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Abstract. The use of foraminifera in the characterisation of se-
quences (systems tracts, maximum flooding surfaces, etc.) has developed
over the last decade. Much of this work has been based in the Cenozoic
successions of the Gulf of Mexico, although there is a growing appli-
cation of such data in the Middle East and the North Sea Basin. The
easiest surface to characterise has been the maximum flooding surface
with its high diversity and high (er) abundance faunas; the characterisa-
tion of individual systems tracts has been less successful.

Using the well-known mid-Upper Jurassic successions of the
Dorset coastal sections, we have investigated a number of high resolu-
tion (para)sequences for their foraminiferal content. Using data of fo-
raminiferal diversity and standing crops from a range of modern sub-
strates we have investigated the potential faunas available after depo-
sition, taphonomy, compaction, groundwater dissolution and modern
weathering. By understanding the processes involved we have identified
the key foraminiferal features of typical mid-Upper Jurassic sequences
and indicated how this work may help in the correlation of successions
in North Dorset and Normandy.

Riassunto. Luso dei foraminiferi nella caratterizzazione delle
sequenze (system tracts, superfici di massimo allagamento, ecc.) si ¢
sviluppato durante I'ultimo decennio. La maggior parte di questo la-
voro & basata sulle successioni cenozoiche del Golfo del Messico, seb-
bene ci sia una crescente applicazione di tali dati nei bacini del Medio
Oriente e del Mare del Nord. La superficie pit facile da caratterizzare
& stata la superficie di massimo allagamento, con alta diversita e alte
abbondanze faunistiche; la caratterizzazione dei singoli systems tracts
ha avuto meno successo.

Usando le ben note successioni costiere del Dorset della parte
centrale del Giurassico superiore si ¢ indagato il contenuto in foramini-
feri di un certo numero di (para)sequenze ad alta risoluzione. Usando i
dati sulla diversita e produttivita fissa dei foraminiferi da una gamma di
substrati moderni, si sono investigate le faune potenziali disponibili do-
po la deposizione, la tafonomia, la compattazione, la dissoluzione delle
acque circolanti e I'alterazione meteorica moderna. Capendo i processi
coinvolti, & stato possibile identificare le chiavi caratteristiche dei forami-

niferi delle tipiche sequenze della parte centrale del Giurassico superio-
re, indicando come questo lavoro possa essere d’aiuto nella correlazione
delle successioni nel Dorset settentrionale ed in Normandia.

Introduction

Sequence stratigraphy developed in the 1970s and
was based, initially, on the interpretation of seismic pro-
files. Vail et al. (1977) expanded these initial concepts
to include both borehole and outcrop data and closely
related the resulting stratigraphy to sea level changes.
Short-term fluctuations in sea level were shown to gen-
erate “sequences” or “genetically related strata bound-
ed by unconformities or their correlative conformities”
(Van Wagoner et al. 1988, p. 39). Sequences soon de-
veloped a nomenclature, with the three main sub-di-
visions being represented (in ascending order) by the
Lowstand Systems Tract (LST), Transgressive Systems
Tract (TST) and Highstand Systems Tract (HST). The
Maximum Flooding Surface (MFS) is an important part
of sequence stratigraphic interpretation and separates the
TST and the HST. In some successions (see below) the
‘surface’ cannot be located precisely and we have adopted
the concept of a Zone of Maximum Flooding following
the work of Montanez & Osleger (1993), Strasser et al.
(1994, 1999) and Oliver (1998). This “Exxon Model”
of a sequence must not be confused with the “Galloway
Model”, which uses the MFS as they key to sequence
identification (Galloway 1989a,b; Reading 1996, pp. 25-
26, fig.2.10), and the “Einsele Model” which is based on
the recognition of transgressive/regressive cycles (Ein-
sele & Bayer 1991).
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The “Exxon Model” is used by Emery & Myers (1996)
in their description of how palacontology and biostratig-
raphy contribute to sequence stratigraphy (Fig. 1). Emery
& Myers (op. cit., pp. 101, 104, fig. 6.14) describe how the
MES can be identified by the abundance and diversity of
benthonic foraminifera. It also coincides with the most land-
ward distribution of diverse, open marine, plankton. This
approach has been used effectively in younger rocks, most
notably in the Cenozoic of the Gulf of Mexico (Shaffer
1987, 1990; Armentrout 1987, 1991; Armentrout & Clement
1990; Armentrout et al. 1990, 1999; Pacht et al. 1990; Vail
& Wornardt 1990; Van der Zwan & Brugman 1999). More
recently, a number of authors have extended this approach
to the interpretation of Mesozoic successions (Olsson 1988;
Cubaynes et al. 1990; Simmons et al. 1991; Powell 1992; Hart
1997, 2000; Henderson 1997; Henderson & Hart 2000; Ox-
ford et al. 2000; Sharland et al. 2001) with varying degrees
of success. In their work on the Jurassic to Lower Creta-
ceous successions of the North Sea Basin, Partington et al.
(1993) used the distinctive assemblages associated with the
maximum flooding events to generate a biostratigraphical
framework for correlation. One of the problems associated
with more ancient successions is the loss of diagnostic taxa
or even complete faunas as a result of taphonomy, burial
and other diagenetic processes. In this account we report
on our research into the preservation and identification of
microfaunas within Jurassic sequences.

Mid-Upper Jurassic of the Dorset Coast

The dominantly siliciclastic succession of the Dor-
set Coast has been the subject of a number of investiga-
tions many of which have directly, or indirectly, related

ments. SB = Sequence Boundary;
LST = Lowstand Systems Tract;
TST = Transgressive Systems
Tract; MFS = Maximum Flood-
ing Surface; HST = Highstand
Systems Tract.

the sedimentary succession to changes in sea level (Arkell
1933, 1956; Wilson 1968a,b; Talbot 1973, 1974; Brookfield
1973a,b, 1978; Fiirsich 1975; Sun 1989, 1990a,b; Rioult
et al. 1991; Coe 1992, 1995; Oliver 1998; Newell 2000;
Henderson & Hart 2000; Oxford et al. 2000).

In many of these interpretations (Fig. 2) of the se-
quence stratigraphy there are different, if not conflicting,
conclusions especially between Wilson (1991), Rioult et al.
(1991), Coe (1992, 1995), Oliver (1998) and Newell (2000).
In attempting to resolve some of these differences, and to
explore the use of foraminifera in the recognition of Jurassic
sequences, Oxford et al. (2000) used a part of the succes-
sion for a pilot investigation. The Nothe Grit Formation
and the Redcliff Formation are well exposed on the Dorset
Coast between Weymouth and Ringstead (Fig. 3). In this
succession 96 samples were collected and prepared using the
solvent method of Brasier (1980). All samples were washed
ona 63 um sieve, dried gently and stored ready for investi-
gation. A minimum of 300 foraminifera were picked from
the 500-250 um size fraction with counts of the other size
fractions (250-125 um and 125-63 um) also being recorded
for further analysis (not presented here). Fig. 4 records the
results of this preliminary investigation with the percentage
of dry sediment retained on the 63 um sieve plotted along-
side the generic diversity recorded in each sample.

The most clay-rich samples are located in the Nothe
Clay Member (samples between O1 and O6) and it is these
same samples that record the highest levels of generic (and
specific) diversity. This would appear to be the “zone of
maximum flooding” recorded by Oliver (1998) and would
clearly show up as a gamma-ray peak on a wireline log.
Unfortunately planktonic foraminifera are not recorded
at this level in the UK Jurassic succession and one cannot
fully test all the features of the Emery & Myers (1996, fig.
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assemblages preserved in the
1 geological record. In a recent
survey of the foraminifera of
Plymouth Sound (Fig. 6), Cas-
tignetti (1997) sampled a se-

ries of siliciclastic locations at

6.14) predictions. The genera recorded in this part of the
succession are indicated in Fig. 5. The pattern is not clear,
but samples O3 and O4 appear to be close to the zone of
‘maximum flooding” and a number of important genera
(Ophthalmidium, Nubeculina, Vaginulina, Frondicularia,
Citharina, Lingulina and Epistomina) are restricted to this
interval. The miliolids (with a porcellanous wall) and the
epistominids (with an aragonitic wall) point to a preserva-
tional control of the fauna that characterises this interval.

monthly intervals over a yearly

cycle and was able to determine
the standing crop of all taxa from a wide range of envi-
ronments. Fig. 7 shows the total annual production and
the total annual diversity for these sites, all but one of
which were located within Plymouth Sound. The most
diverse and productive fauna is at Location 9 (mud) with
the lowest values recorded at Location 11 (sand waves).
The controls on the fauna are complex (and the subject
of a further publication by the authors) but it is clear
that in the nutrient-rich clays there is an abundant, di-
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sample codes FD FE R7 R6 R5 R4 R1
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Ammobaculites spp.

Haplophragmoides spp.

Textularia spp.

Trochammina spp.

Lenticulina spp.

Citharina spp.

Dentalina spp.

Nodosaria spp.

Planularia spp.

Vaginulina spp.

Nubeculina bigoti Cushman

Lagena spp.

Epistomina spp.

Eoguttulina spp.

Pseudonodosaria spp.

Triplasia spp.

Marginulina spp.

Lingulina spp.

Frodicularia spp.

Opthalmidium spp.

Suboidellina spp.

Ramulina spp.

Trocholina spp.

Tristix spp.

Fig. 5

species recorded within that genus in this succession.

crystals on bedding and fracture surfaces, or processed
residues containing an abundance of such crystals.

The dense, impermeable clays will, therefore, con-
tain the most abundant and diverse faunas from deposi-
tion, through compaction, to preservation in an aqua-
clude. These dense clays should also record the highest
levels of gamma-rays in wireline logs and be readily iden-

- Distribution of foraminifera in the Nothe Grit and Redcliff Formations. Nubeculina bigoti Cushman is identified as this is the only

tified as a zone of maximum flooding by both palaeon-
tologists and sedimentologists.

The Oxfordian succession of the Dorset Coast

Using the form of analysis shown in Fig. 4, the
complete Oxfordian succession of the Dorset Coast
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(Weymouth to Ringstead) has been analysed (Fig. 9).
The ‘cycle’ shown in Fig. 4 can be seen in the middle of
this diagram, picked out by a number of diversity peaks
(around sample OSM3). These pick out the zone of maxi-
mum flooding described above. This is within the upper
part of the Nothe Clay Member of the Redcliff Forma-
ton. Lower in the succession, below sample FZ3, there
are reduced percentages of sediment retained on the 63um
sieve and moderate levels of foraminiferal diversity. This
is typical of the upper part of the Oxford Clay Forma-
tion (Mariae Zone). It is the Mariae Zone, on the shores
of the Fleet west of Weymouth (Fig. 3), that has yielded
planktonic foraminifera (Oxford et al. 2002) and these
assemblages are coeval with the occurrence of plankto-
nic foraminifera in the Marnes de Villers Formation on
the Normandy Coast (Samson et al., 1992; Oxford et
al. 2002, fig. 2). In North Dorset (Fig. 3) Henderson &
Hart (2000, fig. 3) have identified several floods of epis-
tominids at this level which probably records the same
maximum flooding event.

Above the Nothe Clay ‘cycle’ (Figs 4, 9) there is a
marked drop in diversity and an increase in sediment re-
tained on the 63um sieve. This appears to indicate a sig-
nificant break (= sequence boundary) within the lower
part of the Bencliff Grit Member and, although the exact

sandstone silty mudstone clay
nutrient poor nutrient rich
rapid deposition slow deposition

high diversity

low diversity
high abundance

low abundance
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Fig. 8 - Theoretical model for the history of a “sample” from depo-
sition to final collection, showing the effects of taphonomy,

compaction and dissolution by groundwater flow.

position of this is disputed by the various workers who
have studied this succession (Fig. 2), all show this event
at about this level. In the overlying Upton Member of
the Osmington Oolite Formation (around sample BH1
on Fig. 9) we record a major diversity peak. Above this
level there are four more diversity peaks in descending
order of magnitude until, at about the level of sample R2
there appears to be a major sequence boundary before the
onset of the major cycle at the base of the Kimmeridge
Clay Formation. If all the diversity peaks between the
top of the Oxford Clay Formation and the base of the
Kimmeridge Clay Formation are considered, it is possi-
ble to detect a large ‘cycle” with a peak at about the level
of the mid-Upton member. Is this a 3 Order sequence
in the Van Wagoner et al. (1988) terminology? If this is
the case, then the regularly spaced minor peaks would be
4" Order sequences (or parasequences). In both North
Dorset and Normandy our work has detected comparable
diversity fluctuations with floods of diverse assemblages
(with epistominids) at regular intervals (see Henderson
& Hart 2000).
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tential sequence boundaries are indicated by the ‘wavy’ lines and initials SB. The sample codes are as follows:
FZ / FZY ~ Furzy Cliff [Upper Oxford Clay - Nothe Grit Formation]

RED ~ Redcliff [Nothe Grit Formation - Nothe Clay Member]

OSM ~ Osmington [Nothe Clay Member - Osmington Oolite Formation]

BH ~ Black Head [Osmington Oolite and Sandsfoot Formations]

R ~ Ringstead Bay [Sandsfoot Formation and base of Kimmeridge Clay Formation]

Only an outline assessment of our results have
been presented here as there is clearly a great deal of de-
tailed information to process on all the faunas we have
recovered in our samples. This work is in hand, including
that based on the material available from North Dorset
and Normandy.

Summary

Using data from the analysis of foraminifera living
in modern siliciclastic environments we have developed
a model for the categorization of Jurassic assemblages
and their interpretation in a sequence stratigraphic con-
text. Preliminary work comparing the Dorset Coast with
North Dorset and Normandy indicate that the foramini-

fera can provide significant assistance in the development
of correlations based on sequence stratigraphy. Maximum
flooding events in the Jurassic appear to be identified by
high diversity assemblages in which epistominids are a
significant component. Planktonic foraminifera (which
at this stratigraphic level may also have been aragonitic)
have also been shown to occur at maximum flooding sur-
faces within the mid-Upper Jurassic (Oxford et al. 2002;
Hart et al. 2002).
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