
nation of  coccolith/nannolith-bearing coccolitho-
phores. However, older Triassic nannofossils have 
not been documented so far and Paleozoic coccolith-
like objects (Deflandre 1970; Pirini Radrizzani 1971; 
Gartner & Gentile 1972) remain highly debated 
and considered unlikely to be coccolithophore liths 
(Young et al. 2025). De Vargas et al. (2007) discuss 
the possibility that calcifying coccolithophores orig-
inated in the Late Permian (Fig. 4). However, they 
possibly were extremely rare and problematic to be 
preserved in the fossil record. 

The Triassic evolution of  coccolithogenesis 
remains difficult to reconstruct because the new data 
are essentially detached from the described Upper 
Triassic nannofossils (Bellanca et al. 1993; Gardin et 
al. 2012; Bottini et al. 2016; Demangel et al. 2020, 
2023; Pérez Panera et al. 2023a, 2023b) and there 
are no studies documenting calcareous nannofloras 
in Lower and Middle Triassic sequences. However, 
sp. D coccoliths are comparable to the Norian un-
known coccoliths reported from the Northern Cal-
careous Alps by Gardin et al. (2012) and the Rhaetian 
sp. 5 specimens described from the Southern Alps 
by Bottini et al. (2016). A few specimens of  T. pseu-
dotrifidus analogous to those reported from the Rha-
ethian (Bottini et al. 2016) and rare coccoliths similar 
to C. minutus are present in the Ladinian assemblages 
of  South China. The Late Triassic coccolith species 
Archaeozygodiscus koessenensis and Crucirhabdus primulus, 
instead, were not found in the analyzed South China 
samples, suggesting that their origin is younger than 
Ladinian times. 
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Beginning of coccolithogenesis in the 
Early Triassic and implications for 
the oceanic ecosystem

The rise of  coccolithogenesis is one of  the 
most profound ecological innovations in the ocean-
ic ecosystem and Lower Triassic calcareous nanno-
fossils from South China provide a chance to exam-
ine the circumstances that prompted (or allowed) 
a group of  phytoplankton to mineralize calcite, in 
fact dating the birth of  the modern ocean. Smithi-
an nannofossils found in South China significantly 
reduce time discrepancy between origin of  coc-
colithophores based on molecular clocks and fos-
sil record (De Vargas et al. 2007). Molecular-based 
phylogenetic reconstructions predict a Triassic age 
for the origin of  calcifying Haptophytes, following 
the Permian splitting between the Prymnesiales and 
the lineage leading to coccolithophores (De Vargas 
et al. 2004) (Fig. 4). Calcihaptophycidae monophyly 
advocates that the initiation of  coccolithogenesis 
started after the molecular-based origin of  the 
group and De Vargas et al. (2007) estimated a Late 
Permian to Middle Triassic age, which is consistent 
with the presented results.

The oldest nannofossils documented here 
are coeval with a general initial minor rise in global 
diversity recorded in Smithian times (Payne et al. 
2004) in the aftermath of  the catastrophic mass ex-

tinction that, at the end of  the Permian, imposed 
a reset of  marine ecosystems and forced biota to 
adapt to, and perhaps take advantage from, extreme 
climatic and chemical conditions of  the ocean fos-
tering novel niches (Sun et al. 2012; Takahashi et al. 
2015).

The Permian/Triassic boundary “Strangelove 
Ocean” (Rampino & Caldeira 2005) experienced 
prompt and large-scale perturbations of  the carbon 
cycle initiated by the Siberian Traps large igneous 
province, also triggering widespread anoxia and 
global warming (Bond & Wignall 2014) along with 
and a substantial decline in seawater pH (Jurikova et 
al. 2020). Radiometric ages indicate that most of  the 
Siberian Traps’ emplacement occurred at 250 Ma 
producing a huge amount of  fresh basalts in less 
than 2 My (Reichow et al. 2009).

Under excess CO2 concentrations and low 
carbonate saturation probably the ocean became 
corrosive (Jurikova et al. 2020) impeding coccolitho-
genesis or rapidly dissolving primitive calcareous 
nannofossils (Martin 1995). It is possible that the 
super-oligotrophic Late Permian ocean preferen-
tially supported cyanobacterial phytoplankton rath-
er than calcareous nannoplankton (Martin 1995). 
The latest Permian - earliest Triassic extreme oce-
anic conditions were, thus, favorable for acritarchs 
and prasinophytes (Twitchett et al. 2001) producing 
“disaster species” (Tappan 1980) blooms.
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For a few million years in Early Triassic the 
oceanic system remained disrupted, as evidenced 
by multiple pronounced carbon isotopic anomalies, 
and perturbed by pervasive oxygen depletion (Chen 
& Benton 2012) (Figs. 1 and 4). Anoxic conditions 
were confined to deep-water settings while coastal 
environments gradually became oxygenated (Wig-
nall & Twitchett 2002). Persistent anoxia in deep 
waters and intermittent dysoxia/anoxia in coastal 
settings – with local photic zone euxinia – were key 
to N fixation and partitioning of  trace elements in 
the ocean. In coastal environments suboxic to oxic 
niches were enriched in trace metals such as Mn, 
Co, Cd through river runoff, while Fe remained 
soluble in oceanic anoxic waters. Such chemical 

differentiation possibly regulated the radiation of  
red algae including coccolithophores in coastal set-
tings (Falkowski et al. 2004). Non-calcifying coc-
colithophores are typically found in modern litto-
ral environments (De Vargas et al. 2007), although 
non-mineralized and/or naked groups might also 
live, without our knowledge, in the open ocean (De 
Vargas et al. 2004). Biological and phylogenetic in-
formation, likewise, suggests that Haptophytes have 
evolved from coastal or neritic heterotrophs/mixo-
trophs to oceanic autotrophs since their origination 
in the Proterozoic (De Vargas et al. 2007). Thus, the 
red-lineage ancestors of  coccolithophores might 
have taken advantage of  coastal habitats that were 
less affected by, or rapidly recovered from, anoxia 
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hallstattensis
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Eoconusphaera hallstattensis

		  Plate 1
			 
			   Calcareous nannofossils un-

der light microscope in smear 
slides (XPL = cross-polarized 
light; QPL = cross-polarized 
light with quartz lamina), and 
under Scanning Electron Mi-
croscope. 1) P. triassica (small), 
XPL (sample: L5); 2) P. triassica 
(small), QPL (sample: L5); 3) 
P. triassica (small), XPL (sam-
ple: L6); 4) P. triassica (small), 
QPL (sample: L6); 5) P. triassica 
(small), SEM (sample: 224); 6) 
P. triassica (small), SEM (sam-
ple: L6); 7) P. triassica (small), 
SEM (sample: C4); 8) P. trias-
sica (large), QPL (sample: 224); 
9) P. triassica (large), SEM (sam-
ple: 224); 10) P. triassica (large), 
SEM (sample: 224); 11) P. 
triassica (large), SEM (sample: 
35); 12) E. hallstattensis, SEM 
(sample: C1); 13) E. hallstat-
tensis, XPL (sample: C1); 14) E. 
hallstattensis, QPL (sample: C1); 
15) E. hallstattensis, XPL (sam-
ple: 41); 16) E. hallstattensis, 
QPL (sample: 41); 17) E. hall-
stattensis, XPL (sample: 41); 18) 
E. hallstattensis, QPL (sample: 
41); 19) Carnicalyxia sp., XPL 
(sample: C4); 20) Carnicalyxia 
sp., QPL (sample: C4).
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established at the end of  the Paleozoic: the parti-
tioning of  biolimiting metals allowed a major evo-
lutionary innovation of  coccolithophores in coastal 
settings as soon as ameliorated chemical conditions 
unlocked shallow-water niches to red algae. 

Accelerated weathering of  the Siberian Traps 
large igneous province and enhanced run-off  inten-
sified metal and nutrient recycling into the ocean as 
well as drew down atmospheric CO2 (Jurikova et al. 
2020) thus improving the carbonate saturation state 
of  the ocean, possibly facilitating coccolithogenesis 
and/or nannofossil preservation. Weathering-in-
duced CO2 consumption was presumably a key fac-
tor in the relatively lower temperatures documented 
during the early Smithian (Romano et al. 2013). This 

phase was associated with an initial selective recov-
ery of  ammonoids, foraminifers and conodonts 
(Song et al. 2014) prior to a major warming event 
in the late Smithian (Romano et al. 2013; Galfetti 
et al. 2007; Zhao et al. 2020; Scotese et al. 2021), 
which was followed by another cooling episode in 
the latest Smithian (Zhao et al. 2020). Although 
framed by generally hot climatic conditions, cooler 
intervals may have increased temperature gradients, 
promoting more efficient oceanic circulation and 
facilitating the upwelling of  nutrient-rich deep wa-
ters (Zhao et al. 2020).

Saito et al. (2022) investigated biomarkers 
(C33 n-alkyl cyclohexane) evidencing discrete spikes 
in the Lower Triassic Chaohu section (South China) 
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		  Plate 2

			   Calcareous nannofossils 
under light microscope in 
smear slides (XPL = cross-
polarized light; QPL = 
cross-polarized light with 
quartz lamina), and under 
Scanning Electron Micro-
scope (SEM). 1) sp. A, XPL 
(sample: L2); 2) sp. A, QPL 
(sample: L2); 3) sp. A, XPL 
(sample: 47); 4)  sp. A, QPL 
(sample: 47); 5) sp. A SEM 
(sample: MAST); 6)  Aggre-
gate of  sp. A, SEM (sample: 
35); Figures 7 to 10 are of  
the same specimen. 7) sp. B, 
XPL (sample: 35); 8)  sp. B, 
QPL (sample: 35); 9)  sp. B, 
XPL (sample: 35); 10) sp. B, 
QPL (sample: 35); 11) sp. C, 
XPL (sample: 605); 12)  sp. 
C, QPL (sample: 605); 
13)  sp. D, XPL (sample: 
680); Figures 14 to 17 are of  
the same specimen. 14)  sp. 
E, XPL (sample: L6); 15) sp. 
E, QPL (sample: L6). 16) sp. 
E, XPL (sample: L6); 17) sp. 
E, QPL (sample: L6). 18) sp. 
F, XPL (sample: 35); 19) sp. 
F, QPL (sample: 35); 20) sp. 
G, XPL (sample: L2).
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that are interpreted as the results of  phytoplank-
ton blooms at the Permian/Triassic boundary, at 
the Induan/Olenekian boundary, in the Smithian 
and Spathian (Fig. 4). Most of  these peaks are also 
documented in the Boreal area (Saito et al. 2022) 
and suggest supra-regional events induced by en-
hanced continental weathering and large fluxes into 
the ocean of  terrestrial material,  which fertilized 
marine phytoplankton triggering anoxia and delay-
ing the benthic faunal recovery (Saito et al. 2022).

The Smithian nannofossils found in China 
correlate with an interval of  enhanced phytoplank-
ton blooms (Fig. 4). As observed after other mass 
extinctions and following speciation, heightened 
availability of  nutrients and biolimiting metals may 

have started the evolution of  coccolithophores and 
progressively increased diversity and abundance. 
The oldest and most persistent sp. A coccoliths 
found in South China morphometrically resemble 
simple liths produced by several extant coastal-ne-
ritic coccolithophores that often secrete small and 
poorly calcified coccoliths or are non-calcifying 
during the haploid stages (De Vargas et al. 2007).  In 
the long evolutionary history of  calcareous nanno-
plankton (Bown et al. 2004), major origination and/
or rescue phases following environmental “extreme 
conditions” are characterized by the occurrence of  
tiny coccoliths. Moreover, small size is a common 
feature during the initial phase of  the origination 
of  several coccolithophore taxa in the Mesozoic 
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		  Plate 3 

			   Calcareous nannofossils 
under light microscope in 
smear slides (XPL = cross-
polarized light; QPL = 
cross-polarized light with 
quartz lamina), and under 
Scanning Electron Micro-
scope (SEM). 1) sp.  H, XPL 
(sample: C1); 2) sp.  H, QPL 
(sample: C1); 3) sp.  H, SEM 
(sample: 35); 4) sp.  I, SEM 
(sample: 35); 5) sp.  I, XPL 
(sample: 35); 6) sp.  I, QPL 
(sample: 35); 7) sp.  L, XPL 
(sample: 41); 8) sp.  L, QPL 
(sample: 41); 9) sp.  L, XPL 
(sample: 41); 10) sp.  L, QPL 
(sample: 41); 11)  C. cf. C. 
minutus, XPL (sample: 37); 
12)  C. cf. C. minutus, QPL 
(sample: 37); 13) oval calci-
sphere, XPL (sample: 224); 
14) oval calcisphere, QPL 
(sample: 224); 15) oval cal-
cisphere, XPL (sample: 37); 
16) oval calcisphere, QPL 
(sample: 37); 17)  T. pseudo-
trifidus, QPL (sample: 37). 
18)  T. pseudotrifidus, XPL 
(sample: 37); 19)  T. pseudo-
trifidus, QPL (sample: 37); 
20)  T. pseudotrifidus, XPL 
(sample: 37).
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(e.g. Mattioli & Erba 1999; Bornemann et al. 2003; 
Visentin et al. 2023). 

After the exceptional acidification of  surface 
waters in the Permian/Triassic boundary interval, 
an increase in alkalinity allowed the resumption of  
the neritic calcifying biota (Jurikova et al. 2020). 
The recovery during the Early to Middle Triassic 
was characterized by a stepwise renewal of  benthic 
faunas (Payne et al. 2004; Chen & Benton 2012), in-
cluding macroalgae, corals, and metazoan reefs (Fig. 
4).The Lower Triassic nannofossils correlate with 
the appearance of  many other new marine groups 
indicating that a major diversification was going on 
from the base to the top of  the food chain. More-
over, our findings of  Ladinian relatively diversified 
nannofossil assemblages (Fig. 3) correlate with new 
planktic organisms and the moving of  fishes and 
reptiles from coastal to open sea environments 
(Kelley et al. 2014; Lu et al. 2018). 

We question whether the origin of  calcify-
ing coccolithophores may have played a key role in 
driving the radiation, diversity, and abundance of  
marine vertebrates and fishes by contributing to a 
dietary shift from cyanobacteria and green algae to 
red algae. Globally, the early evolution of  marine 
reptiles suggests that the transition from the ‘Pa-
leozoic Fauna’ to the ‘Modern Fauna’ began in the 
Early Triassic (Rieppel 2000; McGowan & Motani 
2003). The occurrence in South China of  predatory 
marine tetrapods, fishes, bivalves, ammonoids and 
arthropods in the middle Spathian (Fu et al. 2016) 
indicates a fully habitable environment. The middle 
Spathian fish fauna reorganization supports the 
establishment of  a new Mesozoic marine ecosys-
tem some 3 myrs after the end-Permian extinction. 
During the late Spathian marine reptiles were quite 
diversified in coastal settings of  the Panthalassa 
Ocean and their initial invasion into the ocean is 
dated as 248.81 Ma (Fu et al. 2016). This oceanic re-
organization was interpreted as the result of  the fi-
nal breakdown of  stratification and anoxia together 
with increased primary productivity (Fu et al. 2016).

The shift from a Paleozoic marine fauna to 
the Modern one (Martin & Quigg 2012) closely 
correlates with the beginning (Smithian) and early 
evolution (Spathian through Longobardian) of  coc-
colithophore calcification. 

The Lower Triassic nannofossils found in 
South China suggest a rapid adjustment of  ma-
rine phytoplankton to a global paleoenvironmental 

crisis. However, there are no other data on Lower 
and Middle Triassic nannofossils to assess the abun-
dance, diversity and distribution of  calcareous nan-
noplankton beyond the area investigated here, thus 
it is not clear whether calcifying coccolithophores 
were widespread at this time or not. Based on the re-
cords of  calcareous nannofossils in Norian-Rhaetian 
successions, Pérez Panera et al. (2023a) hypothesized 
that calcifying coccolithophores originated in the 
Western Tethys, from where they rapidly dispersed 
via oceanic currents to the Southeastern Tethys and 
subsequently across Panthalassa. Alternatively, their 
dispersal from the Western Tethys to the Eastern Pa-
cific may have occurred intermittently through the 
Hispanic Corridor (Pérez Panera et al. 2023a). How-
ever, the Olenakian nannofossils from South China 
suggest that early coccolithophores were already 
present in Eastern Tethys (Fig. 1) indicating that they 
may have originated there and later expanded both 
westward and eastward via surface currents.

At the moment we can only speculate – but 
not exclude – that the modern ocean started with 
the Early Triassic (Smithian) inception of  cocco-
lithogenesis, although we are aware that only a wide 
distribution and high abundance of  coccolitho-
phores could have influenced biogeochemical cycles. 
In fact, the “Mid Mesozoic Revolution” (MMR) cor-
responds to substantial pelagic carbonate deposition 
caused by proliferation of  calcareous plankton that 
drove a major change in the oceanic carbonate sys-
tem dynamics (Ridgwell 2005). Smithian coccoliths 
from South China indicate phytoplankton calcifica-
tion soon after extreme carbonate oversaturation (Ω 
> 9) subsided in the earliest Triassic (Ridgwell 2005). 
Tectonic events like the breakup of  Pangea and the 
opening of  the Atlantic Ocean (Katz et al. 2007) 
occurred too late to explain this early onset of  the 
MMR. Instead, the Siberian Traps’ volcanism trig-
gered accelerated weathering, reducing atmospheric 
CO2 and improving seafloor oxygenation following 
widespread ecological collapse. These changes in 
ocean chemistry and redox state influenced nutri-
ent and trace metal cycling. Under lower CO2 and 
selective trace metal availability, some prymnesio-
phytes evolved calcification in the Early Triassic. 
This adaptation – driven by geological processes – 
transformed the oceanic ecosystem, biogeochemical 
cycles, and marine sedimentation. Our findings link 
the emergence of  the modern ocean to the dawn of  
the Mesozoic.
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Conclusions

The identification of  calcareous nannofos-
sils in the Lower and Middle Triassic succession in 
China provides important constraints on the origin 
and early history of  coccolithophores. The most 
significant outcomes of  our investigation are out-
lined below:

•	 the oldest coccoliths, dating back to the Smi-
thian (Early Triassic, ~250 Ma), shift the ori-
gin of  coccolithophore calcification approxi-
mately 40 million years earlier than previously 
established. This pushes the onset of  cocco-
lithogenesis into a critical window following 
the end-Permian mass extinction.

•	 Smithian coccoliths described here signifi-
cantly narrow the temporal gap between 
molecular clock estimates for calcifying coc-
colithophore origins and their first fossil oc-
curence.

•	 Olenekian primitive, simple and tiny cocco-
liths from South China suggest that early coc-
colithophore taxa emerged soon after a pro-
found ecological disruptions. 

•	 Early Triassic lowered CO2 levels, coupled 
with increased nutrient availability, may have 
provided advantageous conditions for the 
calcification in haptophyte lineages.

•	 A marked increase in nannofossil diversity 
across the Smithian–Longobardian interval, 
particularly during the Ladinian, correlates 
with a major evolutionary pulse in fish lin-
eages and a broader transition from Paleozoic 
to Modern marine faunas, highlighting the 
potential role of  phytoplankton innovation in 
shaping post-extinction marine ecosystems.

In summary, our findings not only extend 
the fossil record of  coccolithophores to the Early 
Triassic but also suggest interconnections between 
geological processes, ocean chemistry, and biologi-
cal innovation. These insights mark an important 
step forward in reconstructing the early history of  
calcareous nannoplankton and the emergence of  
the modern ocean.

Taxonomic index of  calcareous nannofossil taxa 
reported in this study

Archaeozygodiscus koessenensis Bown, 1985 
Carnicalyxia Janofske, 1990

Crucirhabdus minutus Jafar, 1983 
Crucirhabdus primulus Prins, 1969 ex Rood et al., 1973, emend 

Bown, 1987 
Eoconusphaera hallstattensis Demangel et al., 2021
Prinsiosphaera triassica Jafar, 1983 
Tetralithus pseudotrifidus Jafar, 1983
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Pérez Panera J.P., Angelozzi G.N., Riccardi A.C., Dambo-
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