CANIS LUPUS (MAMMALIA, CANIDAE) FROM THE LATE PLEISTOCENE DEPOSIT OF AVETRANA (TARANTO, SOUTHERN ITALY)

DAVIDE F. BERTÈ 1, 2* & LUCA PANDOLFI 3

Received: August 26, 2014; accepted: October 29, 2014

Abstract. Here we described the remains of *Canis lupus* from the bed 8 of Avetrana karst filling (Late Pleistocene, Taranto, Southern Italy). The studied specimens are larger than those collected from the early Late Pleistocene Apulian localities and those referred to the recent Italian wolf. Moreover, the remains from Avetrana are morphometrically close to *Canis lupus maximus* from France and to *C. lupus* collected from Central and Northern Italian localities, chronologically related to MIS 2 and MIS 3. Morphologically, the studied specimens slightly differ from both *C. l. maximus* and other Pleistocene Apulian wolves. The dimensional differences between the Avetrana wolves and those collected from the other early Late Pleistocene Apulian localities could be explained through a spread of a large-sized morphotype from the Northern Italy.

Introduction

The hypothesis of a strict phylogenetic relationship between the modern wolf (*Canis lupus*) and the small Middle Pleistocene *Canis mosbachensis* is widely accepted in literature (Torre 1967, 1974, 1979; Kurtén 1968; Martin 1973; Sotnikova 1989, 2001; Rook 1993; Brugal & Boudadi-Maligne 2011; Ghezzo et al. 2014; Cherin et al. 2014; Sardella et al. 2014). The earliest record of the modern wolf is reported at Olyor (Siberia) and Cripple Creek Sump (Alaska), Middle Pleistocene in age, suggesting an origin of *C. lupus* in Beringia (Sher 1986; Tedford et al. 2009). The first occurrence of the modern wolf in Europe is at Lunel-Viel (France) with the subspecies *Canis lupus lunellensis* (Bonifay 1971). The site of Lunel-Viel is chronologically related to the Middle Pleistocene, MIS 11-10 (Argant & Mallye 2005; Mallye 2007; Croitor et al. 2008; Boudadi-Maligne 2010; Kahlke et al. 2011). The subspecies *C. lupus santenassensis* (Santeray site, MIS 6-5), *C. lupus mediterraneus* and *C. lupus maximus* (Jauréns Cave, MIS 3) are also reported (Bonifay 1971; Argant 1991; Brugal & Boudadi-Maligne 2011; Boudadi-Maligne 2012) in the Pleistocene deposits of France. Moreover, according to Brugal and Boudadi-Maligne (2011), a dimensional trend characterizes the Pleistocene wolves.

In Italy, the wolf appears during the late Middle Pleistocene at La Polledrara di Cecanibbio, chronologically related to MIS 9 (Gliozzi et al. 1997; Anzidei et al. 2012; Sardella et al. 2014). The remains of wolf from La Polledrara di Cecanibbio are morphologically similar to the modern wolves collected from the Apennine area.

The modern Italian wolves collected from the Apennine area are referred to the subspecies *C. lupus italicus* (Altobello 1921; Randi et al. 2000; Nowak & Federoff 2002; Nowak 2003; Fabbri et al. 2007; Pilot et al. 2010), however in Italy no subspecies of wolf has been recognized during the Pleistocene and the several Italian remains have not been considered in recent contributions on the morphometric variations of *Canis lupus* during the Pleistocene (cfr. Brugal & Boudadi-Maligne 2011; Boudadi-Maligne 2012; van der Made et al. 2013).

The goal of this paper is to describe the new material of *Canis lupus* from Avetrana (Fig. 1) and to compare it with other Apulian and Southern European

1 *Corresponding author. Dipartimento di Scienze della Terra, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy. E-mail: davide.berte@gmail.com*
2 Associazione culturale 3P (Progetto Preistoria Piemonte). E-mail: 3ppiemonte@gmail.com
3 Dipartimento di Scienze, sezione di Geologia, Università degli Studi Roma 'Tor, Largo S. L. Murialdo, 1, I-00146 Roma, Italy. E-mail: luca.pandolfi@uniroma3.it
wolves of Late Pleistocene. The results of the morphological and morphometric studies have enabled us to define a new biochronological and palaeobiogeographical framework of the Italian and Southern European wolves.

Geological and palaeontological framework of Avetrana karst filling

The faunal assemblage of Avetrana, chronologically related with the early Late Pleistocene, includes birds such as *Perdix perdix, Otis tarda, Columba livia, Athene noctua, Pyrrhocorax graculus* and *P. pyrrhocorax*, and mammals such as *Erinaceus europaeus, Terricola savi, Hystrix vinogradovi, Lepus cl. europeus, Oryctolagus cuniculus, Canis lupus, Vulpes vulpes, Meles meles,* *Crocuta crocuta, Lynx lynx, Felis silvestris, Panthera leo, Stephanorhinus hemitoechus, Hippopotamus amphibius, Sus scrofa, Dama dama dama, Cervus elaphus elaphus* and *Bos primigenius* (Petronio et al. 2008; Pandolfi & Petronio 2011; Pandolfi et al. 2011, 2013a). Petronio et al. (2008) and Pandolfi et al. (2013a) have recognized several layers in the depositional sequence of Avetrana karst filling (Fig. 1). Based on the stratigraphical observations, the deposit of Avetrana can be divided into nine beds and two discrete fillings or pockets (Petronio et al. 2008, Fig. 1). The beds were probably deposited rapidly during a short time span by exceptional events, producing the rapid accumulation of carcasses in the karst cavity (Petronio et al. 2008; Pandolfi et al. 2011, 2013a). The abundance of the remains, many of them still articulated, their state of preservation, the absence of skulls strongly suggest that the remains were accu-
mulated by water during several catastrophic events in the area (Pandolfi et al. 2013a). In particular, layers 2, 5 and 7 were deposited over a short time and probably each one represents a single depositional event. By contrast, beds 3, 4, 6 and 8, which are characterized by scarce fossil remains and abundant clay-sandy matrix, are interpreted as layers deposited over a longer time span. At last, the bed 8 is characterized by a high percentage of concreted bones and relatively high and a very high percentage of carnivore remains, the wolf in particular (Fig. 2, Fig. 3). The sedimentological characteristics of bed 8, at the top of the stratigraphical sequence, suggest the presence of abundant water (also suggested by the presence of calcareous concretions and the occurrences of two species of Anura and Arvalis amphibia: Kotsakis, pers. comm; Kotsakis et al., in prep.). Due to the occurrence of the genus Microtus (which occurs in Italy during MIS 4-2: unpublished material, Kotsakis pers. comm.) and of the rhinoceros Stephanorhinus hemitoechus (which occurs in Italy until MIS 3: Pandolfi & Petronio 2011; Pandolfi et al. 2013b), the level 8 of the Avetrana karst filling can be interpreted younger in age than the beds 2-7, and referred to a time span between MIS 4 and MIS 3. According to Pandolfi et al. (2013a), the high percentage of wolf in the bed 8 may be due to a common presence in the area of this canid. However, the role of a natural trap of the cavity, where the carnivores could be attracted by the presence of carcasses, has not been deeply ruled out (Pandolfi et al. 2013a).

Materials and methods

Despite the high number of specimens, the remains of *Canis lupus* from Avetrana (Fig. 4) are fragmented and the morphology of the whole skull cannot be observed, therefore our work has been focused on the teeth. The studied material from Avetrana is temporarily stored at Sapienza, Università di Roma and it will be transferred to the Superintendenza di Taranto (Southern Italy) where the most part of Avetrana findings are currently housed. The specimens included in this study have been collected in the beds 8 of the Avetrana karst filling, during a fieldwork in the winter 2013, and include several fragmented maxillae and hemimandibles, isolated teeth and few fragmented postcranial remains (Tabs 1, 2).

Morphometric data were taken with standard caliper. The measures taken are length and breadth for each tooth, the greatest breadth of P2 and the talonid length of M1, as reported by von den Driesch (1976). The Avetrana measurements were compared with fossil wolves from other Late Pleistocene sites of Italy (e.g., Grotta Romanelli, Melpignano and San Sidero, Ingmaro, Grotta Paglicci, Buce del Frate) (Tab. 5). A morphometric comparison with the Late Pleistocene wolves from France, reported by Boudadi-Maligne (2010) and Brugal and Boudadi-Maligne (2011), was also carry out (Tab. 3). Data on recent *C. lupus* from the Apennine area were taken from Berté (2013) and include 115 individuals (52 males and 63 female) belonging to the Italian medium-size subspecies *C. lupus italicus* (Nowak & Fedele 2002; Boitani et al. 2003). All the specimens considered for morphological comparison are reported in Appendix.

All the statistical analysis were performed with the software PAST version 2.08 (Hammer et al. 2001). A Principal Component Analysis (PCA) was performed to visualise variance in teeth measurements across samples using Principal Component vectors. The analyses were run separately for upper and lower teeth. A Multivariate Analysis of Variance (MANOVA) was also performed; it is the multivariate
version of the univariate ANOVA, testing whether several samples have the same mean. Wilk's lambda value is reported. If the MANOVA shows significant overall difference between groups, the analysis can proceed by pairwise comparisons. The Bonferroni correction for multiple test is applied and p values (multiplied by the number of pairwise comparisons) is reported.

A ANOVA is performed only on PC1. If the ANOVA shows significant inequality of the means (small p), is used the "post-hoc" pairwise comparisons, based on Tukey's HSD (Honestly Significant Difference) test. Sample sizes do not have to be equal for the version of Tukey's test used. Sample smaller than five specimens are removed from the analysis.

A discriminant analysis was also performed on the data for confirming or rejecting the hypothesis that two species are morphologically distinct.

Description and morphological comparison

Upper teeth

P4 of the Avetrana specimens has a round-shaped protocone that is well delineated and isolated from the edge of the tooth. The protocone is anterior-lingually

<table>
<thead>
<tr>
<th>N specimen</th>
<th>P4 L</th>
<th>P4 W</th>
<th>P4 W max</th>
<th>M1 L</th>
<th>M1 W</th>
<th>M2 L</th>
<th>M2 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8-15</td>
<td></td>
<td></td>
<td></td>
<td>14.5</td>
<td>18.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8-16</td>
<td>22.5</td>
<td>9.4</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8-65</td>
<td></td>
<td></td>
<td></td>
<td>16.3</td>
<td>18.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8C9</td>
<td>25.5</td>
<td></td>
<td></td>
<td>17.2</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-32</td>
<td>24.7</td>
<td>10.6</td>
<td>12.2</td>
<td>16.4</td>
<td>19.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-33</td>
<td>22.6</td>
<td>11.3</td>
<td>12.9</td>
<td>15.3</td>
<td>19.8</td>
<td>8.9</td>
<td>11.9</td>
</tr>
<tr>
<td>Ave8-34</td>
<td>22.0</td>
<td>10.8</td>
<td>12.1</td>
<td>16.2</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-35</td>
<td>24.5</td>
<td>11.3</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-36</td>
<td></td>
<td></td>
<td></td>
<td>18.1</td>
<td>20.6</td>
<td>9.6</td>
<td>12.6</td>
</tr>
<tr>
<td>Ave8-37</td>
<td>25.5</td>
<td>10.4</td>
<td>14.2</td>
<td>17.1</td>
<td>19.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-38</td>
<td></td>
<td></td>
<td></td>
<td>14.8</td>
<td>19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-39</td>
<td></td>
<td></td>
<td></td>
<td>16.8</td>
<td>18.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-41</td>
<td>25.8</td>
<td>10.4</td>
<td>13.2</td>
<td>21.2</td>
<td>8.8</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Ave8-42</td>
<td>21.7</td>
<td>9.1</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-43</td>
<td>22.8</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-44</td>
<td>22.3</td>
<td>9.7</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave8-45</td>
<td>25.0</td>
<td>13.5</td>
<td>14.3</td>
<td>19.3</td>
<td>9.2</td>
<td>11.9</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1 - List and measurements (mm) of the upper teeth of Canis lupus collected at Avetrana and included in this study. L = length; W = width; max = maximal width.
oriented and makes an obtuse angle with the anterior rim of the paracone. Moreover, P₁ displays a little concavity in the labial side between the paracone and the metastyle; the ridge of the paracone, in anterior direction, is well delineated and marked.

The protocone of the P₁ is rounded as in modern wolves and in the Late Pleistocene Apulian specimens, whereas the specimens from Jauren have a tight protocone, pointed and more lingually oriented on the palate.

In M₁ the paracone is clearly larger than the metacone; the protocone is well developed, whereas the metaconule is little developed, the basin is not much deep, the hypocone is well developed but lesser high than the protocone. The hypocone is broad around the talon and joined with the dental cingulum; the metaconule is evident.

In the sample here considered, M₂ is well separated from M₁ and the only contact point is at the level of the metacone of M₂. M₂ is separated from the M₁ as in the all specimens of Grotta Romanelli. In the modern wolf, the contact point between M₁ and M₂ is along their whole lateral side. In the occlusal view, the M₂ is sub-rectangular, the paracone is more developed than the metacone, the protocone and the metaconule are not much tall and the basin does not appear deep.
Tab. 3 - List of the fossiliferous localities yielded remains of Canis lupus included in this study.

<table>
<thead>
<tr>
<th>Area</th>
<th>Site</th>
<th>Age</th>
<th>MIS</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>Melpignano and San Sideno</td>
<td>Late Pleistocene</td>
<td>5a-5b</td>
<td>Berté 2013; Sardella et al. 2014; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Grotta Romanelli</td>
<td>Late Pleistocene</td>
<td>4-3</td>
<td>Cassel et al. 1994; Sardella et al. 2014; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Avetrana</td>
<td>Late Pleistocene</td>
<td>4-3</td>
<td>Petreni et al. 2008; Pandolfi et al. 2013a; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Veja grotta A</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Pocala</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Baco del Frate</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>Bona pers. com.; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Ingurano</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>Berté 2013; Sardella et al. 2014; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Grotta Sant'Agostino</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>Tozzi 1970; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Grotta di Ladrenizza</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Grotta Mora Cavorso</td>
<td>Late Pleistocene</td>
<td>2</td>
<td>Saliari et al. 2011; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Còvò di Velo</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Grotta Paglèce</td>
<td>Late Pleistocene</td>
<td>2</td>
<td>Bartolomei 1975; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Grotta Bella</td>
<td>Holocene, ancient</td>
<td>1</td>
<td>Guerreschi et al. 1992; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Colle Cappuccini</td>
<td>Holocene, ancient</td>
<td>1</td>
<td>Wilkens 1990; this work</td>
</tr>
<tr>
<td>Italy</td>
<td>Central Italy, Apennine area</td>
<td>Holocene, recent</td>
<td>1</td>
<td>Berté 2013, this work</td>
</tr>
<tr>
<td>France</td>
<td>Aven de l'Arquet</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>Boudadi-Maligne 2010, 2012; Brugal & Boudadi-Maligne 2011</td>
</tr>
<tr>
<td>France</td>
<td>Jaures</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>Boudadi-Maligne 2010, 2012; Brugal & Boudadi-Maligne 2011</td>
</tr>
<tr>
<td>France</td>
<td>Maklidi</td>
<td>Late Pleistocene</td>
<td>3</td>
<td>Boudadi-Maligne 2010, 2012; Brugal & Boudadi-Maligne 2011</td>
</tr>
<tr>
<td>France</td>
<td>Igue du Gral</td>
<td>Late Pleistocene</td>
<td>2</td>
<td>Boudadi-Maligne 2010, 2012; Brugal & Boudadi-Maligne 2011</td>
</tr>
</tbody>
</table>

Lower teeth

P2 possesses just only the principal cusp and does not have any secondary cusps or cingulum; the principal cusp is vertically oriented and located in the anterior half of the teeth.

The secondary cusp on P2 is present in some specimens from Melpignano (e.g. in the specimens MPE-2 and MPD-4. See Appendix for more details), but it is absent in the specimens from Grotta Romanelli. The secondary cusps occurs in several specimens of modern wolf but it is not always evident.

P3 has a principal cusp, a secondary cusp, and a little mesial accessory cusp developed from the cingulum.

The principal cusp on P3 is high as the paraconid of M1. Two secondary cusps are present in mesial position. The small cusp is developed from the rising of the dental cingulum. It can also be observed on P4 in some specimens from Romanelli and Melpignano (e.g. in the specimens R3592 and MPE-2. See Appendix for more details). In occlusal view, the tooth is massive and wide and lingually extends, near second cusp, is present.

In the modern wolf, as it occurs in the specimens of Avetrana, this cusp is usually absent. The talonid on M1 is short respect to the length of the trigonide, the metaconid is poorly developed, small, low, and not well-isolated from the protoconid. The hypoconid and the entoconid are well-delineated, whereas the entoculid is not well evident or absent. The metaconid of M1 is always well-marked and isolated from the protoconid as occurs in the modern wolf.

In occlusal view, M2 is sub-squared, the protoconid and the metaconid are well-marked and similar in size, the hypoconid is slightly taller than the protoconid and the entoconid is not well clear. The entoconid of M2 is well evident in the specimens of Avetrana, whereas it is absent or poorly developed in some specimens from Melpignano (e.g. in the specimen MPE-2. See Appendix for more details) or in the modern wolves.

Mandible

The mandibles are generally fragmented and none is completely preserved. The mandibular ramus is high and the masseteric fossa is much deep. In occlusal view, the tooth row is S-shaped as appears in the modern wolves.

Morphometric comparisons

Comparison with fossil specimens

For the upper teeth, the analysis was limited to the jugal teeth. The MANOVA analysis show that the differences between mean are significant (Wilk's lambda: 0.1277; p: 1.397E-09). MANOVA revealed that the Avetrana wolves differ from those of Grotta Romanelli (p-value = 0.0018) and Melpignano (p-value = 0.0007) but not from those of Ingurano (p-value = 0.0688) and San Siderno (p-value = 0.9064) (Tab. 4). A discriminant analysis, performed to test the differences between the Avetrana specimens and the other fossil wolves, is significant (p= 0.00268) and the specimens correctly classified are 89.6%. The PCA performed on the upper teeth shows similar differences (Fig. 5; Tab. 6). The first component PC1 (on the horizontal axis) accounts for the 68.43% of the total variance, and has is loadings for the length of P4. The second component (vertical axis) explain 16.57% of the variance and is mainly influenced
Tab. 4 - Comparative dimensions (mm) of the upper teeth of *Canis lupus* of Avetrana and those of several Southern Italian localities and Apennine area.

<table>
<thead>
<tr>
<th>Site</th>
<th>P4 L</th>
<th>P4 B</th>
<th>GB P4</th>
<th>M1 L</th>
<th>M1 B</th>
<th>M2 L</th>
<th>M2 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melpignano/San Sidero</td>
<td>Mean</td>
<td>21.9</td>
<td>8.7</td>
<td>11.1</td>
<td>13.1</td>
<td>16.7</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Grotta Romanelli</td>
<td>Mean</td>
<td>22.1</td>
<td>8.9</td>
<td>10.8</td>
<td>13.9</td>
<td>17.0</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Veja Grotta A</td>
<td>Mean</td>
<td>27.0</td>
<td>10.7</td>
<td>13.0</td>
<td>16.4</td>
<td>19.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Buco del Frate</td>
<td>Mean</td>
<td>26.0</td>
<td>10.6</td>
<td>13.9</td>
<td>16.0</td>
<td>19.3</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Ingarano</td>
<td>Mean</td>
<td>23.5</td>
<td>9.0</td>
<td>12.2</td>
<td>14.7</td>
<td>18.1</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Grotta Sant'Agostino</td>
<td>Mean</td>
<td>24.9</td>
<td>13.2</td>
<td>17.3</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grotta Ladrenizza</td>
<td>Mean</td>
<td>23.9</td>
<td>9.5</td>
<td>14.4</td>
<td>15.2</td>
<td>18.2</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Avetrana</td>
<td>Mean</td>
<td>23.7</td>
<td>10.3</td>
<td>12.9</td>
<td>16.0</td>
<td>19.5</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Grotta Mora Cavorso</td>
<td>Mean</td>
<td>24.87</td>
<td>15.1</td>
<td>17.5</td>
<td>23.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covoli di Velo</td>
<td>Mean</td>
<td>25.4</td>
<td>10.2</td>
<td>15.0</td>
<td>17.0</td>
<td>19.5</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Grotta Paglicci</td>
<td>Mean</td>
<td>22.7</td>
<td>8.9</td>
<td>11.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appennine area</td>
<td>Mean</td>
<td>24.2</td>
<td>9.7</td>
<td>12.8</td>
<td>15.3</td>
<td>18.4</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>252</td>
<td>253</td>
<td>253</td>
</tr>
<tr>
<td>Aven de l'Arquet</td>
<td>Mean</td>
<td>25.7</td>
<td>10.3</td>
<td>13.6</td>
<td>16.3</td>
<td>21.5</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>27</td>
<td>26</td>
<td>27</td>
<td>16</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Jaurens</td>
<td>Mean</td>
<td>26.6</td>
<td>10.7</td>
<td>14.5</td>
<td>16.6</td>
<td>20.0</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Maldidier</td>
<td>Mean</td>
<td>27</td>
<td>11.07</td>
<td>14.8</td>
<td>16.2</td>
<td>21.95</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Igue du Gral</td>
<td>Mean</td>
<td>25.47</td>
<td>10.36</td>
<td>13.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5 - Principal Component Analysis performed on the upper teeth. Cross, full line: Avetrana; circle, big pointed line: Melpignano/San Sidero; triangle, point and line: Ingarano; asterisk, no line: Grotta Paglicci; square, small dashed line: Grotta Romanelli; diamond, big dashed line: Buco del Frate; X, small pointed line: Jaurens.
by the breadth of M1. ANOVA analysis on PC1 and PC2 have significant result (Tukey pairwis test p=0.0001095).

In the analysis on the lower teeth the specimens from Melpignano and San Sidero are considered as the same population and the sample from Grotta Pagliacci was removed because is too small. A MANOVA performed on the lower teeth reveals that some means are significantly different (Wilks lambda: 0.145; p: 2.752E-23). After the Bonferroni correction the Avetrania wolves differ from those of Grotta Romanelli (p-value = 0.033158), Bucol del Frate (p-value= 0.008824) and Jaurens (p-value= 4.15949E-06) but not from those of Ingurano (p-value= 0.144342), Melpignano (p-value = 0.0738477) (Tab. 5). The PCA performed on the lower teeth shows similar differences (Fig. 6; Tab. 6). The first component PC1 (on the horizontal axis) accounts for the 55.5% of the total variance, and has is loadings for the length of M1. The second component (vertical axis) explain 16.0% of the variance and is mainly influenced by the breadth of P2. ANOVA analysis was performed on PC1 and PC2 (Tukey pairwis test p=8,761E-06). The dimensional range of the length of M1 is similar to that of the French localities of Jaurens and Aven de l’Arquet, in addition it is similar to that of Bucol del Frate, Pocala and other Northern and Central Italian localities, chronologically related to MIS 3 and MIS 2 (Fig. 7). The mean value of the ratio between the total length and the talonid length of M1 shows similar values to the samples under investigation (Tabs 4, 5).

The specimens of Avetrania are not significantly different, both for upper and lower teeth, from the populations of Bucol del Frate, and Jaurens.
Comparison with extant wolves

The MANOVA analysis show that the differences between mean are significant (Wilks lambda: 0.0485; p = 2.2400E-06). The sample from Avetrana and the extant wolves are significant different (p-value: 2.2400E-06) and the p-value remains the same after the Bonferroni correction.

A discriminant analysis confirm that the two populations are different (p-value: 2.319E-06) and the percentage of corrected classified specimens is 77.59%.

A PCA analysis show that the first component PC1 (on the horizontal axis) accounts for the 48.25% of the total variance, and has is loadings for the length of P4 and the breadth of M1. The second component (vertical axis) explain 16.70% of the variance and is mainly influenced by M3 breadth.

The values of the ratio between the talonid length and the total length in the lower carnassial are not significantly different within the considered sample. The widest populations of Italian fossil wolves, Avetrana and Bucolo del Frate, are dimensionally similar to the modern wolves and show the same variance (Tabs 4, 5). The subspecies *C. lupus maximus* is larger in the mean values than the Italian samples, but the maximal values fall into the variability of the modern wolf (Tabs 4, 5).

Table 6 - Variances of the major axes of the PCAs.

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>% variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.60821</td>
<td>68.43</td>
</tr>
<tr>
<td>1.84192</td>
<td>16.567</td>
</tr>
</tbody>
</table>

Table 6 - Variances of the major axes of the PCAs.

Discussion and conclusion

The population of *C. lupus* from the bed 8 of Avetrana represents the widest population of fossil wolves in Southern Italy. The studied specimens display important morphological and morphometric differences respect to those collected from the Apulian area. The dimensions of the early Late Pleistocene Apulian wolves are usually smaller than those of the modern wolf of the Apennine area. The teeth of *Canis lupus* collected from the bed 8 of Avetrana are larger and more robust than those of the early Late Pleistocene Apulian localities and in some cases are larger than those of the modern wolves of the Apennine area.

The large carnassial teeth and the deep jaw suggest a strong bite force and a high resistance to the stress due to the torsion movements of big preys as already highlighted in previous contributions (Ewer 1973; Leonard et al. 2007). The ratio between the talonid length and the total length of the M1 shows similar values in the considered populations, suggesting a low intra-specific variability. This character can be associated to an ecomorph specialized for hunting large prey and/or habitual scavenging (Leonard et al. 2007; Flower & Schreve 2014). As well-known in literature, wolves hunted wild ungulate species accordingly to their relative abundance in the faunal community (Mech & Peterson 2003; Vucetich et al. 2010; Nowak et al. 2011). *Bos primigenius* and *Cervus elaphus* represent the most common taxa in the fossil record of Avetrana bed 8 (cfr. Petronio et al. 2008; Pandolfi et al. 2013a). These taxa were probably the most common preys hunted by wolves. On the opposite, the most abundant species in
the early Late Pleistocene localities of Apulia, such as in
Romanelli and Melpignano, are Dama dama, Equus hy-
druntinus and other small and medium sized mammals,
whereas large sized taxa, such as Bos primigenius, are
scarcely represented (Blanc 1920; Cassoli et al. 1994;
Bologna et al. 1996; Di Stefano 1994; Petronio et al.
2007). The Avetrana wolf resembles in dimension the
populations of several Southern French localities of MIS
3 in which C. lupus maximus is recorded. Nevertheless,
the population of Avetrana and the specimens referred
to C. lupus maximus differ in the morphology of the
upper carnassials (see the paragraph Description and
comparisons). The morphometric similarities between
the two samples could be related with evolutionary con-
straints (e.g. developmental constraints or allometric
growth factors as discussed in Sardella et al. 2014) due
to the same specialization and/or size increase. The
latter could be influenced by local adaptation or climatic
changes. However morphological and morphometric si-
milarities between the Avetrana wolves and those col-
lected from several Central and Northern Italian local-
ities, chronologically related with MIS 3 and MIS 2
(e.g., Buco del Frate, Pocala), suggest a new dispersal
event of the wolf in Italy rather than a local adaptation
or a size increase due to climate changes. This dispersal
event could be related with the expansion of the glacier
during MIS 4 that forced the expansion of the areal
distribution of the Central European wolves into South-
ern Europe with the replacement of native populations
and/or the hybridisation between the different popula-
tions.

Acknowledgements. We are thankful to the Soprintendenza
to Taranto and ProLoco Avetrana, who allowed us the study of the fossil
material collected at Avetrana. We thank C. Petronio, A. Vigna Tagliat-
ti, L. Boitani, R. Sardella (Sapienza, Università di Roma), A. Tagliacoz-
zo (Museo Nazionale Preistorico-Etnografico “L. Pigorini”, Roma) A.
De Faveri (Istituto Superiore per la Protezione e la Ricerca Ambientale),
P. Boccalato (Università di Siena), G. Bardelli (Museo di Storia
naturale di Milano), P. Schircoli (Museo Civico di Storia Naturale di
Brescia) and G. Doria (Museo di Storia Naturale di Genova). We also
thank L. Salari and M. Rollo (Università Roma Tor Vergata) for send-
ing data of C. lupus of Grotta Mora Cavorso, Grotta Bella and Grotta
San’Agostino. We thank L. Maiorino for useful comments on a pre-
vious version of the manuscript and T. Kotsakis for data about the small
vertebrates of Avetrana.

REFERENCES

Altobello G. (1921) - Fauna dell’Abruzzo e del Molise. IV. I
Carnivori (Carnivora). 4: 1-61, Colitti, Campobasso.
Anzidei A.P., Bulgarelli G.M., Catalano P., Cerilli E., Gal-
lotti R., Lemorini C., Milli S., Palombo M.R., Pantano
W. & Santucci E. (2012) - Ongoing research at the late Middle Pleistocene site of La Polledrara di Ceca-
nibbio (central Italy), with emphasis on human-ele-
Argant A. & Mallye J.P. (2005) - Badger remains from the
Breccia de Château (Burgundy, France). Remarks on
Middle Pleistocene Badgers. Mitt. Kom. Quartär-
Bartolomei G. (1975) - Indicazioni paleoecologiche. In: Pal-
ma di Cesnola A. (Ed.) - Il gravettiano della Grotta
Bertè D.F. (2013) - L’evoluzione del genere Canis (Carni-
vora, Canidae, Caninae) in Italia dal wolf event ad
oggi. Implicazioni biostratigrafiche, paleoecologiche
Late Pleistocene Canis lupus from Avetrana (Southern Italy) 377

Appendix 1

List of the Italian specimens considered for morphological comparison:

- *Canis lupus*

Museo Nazionale Preistorico-Etnografico “L. Pigorini”, Roma - Grotta Romanelli: P3585; P3581.2; P3582; P3583; P3584; P3584.1; P3585.2; P3585.4; P3588; P3588.1; P3589; P3592; P3592.1; P3595.2.

Dipartimento di Geologia, Sapienza Università di Roma - Ingrandato: IN110; IN505; IN507; IN509; IN511; IN504; IN634; IN635.

Dipartimento di Geologia, Sapienza Università di Roma - Melpignano: MPD4; MPD24; MPA3; MPC1; MEP2.

Museo Civico di Scienze Naturali di Brescia - Buco del Frate: Q1129; Q1350; Q1131; Q1133; Q1134; Q1135; Q1136; Q1137; Q1138; Q1139; Q1140; Q1141; Q1143; Q1144; Q1145; Q1146; Q1147; Q1148; Q1149; Q1150; Q1151; Q1152; Q1153; Q1154; Q1155; Q1156; Q1157; Q1158; Q1159; Q1160; Q1161; Q1162; Q1163; Q1164; Q1165; Q1166; Q1167; Q1168; Q1169; Q1170; Q1175; Q1176; Q1178; Q1182; Q1183; Q1184; Q1185; Q1186; Q1187; Q1188; Q1190; Q1191; Q1192; Q1193; Q1194; Q1195; Q1196; Q1197; Q1198; Q1199; Q1200; Q1201; Q1202; Q1203; Q1204; Q1205; Q1206; Q1207; Q1208; Q1209; Q1210; Q1211; Q1212; Q1213; Q1214; Q1215; Q1218; Q1219; Q1220; Q1221; Q1222; Q1223; Q1224; Q1225; Q1226; Q1227; Q1231; Q1232; Q1233; Q1234.

Museo di Geologia di Padova - Grotta di Ladrenzigg: MGP 26644.

Pocala: MGP 26626; MGP 26627; MGP 26628; MGP 26642; MGP 26643; MGP 26647.
Museo di Scienze Naturali di Verona - Grotta di Veja: V9996; V3078; V3079; V3080/1; V3081; V3082.

* Modern wolves from Apennine area *

Istituto Superiore per la Protezione e la Ricerca Ambientale:
ISPRA: 4599; ISPRA 6883; ISPRA 6885; ISPRA 7277; ISPRA 7284; ISPRA 7287; ISPRA 7770; ISPRA 7771; ISPRA 7775; ISPRA 7939; ISPRA 7945; ISPRA 7946; ISPRA 9047; ISPRA 9048; ISPRA 9049; ISPRA 9052; ISPRA 9053; ISPRA 9054; ISPRA 9055; ISPRA 9056; ISPRA 9057; ISPRA 9058; ISPRA 9059; ISPRA 9060; ISPRA 9063; ISPRA 9064; ISPRA 9065; ISPRA 9066; ISPRA 9069; ISPRA 9070; ISPRA 9076; ISPRA 9078; ISPRA 9087; ISPRA 9088; ISPRA 9100; ISPRA 9112; ISPRA 9118; ISPRA 9138; ISPRA 9145; ISPRA 9147; ISPRA 9157; ISPRA 9618; ISPRA 9620; ISPRA 9899; ISPRA 9900; ISPRA 9901; ISPRA 9902; ISPRA 9903; ISPRA; 9904; ISPRA 9905; ISPRA 9906; ISPRA 9907; ISPRA 9908; ISPRA 7031; ISPRA 7279; ISPRA 7291; ISPRA 7292; ISPRA 7772; ISPRA 7943; ISPRA 8508; ISPRA 9051; ISPRA 9094; ISPRA 9110; ISPRA 9111; ISPRA 9117; ISPRA 9119; ISPRA 9121; ISPRA 9132; ISPRA 9142; ISPRA 9191; ISPRA 9619.

Dipartimento di Zoologia di Roma: DZR (no num); DZR 0142CV; DZR 0143CV; DZR 1; DZR 2; DZR 3; DZR 5; DZR 6; DZR 7; DZR 8; DZR 9; DZR 10; DZR 13; DZR 14; DZR 16; DZR 18; DZR 19; DZR 25; DZR 21; DZR 22; DZR 23; DZR 24; DZR 25; DZR 27; DZR 28; DZR 29; DZR 30; DZR 32; DZR 33; DZR 34.