FIXING A BASAL BERRIASIAN AND JURASSIC/CRETACEOUS (J/K) BOUNDARY — IS THERE PERHAPS SOME LIGHT AT THE END OF THE TUNNEL?

WILLIAM A.P. WIMBLEDON¹, CRISTINA E. CASELLATO², DANIELA REHÁKOVÁ³, LUC G. BULOT⁴, ELISABETTA ERBA⁵, SILVIA GARDIN⁶, ROEL M.C.H. VERREUSSEL⁷, DIRK K. MUNSTERMAN⁸ & CHRISTOPHER O. HUNT⁹

Received: October 18, 2010; accepted: 2nd March, 2011

Key words: Berriasian, J/K boundary, GSSP, correlation, Tethyan, Boreal, Austral, non-marine, ammonites, calpionellids, calcareous nannofossils, palygnomorphs, magnetostratigraphy.

Abstract. Our tentative proposal is that several biological markers have potential to help define any putative boundary in the traditional basal Berriasian interval. That is, between the base of the Berrissella jacobi Subzone and the base of the Pseudosubplanites grandis Subzone, and therefore surrounding the base of magnetozone M18. Promising micropalaeontological markers are the FADs of *Nannocystis sternmannii* minor and *Nannocystis kamptnerii* minor, plus the base of the Calpionella alpina Zone, and the bloom(s) of *Calpionella alpina* and *Crasialithus parvula*. The testing and calibration of this constraining event-matrix in the most complete and fossiliferous sections is our task for the near future.

Riassunto. Numerosi indicatori biologici hanno il potenziale per contribuire a definire ogni ipotetico limite nell’intervallo tradizionale della base del Berrissiano. Questo intervallo è compreso tra la base della Sottosottosottoregione a Berrissella jacobi e la base della Sottoregione a Pseudosubplanites grandis, attraverso la base della magnetosottoregione M18. Indicatori micropaleontologici promettenti sono i FADs di *Nannocystis sternmannii* minor e *Nannocystis kamptnerii* minor, oltre alla base della Zona a Calpionella alpina e le fioriture di *Calpionella alpina* e *Crasialithus parvula*. La verifica e la calibrazione di questi eventi nelle sezioni fossiliere più complete rappresenta il nostro compito nell’immediato futuro.

Introduction

This paper reviews the activity of the Berrissian Working Group (WG) of the International Subcommis-
of the globe, yet, nor all fossil groups or other indicators, nor can we yet give rounded answers to all the questions that this most difficult of intervals poses. We do not believe that magnetostratigraphy alone can provide a boundary. We cannot say that magnetostratigraphy and nannofossils are enough to define a boundary: most key Boreal sections have yielded no results for these. Nannofossils are extremely accurate stratigraphic indicators, but have not yet been proved in a wide enough area, and often not where there are plentiful ammonites. Calpionellids in Tethys are widespread, often occurring with ammonites, and have been well studied: they provide a firmer basis for the definition of a boundary. And, of course, we cannot exclude consideration of ammonites.

Historical

The stratigraphic community has been 'frozen' for years, with no agreement on a practical, widely applicable marker that could act as a base for the Cretaceous. Some simple reasons for this are that the world at the end of the Jurassic and the beginning of the Cretaceous was marked by faunal and floral endemism, and it has been divided by some authors into three realms (Tethyan, Boreal and Austral) linked on rare occasions by narrow seaways, and characterized by the widespread occurrence both below and above any possible boundary of non-marine facies, the last stretching from the yet-to-open North Atlantic (Irish Sea) across western Europe (UK, France, Iberia, Germany, the Baltic and Poland), and then again eastwards to Mongolia and China, as well as in the USA. No single biostratigraphic marker can link such non-marine rocks with the sedimentary sequences of marine Tethys and the different facies of the other marine areas, such as, for instance, the condensed siliciclastics of the North Sea basin or the Russian platform. Even within each of the marine realms and the non-marine areas, no one biostratigraphic framework operates, and no single biozonation. As one example, the so-called Boreal Realm is itself very far from homogeneous, having for its regions (western Canada, Svalbard and Barents Sea, East Greenland, North Atlantic, Russian Platform and Siberia), at least, six quite separate ammonite or bivalve biozonations, reflecting endemic faunas and difficulty or impossibility of consistent correlation. This has been the puzzle that has stopped any progress for generations, and even the finding of a common 'language' to discuss the issue. No wonder that it has not proved possible to find a globally applicable boundary. This is a preliminary note on correlative possibilities and we do not yet consider details of palaeogeography, but several references of relevance have appeared, to cite only a few: Descourt et al. 1993, 2000; Sey I. & Kalacheva E.D. 2000; Stampfli et al. 2001; Baraboschkin 2002; Houša et al. 2007; Alsen & Muttersp 2009; Stampfli & Hochard 2009; Meijers et al. 2010.

The story of a basal boundary for the Cretaceous started with Jurassic workers and in a boreal area, with Brongniart's (1829) erection of Portlandian and Purbeckian stages for already described rocks in England and northern France. We now know that the Berriasian part of the Purbeck Formation (with its palaeosols, evaporites, reptiles, insects and mammals, and marine intercalations) is about 100 m in thickness. But for more than 100 years Purbeck sequences across northern Europe could only be zoned using ostracods, which in some cases proved to be strongly facies controlled. Even so, some 'freshwater' species were identified in regions as far apart as England and Poland (Cypridea posticalis), and even Mongolia (Cypridea setina). D'Orbigny and Oppel) used the last ammonite, his last marine index (Ammonites giganteus Sowerby, found immediately below the Purbeck Formation) to mark the end of the Jurassic: thereby the Purbeckian was eliminated to the Cretaceous. Next, Purbeck facies intercalations were to be recognized in lower Cretaceous marine sequences in the Jura, sandwiched between ammonite-bearing beds which would in time be assigned to the middle Berriasian. As far as later correlation and stage nomenclature were concerned, the non-marine areas seemed totally barred from consideration. The Purbeck was thought a 'brick wall' to correlation, having no ammonites, the group regarded as the key to correlation at the J/K boundary, as it had been for the Jurassic below (Wimbledon 2007). It seemed that only the marine areas could provide the key. The puzzle narrowed to trying to equate the marine carbonates of western Mediterranean Tethys (in a range of settings – shelf, slope, pelagic 'platform' and trough) with Crimea, and then the North Sea margins and Russian platform (Pavlov 1889; Casey 1973). There were later extensions of study to Greenland (Spath 1947, 1952; Donovan 1957) and Siberia (Ershova 1969; Shulgina 1969) and, in Tethys, to North Africa and via Bulgaria to the Caucasus. Most work, as today, was concentrated in Tethys. But the wider and more pressing issue has remained, in particular, how to equate contrasting facies and environments: Purbeck sabkha and freshwater-lake deposits, Tethyan limestones, for instance condensed rossso ammonitico, and sediment-starved Boreal sandstones, pebble beds and phosphates. And, palaeontologically, how to match Tethys with its berriasellid ammonites (and later-found calpionellids and radiolarians), as opposed to Boreal craspeditid ammonites, bachiid bivalves, belemnites etc.

After a long period, during which the lower Neocomian referred, vaguely, to marine equivalents of the largely non-marine Purbeckian, Mazzin (1939) restricted the basal stage of the Cretaceous to a three-part
Berriasian, with the zone of *Berriasella grandis* at its base. This was reinforced by two colloquia ([at Lyon (1963) and Lyon/Neuchâtel (1973)] which took formal votes that adopted, respectively, the ammonite assemblages of the *Pseudosubplanites grandis* and *Berriasella jacobi* subzones as indicators for the base of the Berriasian. During the Second International Symposium on Cretaceous Stage Boundaries [Brussels, Belgium (1995)], the base of the Berriasian as well as the J/K boundary were further discussed, with no recommendation of change. An *ad hoc* working group agreed upon the need to investigate the Tethyan realm first for the definition of the J/K boundary, and to maintain the base of the Cretaceous at the base of the Berriasian (Zakharov et al. 1996). The overwhelming majority of authors have continued to use the *Berriasella jacobi* subzone (base of *P. grandis* zone) or *Pseudosubplanites grandis* subzone in defining a stage base, or a vaguer *grandis* or *jacobi/grandis* zone. Some now think that these subzones are not really separable, though there has been no modern reassessment of the relevant lower Berriasian ammonites. That notwithstanding, in Tethys, essentially from Mexico to the Russian Far East, and even outside Tethys, work on fixing a boundary has continued to concentrate on trying to correlate with a Berriasian base at this level. And thus it was that this interval was chosen for detailed examination by the new Berriasian WG at its inaugural meeting in Bristol (UK) in 2007, and field studies started in earnest in 2009.

More recent advances

Subsequently, widespread identification of calcipellids in Tethyan regions, often related to ammonites, began to afford a parallel framework (Le Hégarat & Remane 1968; Alleman et al. 1975; Enay & Geyssant 1975; Busnardo et al. 1979). And by force of consistent application, the Calpionella alpina Subzone became a preferred alternative, or an unavoidable surrogate, in identifying the level of the base of the Grandis Zone. In those Tethyan sequences where no ammonites were to be found, calcipellids became and remain the dominant biostratigraphic tool (Pop 1976; Trejo 1976, 1980; Bakalova 1977; Makarjeva 1979; Jansa et al. 1980; Borza 1984; Borza & Michalik 1986; Nagy 1986; Remane et al. 1986; Tavaera et al. 1986, 1994; Altiner & Özkan 1991; Bucur 1992; Laková 1994; Pop 1994; Oloriz et al. 1995; Rehákova 1995; Skourtis-Coroneou et al. 1995; Adatte et al. 1994, 1996; Pszczółkowski 1996; Grün & Blau 1997; Rehákova & Michalik 1997; Houša et al. 1999; Pszczółkowski et al. 2005; Boughdiri et al. 2006; Andreini et al. 2007; Rehákova et al. 2009; Pruner et al. 2010).

It was just before the earliest of these developments that the stage name "Purbeckian" was finally suppressed by stratigraphic committees. Ironically, the event came just as new studies on palynomorphs — spores, pollen and marine dinocysts — finally made correlations possible within the Purbeck basins, and from there to both the marine Boreal and to the type Berriasian [see, for instance, Dörhöfer & Norris (1977), and references in Abbink et al. (2001) and Hunt (2004)]. Thus, at last and for the first time, some independence of facies was achieved. Oil exploration continued to drive palynological research and took it into the ‘Tethyan’ North Atlantic, to the Canadian and US eastern seaboard and into the northern North Atlantic and circum-Arctic regions.

Soon after, the discipline of magnetostratigraphy made its appearance, and a string of papers by Larson, Lowrie, Steiner, Ogg and Channell revolutionized correlation by affording a method independent of realm and fossil endemism, and to some extent facies. In Tethys, most notably in Italy, and then also in the non-marine and into offshore Tethys and the opening southern North Atlantic (e.g. DSDF 534, Ogg 1983), new results afforded independent constraints on biostratigraphy (Lowrie & Channell 1984; Ogg & Lowrie 1986). In the Tethyan setting, the calibration of palaeomagnetic results with calcareous microfossils was another notable step forward (e.g. Ogg et al. 1984; Channell & Grandesso 1987; Channell et al. 1987; Bralower et al. 1989; Ogg et al. 1991), and lately it has been revised and improved (Houša et al. 1999, 2004, 2007; Grabowski & Pszczółkowski 2006; Channell et al. 2010; Grabowski et al. 2010). There has in recent times, at last, been an acceptance that ammonites alone are unlikely to ever effect consistent and widely applicable correlation, nor can they contribute in the widespread non-marine sequences. In contrast, magnetostratigraphy has been seen by some as a substitute for the less than universal biostratigraphic indicators. It, at least, provides a precise global indicator that can help constrain and calibrate biostratigraphy. Magnetostratigraphers, pragmatically, have seen magnetozone M18r as a workable J/K boundary indicator, being the first long, reversed interval (after the very long M19n) as one works up-sequence from the Jurassic.

Several features typify the base of the Berriasian as it has normally been defined — the base of *Pseudosubplanites grandis* Zone (= base of Alpina Subzone of the standard Calpionella Zone): features which are both conducing to correlation and possible finer definition of a boundary. A fairly abundant, more diverse, ammonite fauna typifies an undivided Grandis Zone, as compared to much less diverse assemblages seen in the ammonite subzones immediately below and above (e.g. Hoedemaeker 1982, fig. 2). This *jacobi/grandis* assem-
blage is widespread in western Tethys. The Jacobi Subzone marks the "second ammonite renovation" of Távero et al. (1986), Himalayitidae giving way to Berriasellidae.

The controlling factors for these changes of diversity are not clear, but oceanographic change seems to have had an even more visible role where microfossils are concerned. In fact, calcareous nanoplanckton underwent rapid diversification at about the Jurassic/Cretaceous boundary, including the appearance of several highly successful and long-ranging Cretaceous taxa. In particular, several nannolith species appeared and evolved rapidly in the Tithonian, with nannoconid dominance beginning at the start of the Berriasian (Tremolada et al. 2006). Three nannoconid species (Figs 1, 2) and subspecies, in particular, make their first appearance just below and above the boundary level. Namocoma, flourished in warmer and possibly more nutrient-depleted surface waters than other genera (Erba 1994, 2004, 2006). The rain of heavily calcified nannoconids to the seafloor was larger than that of average coccolithophorids, and the J/K evolutionary event was responsible for a change in both carbonate cycling and burial in the oceans (Roth 1989; Weisert & Erba 2004). Such findings suggest palaeoceanographic changes across the boundary (Price 1999; Abbinck et al. 2001). The intervals of higher abundances of nannoconids coincide with the abundance distribution of small calpionellid species (late Tithonian Brevis Subzone and early Berriasian Alpina Subzone). Thus, Michálek et al. (2009) concluded that both these groups of microorganism inhabited similar environmental niches.

In contrast to ammonite endemism, Calpionella alpina has been recorded from Mexico to Tibet, and probable calpionellids have been noted in New Guinea and, doubtfully, in western Australia. Blooms of small globular Calpionella alpina at the beginning of the Alpina Subzone of the Calpionella Zone (about the level of the base of the Grandis Zone) are a distinctive and widespread feature (Remane et al. 1986; Borza & Michálek 1986; Nagy 1986; Altiner & Özkok 1991; Bucur 1992; Laková 1994; Pop 1994; Oloriz et al. 1995; Rehákova 1995; Skourtsis-Coroneou et al. 1995; Adatte et al., 1994, 1996, 1997; Michálek & Michálek 1997; Grün & Blau 1997; Houša et al. 1999, 2004; Pszczółkowski et al. 2005; Boughdiri et al. 2006; Andreini et al. 2007; Michálek et al. 2009; Rehákova et al. 2009). The phenomenon appears fairly consistent, starting at or just below the base of the Alpina Subzone (to some extent a matter of the concept and definition of the biozone), and it offers prospects for refined correlation. The WG is most involved with taxa and their ranges, the primary evidence that will facilitate correlation, rather than on the artifacts which are biozones, but necessarily some attention will be given to the latter. Another calpionellid bloom, of Crassicollaria parvula, has been identified at Brodno, Bosso and Puerto Escaño (Houša et al. 1999, 2004; Pruner et al. 2010).

Directions for WG study

Ammonite problems in Tethys in the J/K interval

The original conception of the Berriasian was entirely ammonite based, and ammonite biostratigraphy still has much to contribute to the definition of a J/K boundary. The database of ammonite occurrences is substantial, mostly Himalayitidae and Berriasellidae, for instance: SE France (Djanelidzé 1922; Mazenot 1939; Le Hégarat 1971; Cecca et al. 1989a, 1989b), Crimea (Retowski 1893), Bulgaria (Nikolov 1962, 1982; Sapunov 1977, 1979), Algeria (Roman 1936; Bennett et al. 1977; Théoumatchenko et al. 1995) and Tunisia (Ardou-Saget 1953; Memmi 1967; Memmi & Salaj 1975; Donze et al. 1975; Busnardo et al. 1976, 1985; Boughdiri et al. 1999), Spain (Enay & Geyssant 1975; Hoedemaeker 1981, 1982; Tavera 1985; Tavera et al. 1986, 1994; Oloriz & Tavera 1989) and Morocco (Benzagagh & Atrops 1997; Benzaggagh 2000). Additionally, some recent palaeontological contributions by Cecca et al. (1989a, 1989b) and Enay et al. (1998a, 1998b, 1998c) describe new genera and species from the late Tithonian and early Berriasian of SE France, Algeria, Tunisia and Spain.

The Berriasian WG is re-visiting these faunas, re-examining the validity of taxa and primary data on their ranges, and the definition of previously proposed biostratigraphic units. This currently involves sites from Crimea to Mexico. In addition to endemism, salient issues that still exist and await consideration are:

- comparisons of fossils with different preservation states makes taxonomy very difficult, e.g. comparing pyritic nuclei from Tunisia and the crushed moulds of Bulgaria and Rio Argos (Spain) – which clearly affects attempts to identify taxa and produce range charts;
- the Bohcanitidae and Spitzerceratae are in urgent need of revision, and little notice has been taken of so called 'long-ranging' taxa of the Haploceratae, Phylloceratae and Littoceratae;
- ammonite distributions plotted bed by bed against accurate lithological logs are not available (Algeria, Bulgaria), or columns lack sufficiently illustrated fossils (Tunisia);
- discontinuous distribution of species through a sequence (common in the Vocontian domain of SE France), scarcity of fossils (Tunisia), or poor exposure of key intervals (Occitanica Zone, Rio Argos), or sizable barren intervals (18 metres between last appearance
of *Pseudoaugurites euxinis* and first occurrence of *Tirnovella subalpina*, Rio Argos);

- long-range correlations in some cases need careful reconsideration, due to possible misidentifications of species (e.g. of *Retowiskieras* species in Spain and Crimea).

There are a number of obvious solutions and lines of study:

- examination of critical taxa to settle taxonomic disputes and uncertainties;
- more integration of ammonite data with sedimentological/lithostratigraphic and biostratigraphic analyses, as well as purposeful collecting of microfossils in tandem with ammonites;
- detailed collecting of the key intervals, e.g. base Jacobi Subzone, base Grandis Subzone, and integration of better defined biostratigraphic units, including, initially, sections in SE France (e.g. Berrias, Les Combes, Chouet etc), as well as Crimea, southern Spain etc.

Progress

In the first three meetings of the new Berriasian WG, consideration has focussed on a boundary interval in the lower and middle *jacobi*/*grandis* Zone, and specifically on the best markers already identified in Tethys and, importantly, some of the better comparative tools for achieving correlation with both Boreal marine and non-marine (Purbeck) sequences: wider correlation being the primary aim. One of levels for concentrated study had to be the base of Calpionellid biozone B, because it has in recent years become a *de facto* working base for the Berriasian Stage amongst a wider group of workers.

One issue still to be addressed is the different uses and definitions of the *Calpionella alpina* Subzone (e.g. Houša et al. 1999; Boughdiri et al. 2006; Andreini et al. 2007; Michalík et al. 2009).

Our determination as a group has been to make progress with multidisciplinary correlations, markers from one group reinforcing others. The aim is to identify as many markers as possible in any given area, forming a self-reinforcing matrix: and then assessing what works between regions.

In summary, as a first step, the WG has agreed that, initially, the interval offering the best opportunities for study, because it is the one with most, well-defined, markers, is at about the base of M18r (Fig. 1). The upward sequence from the middle of M19n through M19n.1r, M19n.1r and into M18r, in particular, provides several well-established datums in close order, notably based on calpionellids and calcareous nannofossil ranges, the calpionellid biozonation, nannofossil FADs and magnetostratigraphy. In particular, four reliable well-marked datums occur in an even shorter interval giving a core framework for comparison. These are 1) the base of *Calpionella Zone* (B Zone) and the sudden decline of species of *Crassicollaria*, 2) the ‘explosive’ appearance of a monospecific association of small, globular *Calpionella alpina* (referred to by authors as the alpina “acme”, or the alpina “bloom”) (Remane 1985; Remane et al. 1986; Altiner & Özkun 1991; Bučur 1992; Laková 1994; Pop 1994; Tavera et al. 1994; Olóriz et al. 1995; Skourtis-Coroneou et al. 1995; Grün & Blau 1997; Reháková & Michalík 1997; Houša et al. 1999; Pszczółkowski et al. 2005; Boughdiri et al. 2006; Andreini et al. 2007; Reháková et al. 2009; Pruner et al. 2010), 3) the FAD for two subspecies of *Nammoconus* (*N. steinmanni* minor and *N. kamptneri* minor) and 4) the base
of M18r. In all cases, these are horizons which have been widely and consistently recognized. Macrofossil datums will be linked to this framework, and, for instance, foraminiferal, radiolarian, geochemical and cyclostratigraphic signals must also be added in due course.

Thus primary markers and secondary constraining datums (Fig. 1) can be listed as follows:

Primary markers
1. base of the Calpionella Zone – alpina Subzone
2. ‘explosion’ of small, globular Calpionella alpina
3. FAD Nanoconus steinmannii minor and Nanoconus kamptneri minor
4. base M18r

Secondary supporting markers
5. base of M19n.1n
6. base of M19n.1r
7. FADs of Nanoconus winteneri and Crucellipsis avillieri
8. base of Berriasella jacobi Subzone
9. FADs of Warrenia californica, Dichadogonyaulax bensoni and Apulodentis verbiskayae
10. base of Subcraspedites lamplughi Zone
11. base of Pseudodeiplanites grandis Zone
12. LADs of Dichadogonyaulax pannea, Egmontodinium polyplacophorum etc. in the late Portland extinction.
13. FADs of Matonisporites elegans and Aequitirradites spinulosus.

The sampling of nannoconids in northern Italy, with frequent and precise sample points, offers good prospects for recognition of useful datums. In the section at Torre de' Busi, where sampling has been at a much closer interval than is normally the case, nanoplankton FADs are very precisely located (linked to magnetostratigraphic coring): N. steinmannii minor in the topmost portion of M19n.1n and N. kamptneri minor in the basal part of M18r (Casellato et al. 2010). These two datums (and other nannoconid markers above and below) are viewed as being more accurately and ‘correctly’ placed here than in less intensively sampled sequences (Fig. 2). This requires that earlier-studied sequences, where sampling points were fewer and further apart, need to be re-examined, so as to achieve comparable precision (e.g. Fiume Bosso and Foza). Another section that has received comparably close study and sampling is Brodno (Michalik et al. 2009). And there, although Nanoconus winteneri and Crucellipsis avillieri have the same position as at Torre de’ Busi, in mid M19n, N. steinmannii minor and N. kamptneri minor have their FADs about 1.3 m above the base, of M18r. This may be because of the obscuring effects, ‘noise’, of abundant other microfossils.

Though progress is being made in Tethys in integrating micro- and macrofossil markers and magnetostratigraphy, a major challenge is trying to link to the Boreal and its parts. As said, the intermittent marine connections within the Boreal Realm have long hampered a single zonal scheme using ammonites. As to correlations directly between Tethys and the Boreal, apart from a few salient ammonite links (well below and well above any putative Tithonian/Berriasian boundary), there are some important tie points afforded by palynology. Although, in the interval being studied, it is not possible to correlate with all the several landlocked embayments of the Boreal, correlation can at least be achieved between the western Mediterranean and the Norway-Britain-Netherlands boreal marine embayment. Similarly, palynomorphs link Tethys to the Anglo-French basin and the predominantly non-marine Purbeck facies. This is in the M19n-M17r interval. The FAD of the palynomorphs Warnenia californica, Dichadogonyaulax bensoni and Apulodentis verbiskayae occurs at Berrias (in bed 146), in the Subcraspedites prelicophalumus Zone in the North Sea Basin, and also in the Purbeck sequence at Durlston Bay, in the Hard Cockle Beds (mid M19n). Another FAD occurs just below the top of M19n at Durlston: that of Dapsilidium warreni and Cantidium arboriae, but this has yet to be identified more widely. At a higher level, the FAD of Matonisporites elegans and Aequitirradites spinulosus has been identified in the Durlston Cherty Freshwater beds (M17r) and in the Subcraspedites lamplughi Zone in the North Sea basin (Abbbink et al. 2001). As the Subcraspedites prelicophalumus Zone (with Craspedites plicophalumus Sowerby) and the S. lamplughi Zone have been broadly equated with the C. nodiger Zone and higher on the Russian platform (=?Craspedites taimyrensis and Chetaetes chetae zones of Siberia) (Casey 1973 etc; Harding et al. in press), the palynomorph levels indicated, and their associated magnetozones, may be related to the record of M18r at Nordvik (Houša et al. 2007).

A way ahead

Having discussed the consistency of proposed datums overall, the WG now studies and examines further the precise stratigraphic relationships in this limited interval; that is, testing current assumptions on the sequence of the four datums, on their ranges, relationships to one another and to other datums, notably the base of the Jacobi and Grandis ammonite subzones (Tab. 1). This work (on calcipellids, ammonites and nannofossils, with magnetostratigraphy) is presently in progress at sites in southern France and Crimea, and is extending to Tunisia and Bulgaria in early 2011. Group
Fixing a basal Berriasian and Jurassic-Cretaceous (J/K) boundary

Fig. 2 - Comparison of critical Tethyan sections at the level of M18r. Torre de' Busi, Foza, Colme di Vignola and Frisoni after Channell et al. 2010, Casellato, 2010; Fiume Bosso after Bralower et al. 1989, Houa et al. 2004; Puerto Escalo after Tavera et al. 1994, Pruner et al. 2010; Brodno after Michalik et al. 2009; Bernas after Galbrun, Rasplus & Le Hégarat 1986, and Jan DuChene et al. 1993.

members are active in Argentina and Tibet, and work is starting to review older results in Mexico. In addition, thought is being directed to secondary markers which could be tied directly to the primary datums, or interdigitated between them, allowing correlation to wider geographical areas. Thus the work of the WG in coming months is of precise calibration of biostratigraphic markers in the chosen M18r interval. The base of M18r has been chosen as a significant event, in preference to the short magnetic intervals below (M19n1r, M19n1n) - because such short magnetic intervals are very much less easy to detect in shallow marine and non-marine settings (and may require a high sampling rate). The list above is far from exhaustive and more data will be added, to reinforce the framework that is emerging.

Clearly our approach is constrained by the fact that the fullest range of evidence of the kind discussed here comes from sequences in the Tethyan Realm: whereas in Boreal regions things are less well understood and the number of useful biostratigraphic indicators (other than endemic ammonites or Buchia) are far fewer in number. And diversity of, for instance, microfossils/palynomorphs is considerably lower. Though some (Portland/Perbeck) localities in England and northern France have a magnetostratigraphic record, that can only be said of one other boreal site, Nordvik in northern Siberia (though there is unpublished data on the thin Tithonian-Berriasian boundary sequences on the River Volga (Guzhikov, pers. comm.).

The WG's primary task is to find effective correlative tools that make possible correlations to the non-marine, to the Austral and Boreal regions. Though many more coherent sequences of the 'right' age have been identified and documented in Tethys, and most workers are active there, we must look beyond Tethys. The full application of palynology, cyclostratigraphy, geochemistry, radiolaria, foraminifera has yet to be assessed: they too offer more possibilities for finer calibration. The refinement of inter-realm and non-marine/marine correlations using palynomorphs is one focus that the WG already pursues (Harding et al., in press). Similarly, more intensive study of the distinct Boreal
<table>
<thead>
<tr>
<th>GEORGRAPHIC AREA</th>
<th>Event VS Section</th>
<th>AUTHORS</th>
<th>AGE</th>
<th>FAD N. steinmanni minor</th>
<th>FAD N. kampfneri minor</th>
<th>FAD N. winteri</th>
<th>FAD C. covilli</th>
<th>FAD N. colomi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torre de' Busi</td>
<td>Casellato 2010;</td>
<td>Oxfordian-Berriasiann</td>
<td>M19.4r; ACME Calpionella alpina spherical form</td>
<td>M18.5r; lower Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>Monte Pernice</td>
<td>Casellato 2010;</td>
<td>Oxfordian-Berriasiann</td>
<td>M17.1r</td>
<td>M18.5r; lower Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>Colme di Vignola</td>
<td>Casellato 2010;</td>
<td>Oxfordian-Berriasiann</td>
<td>M17.1r</td>
<td>M18.5r; lower Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>Frisoni</td>
<td>Casellato 2010;</td>
<td>Oxfordian-Berriasiann</td>
<td>M17.1r</td>
<td>M18.5r; lower Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>Foza</td>
<td>Casellato 2010;</td>
<td>Oxfordian-Berriasiann</td>
<td>M17.1r</td>
<td>M18.5r; lower Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>Kaberlaia</td>
<td>Martire et al. 2006</td>
<td>Oxfordian-Berriasiann</td>
<td>M17.1r</td>
<td>M18.5r; lower Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>Rabeschi</td>
<td>Martire et al. 2006</td>
<td>Oxfordian-Berriasiann</td>
<td>M17.1r</td>
<td>M18.5r; lower Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>Xausa</td>
<td>Channell et al. 1997</td>
<td>J/K boundary</td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiume Bosco</td>
<td>Bralower et al. 1989</td>
<td>J/K boundary</td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monte Giordano</td>
<td>Bralower et al. 1989</td>
<td>Late Kimmeridgian - Berriasiann</td>
<td>M18.8r</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrian Alps</td>
<td>Nudzho</td>
<td>J/K boundary</td>
<td>M18.8r; base elliptica Subzone</td>
<td>M19.5n; mid lowermost Calpionella Zone</td>
<td>M19.4r; mid lowermost upper Calpionella Zone</td>
<td>M18.6r; mid lowermost upper Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Tavera et al. 1994</td>
<td>J/K boundary</td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid lowermost Calpionella Zone</td>
<td>M19.4r; mid lowermost upper Calpionella Zone</td>
<td>M18.6r; mid lowermost upper Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcubay</td>
<td>Pruner et al., 2000</td>
<td>J/K boundary</td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid lowermost Calpionella Zone</td>
<td>M19.4r; mid lowermost upper Calpionella Zone</td>
<td>M18.6r; mid lowermost upper Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South France</td>
<td>Bralower et al. 1989</td>
<td>J/K boundary</td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid lowermost Calpionella Zone</td>
<td>M19.4r; mid lowermost upper Calpionella Zone</td>
<td>M18.6r; mid lowermost upper Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Carpathian (Slovakia)</td>
<td>Michalik et al. 2009</td>
<td>J/K boundary</td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid lowermost Calpionella Zone</td>
<td>M19.4r; mid lowermost upper Calpionella Zone</td>
<td>M18.6r; mid lowermost upper Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svinita</td>
<td>Melitine et al. 1991</td>
<td>J/K boundary</td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid lowermost Calpionella Zone</td>
<td>M19.4r; mid lowermost upper Calpionella Zone</td>
<td>M18.6r; mid lowermost upper Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volga Basin, Russia</td>
<td>Vologan stratotype</td>
<td></td>
<td>M18.8r; base Calpionella Zone</td>
<td>M19.5n; mid lowermost Calpionella Zone</td>
<td>M19.4r; mid lowermost upper Calpionella Zone</td>
<td>M18.6r; mid lowermost upper Calpionella Zone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATA IN PROGRESS

<table>
<thead>
<tr>
<th>GEOGRAPHIC AREA</th>
<th>Event VS Section</th>
<th>AUTHORS</th>
<th>AGE</th>
<th>FAD N. steinmanni minor</th>
<th>FAD N. kampfneri minor</th>
<th>FAD N. winteri</th>
<th>FAD C. covilli</th>
<th>FAD N. colomi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rio Argos</td>
<td>Hoedemaker & Leeseriet 1995</td>
<td>J/K boundary (section Z)</td>
<td>M18.5r; lower Berriasella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gardin & Casellato</td>
<td>Casellato 2010</td>
<td>J/K boundary (section Z)</td>
<td>M18.5r; lower Berriasella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSDP and ODP sites

<table>
<thead>
<tr>
<th>GEOGRAPHIC AREA</th>
<th>Event VS Section</th>
<th>AUTHORS</th>
<th>AGE</th>
<th>FAD N. steinmanni minor</th>
<th>FAD N. kampfneri minor</th>
<th>FAD N. winteri</th>
<th>FAD C. covilli</th>
<th>FAD N. colomi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Atlantic</td>
<td>DSDP 534</td>
<td>Bralower et al. 1989</td>
<td>Oxfordian-Berriasiann</td>
<td>M18.5r; lower Berriasella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
</tr>
<tr>
<td>DSDP 105</td>
<td>Wilcoxon 1972</td>
<td>Late Jurassic</td>
<td>M18.5r; lower Berriasella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP site 261</td>
<td>Bowen et al. 1994</td>
<td>Late Jurassic</td>
<td>M18.5r; lower Berriasella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP site 330</td>
<td>Wise & Wind 1977</td>
<td>Late Jurassic</td>
<td>M18.5r; lower Berriasella Zone</td>
<td>M19.5n; mid Calpionella Zone;</td>
<td>M19.4r; mid Calpionella Zone</td>
<td>M18.6r; mid Calpionella Zone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1 - Comparison of FADs of calcareous nannofossil species from onshore and offshore localities.
ammonite faunas is in progress, so as to allow the calibration of the limited magnetostratigraphic results that are already available in that realm. Much detailed study and refinement of existing data lies ahead. We also need to investigate the deep-sea sections recovered at DSDP and ODP sites (Tab. 1), to verify the nanofossil and calcipellid datums, calibrated, where available, with magnetostratigraphy. This will ensure exportability of the Tethyan framework to other oceanic basins.

There is much to do, and the early months of study and re-assessment make one feel that perhaps, where some classical sites are concerned, we do not know as much as we thought at the outset.

Acknowledgements. The following colleagues are sincerely thanked for their encouragement, verbal discussion and textual inputs to the efforts of the Berriasian Working Group, and towards this contribution, namely: Mabrouk Boughidir, Jozef Michalik, Otdia Lintnerová, Eva Halísova, Petr Pruner, Martin Kostka, Petr Schnabl, Vasily Mitia, Ekaterina Pestchovskaya, James Riding, Jacek Grabowski, Andrey Guzhikov, Gloria Andreini, Vivi Vajda, Annie Arnaud, Eugenia Bogdáeva, Valentina Markievich, James Ogg, Guido Parisi, Oscar Abbink, Vladimir Bakmutov, Michail Ivanik, Bruno Galbrun, Johann Schneyder, Bruno Granier, Sha Jingen, Li Gang, Wan Xiaojiao, Platon Tchoumatatchenko, Kristalina Stoykova, Iskra Lukova, Marin Ivanov, Philip Hoedemaker, Valery Veks, Terry Poultton, Ed Davies, Graham Dobby, Peter Alsen, Federico Oloriz, Peter Rawson, Hector Leanza, Alberto Riccardi, Verónica Vennari, Marina Lescano, James Channell, Iritia Sey, Elena Kalacheva, Tamara Bogdanova and Viktor Zakharov.

REFERENCES

