CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY OF PALEOCENE TO MIDDLE EOCENE SUCCESSIONS (TERTIARY FLYSCH AuCTT) OF THE NORTHERN APENNINES

RITA CATANZARITI & NICOLA PERILLI

Received: May 16, 2014; accepted: June 04, 2015

Key words: Biostratigraphy, Calcareous nannofossils, Paleocene, Middle Eocene, External Ligurides, Northern Apennines, Italy.

Abstract. An accurate biostratigraphic study of the Paleocene-middle Eocene calcareous nannofossils was performed on the turbiditic successions that characterize the Northern Apennines: Mt. Caio, Farini d'Olmo, Mt. Sporno and Mt. Penice Units, belonging to the "Tertiary Flyschi AuCTT" and referable to the External Ligurides. These successions accumulated in a link key area, located between the oceanic Ligure-Piedmontese domain and the Adria continental margin. The reference biostratigraphic scheme used in the study is the recently published calcareous nannofossil biozonation proposed for the Paleogene by Agnini et al. (2014). The obtained biostratigraphic and chronostratigraphic data suggest that further investigation is needed to clarify the tectono-sedimentary evolution and to unravel the complex architecture of the External Ligurides.

Introduction

During the setting up of the Geological Map of Italy at 1:50.000 scale (CARG Project), we studied calcareous nannofossil assemblages in a great number of formations outcropping in the Northern Apennines and belonging to the External Ligurides. This extensive biostratigraphic study permitted us to constrain the age of many tectonic units (http://www.isprambiente.gov.it/en/projects/carg-project-geologic-and-geothematic-cartography/default). Our recent effort was mainly focused on refining the biostratigraphy of the Cenomanian-Maastrichtian successions of the External Ligurides (Catanzariti & Perilli 2011). These units, that are mostly made up of marly-calcareous fine-grained turbidite sequences, the Helminthoid Flyschi AuCTT, were deposited in a key area representing the conjunction between the "Ligure-Piedmontese" oceanic domain and the continental margin of the Adria Plate, from Early Cretaceous to middle Eocene (Marroni et al. 1992, 2001; Daniele & Plesi 2000). In this paper, we report on calcareous nannofossils biostratigraphic and chronostratigraphic study of the Paleogene sections of the External Ligurides that comprise some of the most representative pelitic-arenaceous and marly-calcareous successions of Caio, Farini, Sporno, and Penice Units. The study has been performed in order to revise the biostratigraphy of these successions, with reference to the published literature (Tab. 1), and improve the chronology through recognition of useful biohorizons.

Geological background

In the investigated area of the Northern Apennines three main superimposed tectonic units are present: the Tuscan Units, the Subligurian Units and the Liguride Units, sealed by thrust top basin deposits (Fig. 1). The Tuscan Units were deposited on the continental margin of the Adria Plate. The Subligurian Units accumulated in a transitional area located between the Tuscan and the Ligurian-Piedmont paleogeographic domains. The Liguride Units comprise the Internal Ligurides, piled up on the oceanic crust of the Ligurian-Piedmont domain, and the External Ligurides, accumulated in a connection area between the continental margin of the Adria Plate and the Ligurian-Piedmont oceanic ba-

1 Istituto di Geoscienze e Georisorse, Via Moruzzi 1, 56124 Pisa, Italy. E-mail: catanzariti@igg.cnr.it;
2 Dipartimento di Ingegneria dell'Energia, dei Sistemi, del Territorio e delle Costruzioni, Università degli Studi di Pisa, Largo Lucio Lazzarini, 56126 Pisa, Italy. E-mail: nicola.perilli@unipi.it.
The investigated successions belonging to the External Ligurides are the units of Caio, Farini, Sporno and Penice (Abbate et al. 1973, 1980; Rio et al. 1983; Marroni et al. 1992, 2001; Gardin et al. 1994; Daniele & Plesi 2000) and crop out in the Emilian side of the Northern Apennines (Fig. 1). The Caio Unit comprises an ophiolitic-rich “basal complex” and the Late Cretaceous Helminthoid Flysch of Mt. Caio with the Tizzano Marl above, mostly composed of pelitic-arenaceous and marly-calcareous successions Paleocene to middle Eocene in age. The Farini and Sporno Units, corresponding to the Farini D’Olmo Flysch and the Mt. Sporno Flysch, are characterized by pelitic-arenaceous and very thick marly-calcareous successions with mega-turbidites. The marly-calcareous Penice Unit is here assigned to the External Ligurides (Otria et al. 2007), although it was previously included in the Subligurian Units (Barbieri & Zannuzcchi 1963; Elter et al. 1997).

Stratigraphy of the investigated successions

In Fig. 2 the lithostratigraphic features of the Caio, Farini, Sporno and Penice Units are reported, and are briefly described as follows.

Caio Unit

The upper portion of this unit, the Tizzano Marl, crops out in the Parma and Enza Valleys (Anelli 1935; Zannuzcchi 1980; Rio 1987; Cerrina Feroni et al. 1994a) and includes the Bersatico-Folgheto and...
Fig. 2 - Stratigraphy of the Caio, Farini, Sporno, and Penice Units. Mb = Member, It = lithofacies.

Castelmozzano members. The Bersatico lithofacies is mainly composed of pinkish to reddish clayey to calcareous marls (cf. Marne Rosate Acest.), with arenaceous-pelitic intervals. The overlying pelitic-arenaceous Folgheto lithofacies shows rare pinkish to reddish marly intercalations. It grades into the marly-calcareaous Castelmozzano Member (Mb.), that is characterized by pelitic-arenaceous turbidites as well, more frequent in the lower portion of the member.

Farini Unit - The three members of the Farini d'Olmo Flysch (= Mt. Dusso Flysch of Venzo 1966) crop out in the Nure and Ceno Valleys. The Predalboram Mb. includes the basal marly calcareous lithofacies of Case Poncini, an upper pelitic-arenaceous lithofacies. The marly-calcareous Rigolo Mb. is characterized by thick or very thick megaturbidites (up to 5-10 m in thickness), and thin to medium thick pelitic-arenaceous turbidites, more frequent in the lower portion of the member. The upper part of the Farini Unit comprises the pelitic-arenaceous Carpadasco Mb. that sometimes overlies the arenaceous-pelitic Costa lithofacies.

Sporno Unit - The three members of the Mt. Sporno Flysch are well exposed in the Parma and Baganza
Fig. 3 - Biostratigraphy of the Tizzano Marl sections 1-7 sampled in the Parma Valley. Detailed calcareous nanofossil abundances are reported in Tabs 2-8 and Figs 9-12. Zone CC26 of Sissingh (1977), NP Zones of Martini (1971), CNP-CNE Zones of Agnini et al. (2014). For symbols see legend in Fig. 2. Mb = Member, lf = lithofacies, K = Cretaceous.

Valleys (Barbieri & Petrucci 1966; Rizzoli 1988). The pelitic-arenaceous Rio Brugnara Mb. is overlaid by the marly-calcareous Armorano Mb., which is composed of thick to very thick megaturbidites (up to 5 m in thickness), and pelitic-arenaceous turbidites. The overlying thick Calestano Mb. shows marly-calcareous to calcareous lithological features.

Penice Unit - The bulk of the Penice Unit, the Mt. Penice Flysch crops out in the Trebbia, Nure and Aveto Valleys. It consists of a very thick monotonous marly-calcareous lithofacies interposed between a pelitic-arenaceous and a shaly-calcareous lithofacies. The marly-calcareous lithofacies shows intercalations of pelitic-arenaceous turbidites and, in its upper part, black pelites with siliceous limestones. The basal pelitic-arenaceous lithofacies is thin (about 70 m) and characterized by marly pelitic interbeds. The disrupted upper shaly-calcareous lithofacies is made up of black pelites with intercalations of thin to medium thick marly-calcareous to calcareous turbidites, and siliceous limestones.

Materials and methods

We analysed 267 samples collected from successions 1a to 7 of the Tizzano Marl Unit (Fig. 3), successions 8 to 12 of the Farini d’Olmo Unit (Fig. 4), successions 13 to 16 of the Mt. Sponzo Unit (Fig. 5), and succession 17 referable to the Penice Unit (Fig. 6). The calcareous nanofossils analyses were carried out on smear slides prepared from unprocessed materials following standard methods (Bowen & Young 1998). A total of 160 taxa (see Appendix) were identified following the taxonomy proposed by Aubry (1984, 1988, 1989, 1990, 1999) and Perch-Nielsen (1985). Nanofossil specimens are generally poorly to moderately preserved, and have etching and overgrowth that sometimes prevent their identification. Semi-quantitative data were collected using the following methods: by counting for each taxon the number of specimens vs. 300 observed specimens to obtain percent of the taxon in the total assemblage; by counting the taxa observed in 200 fields of view (roughly corresponding to 5 mm²) to obtain the number of tax-
Calcareous nanofossil biostratigraphy of the Northern Apennines

Fig. 4 - Biostratigraphy of the Farini D’Olmo Flysch sections 8-11 sampled in the Nure and Ceno Valleys. Farini D’Olmo Flysch = Mt. Dosso Flysch Fm. of Venzo (1966). Detailed calcareous nanofossil abundances are reported in Tabs 9-13 and Figs 13-17. NP Zones of Martini (1971), CNP-CNE Zones of Agnini et al. (2014). For symbols see legend in Fig. 2. Mb = Member, ltf = lithofacies.

Results

Two well-known and widely utilized biozonation schemes, the Martini (1971) NP Zonation and the Okada & Bukry (1980) CP Zonation, are used for Paleogene calcareous nanofossils biostratigraphy. The use of these schemes for dating the Cenozoic sedimentary successions of the Northern Apennines is difficult as shown in several studies (i.e. Fornaciari & Rio 1996; Fornaciari et al. 1996; Catanzariti et al. 1997; Fornaciari et al. 2010). The recent Paleogene biozonation of Agnini et al. (2014) gives us the opportunity of testing the biohorizons of this new biostratigraphic scheme in our successions, reported and correlated to the biostratigraphic schemes of Martini (1971) and Okada & Bukry (1980) in Fig. 8. In the studied sections, we recognized CNP (Calcareous Nannoplankton Paleocene) and CNE (Calcareous Nannoplankton Eocene) biozones through the presence of the taxa reported below. Their abundance patterns are shown in Figs 9-25.

The Coccolithaceae are represented by the genera Campyllophaera, Coccolithus, Chiasmolithus, Cruciplacolithus, and Ericsonia.

In the genus Campyllophaera, only C. dela occurs with rare and sporadic specimens in sections 6, 7 (Fig. 3, Tabs 7-8), 9, 10, 12 (Fig. 4, Tabs 10, 11, 13), 14 and 15 (Fig. 5, Tabs 15-16), from Zone CNP11 (NP9/CNP8a) to Zone CNE8 (NP14 p.p./CP12b).

The genus Coccolithus is predominantly represented by C. pelagicus, which has high abundance percentages in all the investigated samples, reaching 66% of the assemblages in section 5 (Fig. 3, Tab. 6; CNE2 Zone -NP10 p.p./CP8b p.p.). Coccolithus eopelagicus was recorded in very low percentages and discontinuously in sections 6, 7 (Fig. 3, Tabs 7 and 8), 9, 10 and 11 (Fig. 4, Tabs 10, 11-12), within Zones CNE4-CNE13 (NP12-NP16 p.p./CP10-CP14a p.p.). Coccolithus crassus is present in sections 7 (Fig. 3, Tab. 8), 10-12 (Fig. 4, Tabs 11-
13), 14 (Fig. 5, Tab. 15) and 17 (Fig. 6, Tab. 18). In the Castelmozzano Mb. of the Tizzano MtF (section 7, Fig. 3, Tab. 8), in the Rigolo Mb. of the Farini d'Olmo Flysch (sections 10, 12; Fig. 4; Tabs 11, 13), and in the marly-calcareous lithofacies of the Mt. Penice Flysch (section 17, Fig. 6, Tab. 18), the biohorizon top of *T. orthostylus* is not clearly delineated. Therefore in those sections we used the base of *C. crassus*, that occurs close to the top of *T. orthostylus*, to recognize Zone CNE5 (NP13/CP11 p.p.). The highest occurrence of *C. crassus* was detected in sections 10, 11, 14 and 17 (Tabs 11, 12, 15, 18), within Zone CNE7 (NP14 p.p./CP12a p.p.).

The genus *Chiasmolithus* was recorded in all the investigated sections, even though it is not always continuous and common. The most common species are *C. bidentis*, *C. californicus*, *C. consuetus*, *C. danicus*, *C. gigas*, *C. grandis*, *C. eogranius* *C. expansus*, *C. medius*, *C. solitus* and *C. titus*. *Chiasmolithus bidentis* occurs in sections 1, 3, 5, 6 (Fig. 3; Tabs 2, 4, 6-7), 9 (Fig. 4, Tab. 10), 13, 14a-b (Figs 5, 25; Tabs 14-15) and 17 (Fig. 6, Tab. 18), from Zone CNP6 (NP4/CP3) to Zone CNE4 (NP12/CP10-CP11 p.p.). *Chiasmolithus californicus* occurs in section 10 (Fig. 4; Tab. 11) from Zone CNE6 to Zone CNE7 (NP14 p.p./CP12a). *Chiasmolithus consuetus* occurs in sections 5-7 (Figs 3, 25; Tabs 6-8), 9, 10, 12 (Fig. 4; Tabs 10-11, 13), and 16 (Fig. 5; Tab. 17), from Zone CNP11 (NP9/CP8a) to Zone CNE11 (NP15 p.p./CP13b p.p.). *Chiasmolithus danicus* was recorded in sections 1b-4 (Figs 3, 10; Tabs 2-5), 8 and 9 (Fig. 4; Tabs 9-10), from Zone CNP4 (NP2 p.p.-NP3 p.p./CP1b p.p.-CP2 p.p.) to Zone CNP11 (NP9/CP8a). *Chiasmolithus gigas* is present only in section 10 (Figs 4, 15; Tab. 11), indicating the biostratigraphic interval CNE10-CNE11 (NP15 p.p./CP13a-CP13b) in the Carpadasco Mb. of the Farini d'Olmo Flysch. *Chiasmolithus grandis* is present in sections 7 (Fig. 3; Tab. 7), 9, 11 (Figs 4, 15; Tabs 10, 12), 13-16 (Fig. 5; Tabs 14-17) and 18 (Fig. 6; Tab. 18), with the highest number of specimens (20 on 5 mm²) in section 10 (Fig. 4, Tab. 11), from Zone CNE3 (NP10 p.p.-NP11/CP9a p.p.-CP9b) to Zone
CNE13 (NP16 p.p./CP14a p.p.). Chiasmolithus solutus occurs in sections 6, 7, 9, 10-17 (Figs 3, 4-6; Tabs 7-8, 10, 11-18), and 12 (with the highest number of specimens, i.e. 2 on 5 mm², Fig. 4; Tab. 13), from Zones CNE2 (NP10 p.p./CP9b p.p.-CP9a p.p.) to CNE13 (NP16 p.p./CP14a p.p.). Chiasmolithus cograndis, C. expansus, C. medius, and C. titus occur in sections 14-16 (Fig. 5; Tabs 15-17), from Zone CNE5 (NP13/CP11 p.p.) to Zone CNE11 (NP15 p.p./CP13b p.p.).

Several species of the genus Cruciplacolithus occur in the studied sections. Cruciplacolithus prismus is present in sections 1, 2 (Fig. 3; Tabs 2-3) and 8 (Fig. 4; Tab. 9), characterizing Zone CNP4 (NP3/CP2). Cruciplacolithus tenuis was recorded in sections 1b-4 (Fig. 3; Tabs 2-5), 8, 9 (Fig. 4; Tabs 9-10), 13, 14 (Fig. 5; Tabs 14-15) and 17 (Fig. 6; Tab. 18), from Zone CNP4 (NP3/CP2) to Zone CNE3 (NP10 p.p.-NP11/CP9a p.p.-CP9b). Cruciplacolithus asymmetricus occurs in sections 1b-3, 5 (Fig. 3; Tabs 2-4, 6, 9) and 8 (Fig. 4, Tab. 9), from Zone CNP4 (NP3/CP2) to Zone CNP11 (NP9/CP8a), and C. frequens occurs in sections 5, 6 (Fig. 3, Tabs 6-7), and 14 (Fig. 5, Tab. 15), from Zone CNP11 (NP9/CP8a) to Zone CNE4 (NP12/CP10-CP11 p.p.).

In the genus Ericsonia we recognized E. formosa, E. robusta, E. substictica and E. subpertusa. Ericsonia subpertusa is abundant and continuously present in sections 1b-6 (Fig. 3, 9, 11, 13; Tabs 2-7), 8-9 (Fig. 4; Tabs 9-10), and 14a (Figs 5, 20; Tab. 15) from Zone CNP4 (NP3/CP2) to Zone CNE4 (NP12/CP10-CP11 p.p.). Ericsonia formosa is common and continuously present in sections 6, 7 (Figs 3, 12; Tabs 7-8), 10-12 (Figs 4, 16; Tabs 11-13), 14b-16 (Figs 5, 21; Tabs 15-17) and 17 (Fig. 6, 25; Tab. 18), from Zone CNE4 (NP12/CP10-CP11 p.p.) to Zone CNE13 (NP16 p.p./CP14a p.p.). Ericsonia robusta occurs with ambiguous specimens (E. cf robusta) in sections 1-4 (Fig. 3; Tabs 2-5), 9 (Fig. 4; Tab. 10) and 13 (Fig. 5; Tab. 14). Ericsonia substictica is recorded as scarce in few samples of sections 6, 7 and 10-17 (Tabs 7-8 and 11-18).

The Noelaerabdaceae are represented by the genera Cyclicargolithus with the species C. floridanus, Dictyoococates with small elliptical forms (5 µm in diameter) labeled Dictyoococates sp. and Reticalofenestra, with the species R. dictyoda and R. umbilicas. These taxa are concomitantly present in sections 7 (Fig. 3, Tab. 8), 10-12 (Figs 4, 15; Tabs 11-13), 14b-16 (Figs 5, 21, 22, 23; Tabs 15-17), and 17 (Figs 6, 25; Tab. 18), show different abundances, with Cyclicargolithus that is the most abundant (up to 60% of the assemblage, Tab. 18), and Reticalofenestra, that is more abundant than.
Fig. 7b, Cen. Farno, Sporni and Panci Unit. Chronostratigraphic chart from Fig. 8. In grey zones that are not studied.

PALEOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>LATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP12</td>
<td>CP13c</td>
</tr>
<tr>
<td>CP9</td>
<td>CP01</td>
</tr>
<tr>
<td>NP06</td>
<td>NP07</td>
</tr>
<tr>
<td>NP05</td>
<td>NP04</td>
</tr>
<tr>
<td>CP08</td>
<td>CP07</td>
</tr>
<tr>
<td>CP05</td>
<td>CP04</td>
</tr>
<tr>
<td>CP02</td>
<td>CP03</td>
</tr>
</tbody>
</table>

EOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>MIDDLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNE12</td>
<td>CNE10</td>
<td>CP3a</td>
</tr>
<tr>
<td>CNE11</td>
<td>CNE09</td>
<td>CP09</td>
</tr>
<tr>
<td>CNE08</td>
<td>CNE07</td>
<td>CP08</td>
</tr>
<tr>
<td>CNE06</td>
<td>CNE05</td>
<td>CP07</td>
</tr>
<tr>
<td>CNE04</td>
<td>CNE03</td>
<td>CP06</td>
</tr>
<tr>
<td>CNE02</td>
<td>CNE01</td>
<td>CP05</td>
</tr>
</tbody>
</table>

PALEOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>LATE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP12</td>
<td>CP13c</td>
<td>Okada & Buky 1980</td>
</tr>
<tr>
<td>CP9</td>
<td>CP01</td>
<td>Martini 1971</td>
</tr>
<tr>
<td>NP06</td>
<td>NP07</td>
<td>Agnini et al. 2014</td>
</tr>
</tbody>
</table>

EOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>MIDDLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNE12</td>
<td>CNE10</td>
<td>Okada & Buky 1980</td>
</tr>
<tr>
<td>CNE11</td>
<td>CNE09</td>
<td>Martini 1971</td>
</tr>
<tr>
<td>CNE08</td>
<td>CNE07</td>
<td>Agnini et al. 2014</td>
</tr>
</tbody>
</table>

PALEOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>LATE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP12</td>
<td>CP13c</td>
<td>Thracocamphaeidae spp.</td>
</tr>
<tr>
<td>CP9</td>
<td>CP01</td>
<td>Oocystites pedogensis</td>
</tr>
<tr>
<td>NP06</td>
<td>NP07</td>
<td>Oocystites esparagelicaus</td>
</tr>
<tr>
<td>NP05</td>
<td>NP04</td>
<td>Oocystites crassus</td>
</tr>
<tr>
<td>CP08</td>
<td>CP07</td>
<td>Carpylophusia okla</td>
</tr>
<tr>
<td>CP05</td>
<td>CP04</td>
<td>Oocystites asymmetrix</td>
</tr>
<tr>
<td>CP02</td>
<td>CP03</td>
<td>Oocystites primus</td>
</tr>
<tr>
<td>CP01</td>
<td>CP02</td>
<td>Oocystites dierkis</td>
</tr>
<tr>
<td>CP08</td>
<td>CP07</td>
<td>Oocystites cardinalis</td>
</tr>
<tr>
<td>CP05</td>
<td>CP04</td>
<td>Oocystites secundus</td>
</tr>
<tr>
<td>CP02</td>
<td>CP03</td>
<td>Oocystites grandis</td>
</tr>
<tr>
<td>CP01</td>
<td>CP02</td>
<td>Oocystites unio</td>
</tr>
<tr>
<td>CP08</td>
<td>CP07</td>
<td>Oocystites dierkis</td>
</tr>
<tr>
<td>CP05</td>
<td>CP04</td>
<td>Oocystites cardinalis</td>
</tr>
<tr>
<td>CP02</td>
<td>CP03</td>
<td>Oocystites secundus</td>
</tr>
<tr>
<td>CP01</td>
<td>CP02</td>
<td>Oocystites grandis</td>
</tr>
<tr>
<td>CP08</td>
<td>CP07</td>
<td>Oocystites unio</td>
</tr>
<tr>
<td>CP05</td>
<td>CP04</td>
<td>Oocystites dierkis</td>
</tr>
<tr>
<td>CP02</td>
<td>CP03</td>
<td>Oocystites cardinalis</td>
</tr>
<tr>
<td>CP01</td>
<td>CP02</td>
<td>Oocystites secundus</td>
</tr>
</tbody>
</table>

EOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>MIDDLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNE12</td>
<td>CNE10</td>
<td>Thracocamphaeidae spp.</td>
</tr>
<tr>
<td>CNE11</td>
<td>CNE09</td>
<td>Oocystites pedogensis</td>
</tr>
<tr>
<td>CNE08</td>
<td>CNE07</td>
<td>Oocystites esparagelicaus</td>
</tr>
<tr>
<td>CNE06</td>
<td>CNE05</td>
<td>Oocystites crassus</td>
</tr>
<tr>
<td>CNE04</td>
<td>CNE03</td>
<td>Carpylophusia okla</td>
</tr>
<tr>
<td>CNE02</td>
<td>CNE01</td>
<td>Oocystites asymmetrix</td>
</tr>
<tr>
<td>CNE12</td>
<td>CNE10</td>
<td>Oocystites primus</td>
</tr>
<tr>
<td>CNE11</td>
<td>CNE09</td>
<td>Oocystites dierkis</td>
</tr>
<tr>
<td>CNE08</td>
<td>CNE07</td>
<td>Oocystites cardinalis</td>
</tr>
<tr>
<td>CNE06</td>
<td>CNE05</td>
<td>Oocystites secundus</td>
</tr>
<tr>
<td>CNE04</td>
<td>CNE03</td>
<td>Oocystites grandis</td>
</tr>
<tr>
<td>CNE02</td>
<td>CNE01</td>
<td>Oocystites unio</td>
</tr>
<tr>
<td>CNE12</td>
<td>CNE10</td>
<td>Oocystites dierkis</td>
</tr>
<tr>
<td>CNE11</td>
<td>CNE09</td>
<td>Oocystites cardinalis</td>
</tr>
<tr>
<td>CNE08</td>
<td>CNE07</td>
<td>Oocystites secundus</td>
</tr>
<tr>
<td>CNE06</td>
<td>CNE05</td>
<td>Oocystites grandis</td>
</tr>
<tr>
<td>CNE04</td>
<td>CNE03</td>
<td>Oocystites unio</td>
</tr>
<tr>
<td>CNE02</td>
<td>CNE01</td>
<td>Oocystites dierkis</td>
</tr>
<tr>
<td>CNE12</td>
<td>CNE10</td>
<td>Oocystites cardinalis</td>
</tr>
<tr>
<td>CNE11</td>
<td>CNE09</td>
<td>Oocystites secundus</td>
</tr>
<tr>
<td>CNE08</td>
<td>CNE07</td>
<td>Oocystites grandis</td>
</tr>
<tr>
<td>CNE06</td>
<td>CNE05</td>
<td>Oocystites unio</td>
</tr>
<tr>
<td>CNE04</td>
<td>CNE03</td>
<td>Oocystites dierkis</td>
</tr>
<tr>
<td>CNE02</td>
<td>CNE01</td>
<td>Oocystites cardinalis</td>
</tr>
</tbody>
</table>

PALEOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>LATE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP12</td>
<td>CP13c</td>
<td>Cen. Farno, Sporni and Panci Unit. Chronostratigraphic chart from Fig. 8. In grey zones that are not studied.</td>
</tr>
<tr>
<td>CP9</td>
<td>CP01</td>
<td>Martini 1971</td>
</tr>
<tr>
<td>NP06</td>
<td>NP07</td>
<td>Agnini et al. 2014</td>
</tr>
</tbody>
</table>

EOCENE

<table>
<thead>
<tr>
<th>EARLY</th>
<th>MIDDLE</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNE12</td>
<td>CNE10</td>
<td>Cen. Farno, Sporni and Panci Unit. Chronostratigraphic chart from Fig. 8. In grey zones that are not studied.</td>
</tr>
<tr>
<td>CNE11</td>
<td>CNE09</td>
<td>Martini 1971</td>
</tr>
<tr>
<td>CNE08</td>
<td>CNE07</td>
<td>Agnini et al. 2014</td>
</tr>
</tbody>
</table>
Dictyococcales. These three genera characterize the middle Ypresian-middle Lutetian assemblages, and suddenly occur from the upper part of Zone CNE4 (NP12/CP10) to Zone CNE13 (NP16 p.p./CP14a p.p.), that was recognized for the occurrence of specimens of *R. umbilicus* (sensu Backmann & Hermelin 1986).

The Prinsiaceae are present with the genera *Preprinsius, Prinsius, Toweius* and the species *Girgisia gamification*. The latter taxon occurs in sections 6, 7 (Figs 3, 12; Tabs 7-8, 9-12 (Figs 4, 14, 15, 16, 17; Tabs 10-13), 14b-15 (Figs 5, 21, 22; Tabs 15-16), and 17 (Figs 6, 25; Tab. 18) from Zone CNE3 (NP11/CP9b) to Zone CNE8 (NP14 p.p./CP12b).

The genus *Prinsius* comprises the species *P. bisulcus*, and *P. martini* that with *Preprinsius dimorphos* are commonly and continuously present in sections 1b-4 (Figs 3, 9, 10; Tabs 2-5) and 8 (Fig. 4, 13; Tab. 9), delineating Zones CNP4 (NP3 p.p./CP2 p.p.), CNP6 (NP4 p.p./CP3 p.p.) and CNP7 (NP4 p.p.-NP5 p.p./CP3 p.p.-CP4 p.p.), recognized in the Predalora Mb. of the Farnini d’Olmo Flysch (Case Poncini lithofacies, Fig. 4).

The genus *Toweius* includes the species *T. callosus*, *T. emiensis*, *T. magnicrassus*, *T. occitulus*, *T. pertusus*, *T. rotundus* *T. selandianus*, *T. serotinus*, and *T. tovae*. These species are present in sections 1b-6 (Figs 3, 9-12; Tabs 2-7), 9 (Figs 4, 14; Tab. 10), 13-14 (Figs 5, 18, 20; Tabs 14-15), and 17 (Figs 6, 25; Tab. 18), from Zone CNP6 (NP4 p.p./CP3 p.p.) to Zone CNE4 (NP12/CP10-CP11 p.p.). *Toweius callosus, T. rotundus* and *T. pertusus* display the highest abundances in sections 5, 9, 13, 14a and 17 (Figs 3, 4-6, 11, 14, 18, 20, 25; Tabs 6, 10, 14, 15, 18), from Zone CNP11 (NP9/CP8a) to Zone CNE3 (NP11/CP9b).

The Discoasteraceae were represented by many species (see Fig. 7b and the Taxonomic Appendix for the complete list) that were variably continuous and common throughout the studied sections. Diagenetic modification of the morphology often hampers the identification of some species, therefore the unidentified specimens were counted as *Discoaster* sp. and "star shaped *Discoaster* with terminal nodes", in the numerical tables. The recognized species characterize the assemblages of zones CNP11 (NP9/CP8a) to CNE13 (NP16 p.p./CP14a p.p.) (i.e. sections 5-7, Fig. 3, Tabs 6-8, sections 9-17, Figs 4-6, Tabs 10-18). The number of specimens varies from low number in section 5 (Figs 3, 11; Tab. 6) within Zone CNP11 (NP9/CP8a), to
hundreds in sections 10-12 (Figs 4, 15-17; Tabs 11-13) and 14-16 (Figs 5, 19, 21; Tabs 15-17) within Zone CNE5 (NP13/CP11 p.p.) to Zone CNE8 (NP14 p.p./CP12b). *Discaster multiradiatus*, the CNP11 (NP9/CP8a) marker, was recognized in the Folgheto lithofacies of the Tizziano Marl in section 5 (Figs 3, 11; Tab. 6), the Predalbora Mb. of the Parini d’Olmo Flysch in section 9 (Figs 4, 14; Tab. 10), the Brugnara Mb. of the Mt. Sporno Flysch in section 13 (Figs 5, 18; Tab. 14) and the pelitic-arenaceous lithofacies of the Mt. Penice Flysch in section 17 (Fig. 6, Tab. 18). The species *D. delicatus*, *D. falcatus*, *D. lenticularis*, *D. mohleri*, *D. megastymus*, *D. nobilis*, *D. salisburgensis* occur in sections 5 (Fig. 3, Tabs 6), 9 (Fig. 4, Tab. 10), 13 (Fig. 5, Tab. 14) and 17 (Fig. 6, Tab. 18), within Zone CNP11 (NP9/CP8a). Zone CNE2 (NP10/CP9 p.p.) is recognized by the first specimens of *D. distylypus* in sections 13, 14a (Figs 5, 18-19; Tabs 14-15) and 17 (Figs 6, 24; Tab. 18), in the Brugnara Mb. of the Mt. Sporno Flysch (Fig. 5, Tab. 15) and in the Mt. Penice Flysch (Fig. 6, Tab. 18). The appearance of *D. lodoensis* in section 6 (Figs 3, 12; Tab. 7), 14a (Figs 5, 19; Tab. 15), and 17 (Figs 6, 24; Tab. 18) indicates Zone CNE4 (NP12/CP10-CNP11 p.p.) in the Castelmuzzo Mb. of the Tizziano Marl, in the Armorano Mb. of Mt. Sporno Flysch and in the marly-calcareous lithofacies of the Mt. Penice Flysch. *Discaster sublodoensis* was difficult to recognize due to poor preservation of the rare broken specimens encountered. In
some cases, the appearance of the species was indirectly established by the presence of specimens recognized as *D. cf. subloensis* (Tabs 11-12). Therefore Zone CNE6 (NP14 p.p./CP12a p.p.) was recognized on the occurrence of *D. cf. subloensis* in sections 10-12 (Figs 4, 15-17; Tabs 11-13), 14b, 15 (Fig. 5, 21-22; Tabs 15-16) and 17 (Figs 6, 24; Tab. 18), in the Rigolo Mb. of the Farini d’Olmo Flysch, the Armorano Mb. of the Mt. Sporno Flysch and the marly-calcareous lithofacies of the Mt. Penice Flysch.

The genus *Sphenolithus* is common and continuous in most of the investigated sections. The occurrence of the first specimen of *S. panus* and *S. moriformis*, lumped together in the *S. moriformis* group in sections 1b, 2 (Figs 3, 9-12; Tabs 2-3), indicates Zone CNP6 (NP4 p.p./CP3 p.p.), in the Bersatico lithofacies of the Tizzano Marl. *Sphenolithus radians* was recorded in the sections 6, 7 (Figs 3, 12; Tabs 7-8) and 10-17 (Figs 5-6, 18, 20; Tabs 11-18). Its lowest occurrence ranges from Zone CNE1 (NP10 p.p./CP8a) in section 9 (Fig. 4, Tab. 10) to Zone CNE2 (NP10 p.p./CP8b p.p.-CP9a p.p.) in section 14 (Fig. 5, Tab. 15). In section 17 (Fig. 6, Tab. 18), the first specimens of *S. radians* were observed in the lower part of Zone CNE3 (NP10 p.p.-NP11/CP9a p.p.-CP9b). The presence of *Sphenolithus spiniger* in sections 10-12 (Fig. 4, Tabs 11-13), 15 and 16 (Fig. 5, Tabs 16-17), indicates Zone CNE7 (NP14 p.p./CP12b) to Zone CNE13 (NP16 p.p./CP14a p.p.). *Sphenolithus furcato-
lithoides has been observed in section 10 (Figs 4, 15; Tab. 11) from Zone CNE7 (NP14 p.p./CP12b) to Zone CNE13 (NP16 p.p./CP14a p.p.). Other subordinate species of Sphenolithus are *S. editus* (i.e. Tabs 7, 10, 13–15, 18; sections 6, 9, 12–14; Figs 3–5), *S. conspicuus* (i.e. Tabs 7, 10, 13; sections 6, 9, 12), and *S. vallae* (i.e. Tabs 7, 10, 14–15, 18; sections 6, 9, 13–14, 17; Figs 3–5).

The genus *Fasciculithus* occurs in sections 1b, 3 and 4 (Fig. 3; Tabs 2, 4–5) with the species *F. bicurtus*, *F. jani*, *F. magniscordasi*, *F. magnus*, *F. pileatus*, *F. tympaniformis* and *F. ulsi*, within Zone CNP7 (NP4 p.p.–NP5 p.p./CP3 p.p.–CP4 p.p.) *Fasciculithus ulsi* indicates Zone CNP7 (NP4 p.p.–NP5 p.p./CP3 p.p.–CP4 p.p.) in section 1b (Figs 3, 9; Tab. 2), in the Bersatico lithofacies of the Tizzano Marl. The presence of other *Fasciculithus* (*F. alani*, *F. aurivacae*, *F. clinitus*, *F. lillianae*, *F. richardii*, *F. shaubi*, *F. thomasi* and *F. toni*) in sections 5 (Fig. 6, Tab. 6), 9 (Fig. 8, Tab. 10), 13 (Fig. 5, Tab. 14) and 17 (Fig. 6, Tab. 18), indicates Zone CNP11 (NP9/CP8a). The top of this zone is marked by the LCO of *Fasciculithus* spp., corresponding to the top of *F. richardii* group in sections 5 (Figs 3, 11; Tab. 6), 13 (Figs 5, 18; Tab. 14), 17 (Figs 6, 24; Tab. 18), within the Folgheto lithofacies of the Tizzano Marl, the Rigolo Mb. of the Farini d’Olmo Flysch, the Brugnara Mb. of the Mt. Sporno Flysch and the pelitic-arenaceous lithofacies of the Mt. Penice Flysch, with zones CNE1–CNE2 (NP10 p.p./CP8b–CP9a p.p.) above.

The genus *Trirarchia* includes the species *T. bramleti*, *T. contortus*, *T. digitalis* and *T. orthostylus*. The first three species are generally rare (i.e. sections 13, 17; Figs 5–6; Tabs 14, 18), except for section 14a (Figs 5, 22; Tab. 15), in which they are common; specimens with intermediate morphologic features are also present.
Fig. 15 - Section 10. Abundance patterns of selected calcareous nannofossil recovered in the Rigolo and Carpadaso Members (Farini d’Olmo Flysch), species plotted against lithostratigraphy and biostratigraphy. Dot = Sample, Star = Barren sample.

Fig. 16 - Section 11. Abundance patterns of selected calcareous nannofossil recovered in the Rigolo Member (Farini d’Olmo Flysch), species plotted against lithostratigraphy and biostratigraphy. Dot = Sample, Star = Barren sample.

Fig. 17 - Section 12. Abundance patterns of selected calcareous nannofossil recovered in the Brugnara Member (Mt. Sporno Flysch), species plotted against lithostratigraphy and biostratigraphy. Dot = Sample, Star = Barren sample.

Fig. 18 - Section 13. Abundance patterns of selected calcareous nannofossil recovered in the Brugnara Member (Mt. Sporno Flysch), species plotted against lithostratigraphy and biostratigraphy. Dot = Sample, Star = Barren sample.

(Section 14a; Figs 5, 22; Tab. 15). *Tribrachatus orthostylus* occurs in section 6, 7 (Figs 3, 12; Tabs 7-8), 10, 12 (Figs 4, 18; Tabs 11,13), 14a (Figs 5, 19; Tab. 15) and 17 (Figs 6, 24; Tab. 18) and is very common (up to 60 specimens on 5 mm²) in section 9 (Figs 4, 14; Tab. 10). Its occurrence indicates Zone CNE3 (NP10 p.p.-NP11/CP9a p.p.-CP9b) in sections 7 (Fig. 3, Tab. 8), 9 (Figs 4, 14; Tab. 10) and 14a (Figs 5, 19; Tab. 15), namely in the Rigolo Mb. of the Farini d’Olmo Flysch, the Brugnara Mb. of the Mt. Sporno Flysch and the
marly-calcareous lithofacies of the Mt. Penice Flysch. The LO of *T. orthostylus* is, instead, useless for biostratigraphic classification, due to the reworking of the taxon repeatedly observed in sections 7 (Fig. 3, Tab. 8), 10, 12 (Fig. 4, Tabs 11, 13) and 16 (Fig. 5, Tab. 17).

The genus *Nammutetina* includes *N. cristata* and *N. fulgida*. *Nammutetina cristata* is present in sections 10 (Figs 4, 15; Tab. 11), 15, 16 (Figs 5, 22, 23; Tabs 16-17) and 17 (Figs 6, 24; Tab. 18), placing the Carpadasco Mb. of the Farini d’Olmo Flysch, the Calestanco Mb. of the Mt. Sporno Flysch and the marly-calcareous lithofacies of the Mt. Penice Flysch in Zone CNE8 (NP14 p.p./CP12b). *Nammutetina alata* occurs only in section 10 (Figs 4, 15; Tab. 11).

The genus *Thoracosphaera* has been recorded with the highest percentage (10%) in section 1a (Fig. 3, Tab. 2), and allows us to place the lowermost part of the Tizzano Marl, above the Cretaceous Mt. Caio Flysch within Zone CPN1. Forms of *Thoracosphaera* continuously occur in the lower Paleocene sections 1b-4 (Figs 3, 9-10; Tabs 2-5) of the Tizzano Marl, and 8 (Figs 4, 13; Tab. 9) of the Farini d’Olmo Flysch. In most of the other sections *Thoracosphaera* is rare and discontinuous in the interval from Zone CPN11 (NP9/CP8a) to Zone CNE8 (NP14 p.p./CP12b) (i.e. sections 6-7, Fig. 3, Tabs 7-8; sections 10-11, Fig. 4, Tabs 9-10; section 14, Fig. 5, Tab. 15; section 17, Fig. 6, Tab. 18).

The genus *Ellipsolithus*, with the species *E. bollii*, *E. distichus* and *E. macellus*, occurs as rare and scattered in sections 4-6 (Fig. 3, Tabs 5-7), and more common and continuous in sections 9 (Fig. 4, Tab. 10), 13 and 14a (Figs 5, 20; Tab. 14-15), in intervals corresponding to Zone CNE7 (NP4 p.p.-NP5 p.p./CP3 p.p.-CP4 p.p.) up to Zone CNE4 (NP12/CP10 p.p.)

The genus *Helicosphaera* is represented by rare and sporadic specimens of *H. lobota* (i.e. sections 7, 10-12, 14-16, 17; Figs 3-6; Tabs 8, 11-13, 15-17, 18) and of *H. seminulum* (sections 10-12, 14-16; Figs 4-5; Tabs 11-13, 15-17), from Zone CNE5 (NP13/CP11 p.p.) to Zone CNE13 (NP16 p.p./CP14a p.p.). *Helicosphaera salobreasa* occurs in section 10 (Fig. 4, Tab. 11), from Zone CNE11 (NP15 p.p./CP13 p.p.) to Zone CNE12 (NP15 p.p.-NP16 p.p./CP13c). *H. bramlettei*, *H. dice* and *H. reticulata* are present in sections 10 (Fig. 4, Tab. 11), in Zone CNE13 (NP16 p.p./CP14a p.p.).

The genus *Rhombosphaerula* with *R. cuspis* was recorded in section 17 (Fig. 6, Tab. 18).

The genus *Rhabdosphaerula* is present in sections 10, 12 (Fig. 4, Tabs 11, 13), 15 and 16 (Fig. 5, Tabs 16-17). The marker species *R. inflata* has been observed only in sections 15 and 16 (Fig. 5, 23; Tabs 16-17) and delineates Zone CNE8 (NP14 p.p./CP12b). *Blackites spinosus* is present in section 15 (Fig. 5, Tab. 16) indicating the interval from Zone CNE6 (NP14 p.p./CP12a p.p.) to Zone CNE8 (NP14 p.p./CP12).

The Zygodiscaceae are represented by the genera *Chypragmalithus*, *Lophodolithus*, *Neochasmozygus* and *Neoecococites*, that discontinuously occur in the studied sections (i.e. sections 10, 14, 15, 16; Figs 4-5; Tabs 11, 15, 16-17).

The Holococcoliths include the taxa *Lanternites minutus* and *L. simplex*, *Semibololithus biskayae* and *Zygbrabolithus bijugatus*. *Lanternites minutus* and *L. simplex* are present in section 13 (Fig. 5, Tab. 14), from Zone CPN11 to Zone CNE3 (NP10 p.p.-NP11 (CP9a p.p.-CP9b p.p.) in the Mt. Sporno Flysch. *Semibololithus biskayae* is present in section 9 (Fig. 4, Tab. 10) and characterizes Zone CPN11 (NP9/CP8a) in the Pedalbora Mb. of the Farini d’Olmo Flysch. *Zygbrabolithus bijugatus*, the most common species of holococcoliths (Figs 12, 15, 20, 25), ranges from the uppermost part of Zone CPN11 (NP9/CP8a) in section 9 (Fig. 4, Tab. 10), up to Zone CNE13 (NP16 p.p./CP14a p.p.) in section 10 (Fig. 4, Tab. 11).

A peculiar presence of *Calciosolenia aperta* has been recorded in section 13 (Fig. 5, Tab. 14) with 18% of specimens in the observed assemblage (in sample BO1079), in the Brugnara Mb. of the Mt. Sporno Flysch. This occurrence marks the uppermost part of Zone CPN11 (NP9/CP8a).

Other taxa that are discontinuously present with very low percentages include *Braurudosphaera bigelowii* (i.e. sections 1, 2, 4, 8, 14; Figs 3-5; Tabs 2, 3, 5, 9, 15), *Markalius inversus* and *M. apertus* (i.e. sections 2, 3,
Section 14a. Abundance patterns of selected calcareous nannofossils recovered in the Brugnara and Armorano Members (Mt. Sporno Flysch), species plotted against lithostratigraphy and biostratigraphy. Dot = Sample.

Section 14b. Abundance patterns of selected calcareous nannofossils recovered in the Armorano Member (Mt. Sporno Flysch), species plotted against lithostratigraphy and biostratigraphy. Dot = Sample.

Section 15. Abundance patterns of selected calcareous nannofossil recovered in the Calestano Member (Mt. Sporno Flysch), species plotted against lithostratigraphy and biostratigraphy. Dot = Sample, Star = Barren sample.

8, 9; Figs 3-4; Tabs 3, 4, 9, 10), *Pontosphaera* (i.e. sections 9, 16; Tabs 10, 17) and very rare *Scapholithus rhombiformis* (section 9; Fig. 4; Tab 10).

Biostratigraphy and dating

As reported in Fig. 26, we recognized 15 on 18 biozones of Aghini et al. (2014), 8 on 12 biozones of Martini (1971) and 12 on 17 bio-zones/subzones of Okada & Bukry (1985).

The biozones of Aghini et al. (2014), as reported in the follow, were recognized on events that occur in the successions of Caio, Fanzini, Sporno and Penice Units, and allow an accurate dating of the early Paleocene-middle Eocene "Tertiary Flysch Asctt.".

The early Danian CNP1 Zone was recognized on the common occurrence of *Thoracosphaera* (Tab. 2), in assemblage with abundant reworked Cretaceous specimens. The Danian CNP4 Zone was identified on the presence of *P. martini* (Fig. 13). The late Danian CNP6 Zone was recognized on the occurrence of *S. monformis* group (Fig. 10). The Selandian CNP7 Zone was recognized on the occurrence of *F. ulii* (Fig. 9). The Thanetian CNP11 Zone was easily recognized on the occurrence of *D. multiradiatus* and common *Fasciculithus* spp. (Figs 11, 14, 18). The earliest Ypresian CNE1 Zone was identified on the sharply decrease in abundance of *Fasciculithus* sp., as *F. tympaniformis* was not clearly identified (Fig. 14). The early Ypresian CNE2 Zone was recognized on the occurrence of *D. diastypus* and *T. digitalis*.
(Figs 18, 19; Tabs 14, 15a) or on the disappearance of *Fasciculithus* (Fig. 11). The Ypresian CNE3 Zone was recognized on the occurrence of *T. orthostylus* (Figs 14, 18, 19, 24). The middle Ypresian CNE4 Zone, was recognized on the occurrence of *D. lodoensis* (Figs 12, 15, 20, 24). The resolution of Zone CNE4 was increased by the appearance of *R. dictyoda*, *Dictyococites* and *C. floridanus* (Figs 21, 25). The late Ypresian CNE5 Zone was identified on the disappearance of *T. orthostylus* only in section 14b (Fig. 21). In other sections, the ambiguous behaviour of this species, that rarely occurs (Tab. 18) or unexpectedly reappears above its "normal" stratigraphic range (Figs 15; Tabs 12, 13, 16, 17), led us to use the occurrence of *C. crassus* to recognize Zone CNE5 (Figs 15, 16, 17, 24). The earliest Lutetian CNE6 Zone was recognized on the occurrence of *D. sublodoensis* (Fig. 17) and gathered with Zone CNE7, because *D. lodoensis*, the marker of Zone CNE7, persists above its normal range (Figs 15, 16, 21, 22, 24). The early Lutetian CNE8 Zone was recognized on the oc-
occurrence of *N. cristata* (Figs 16, 22, 23, 24), and the appearance of *R. inflata* improves (Fig. 23) the resolution of the zone. The middle Lutetian CNE10 and CNE11 Zones were assembled as *S. curiculus* was not recorded, on the contrary we easily recognized *S. furcatolithoides* that could replace *S. curiculus*. This interval was determined on the total range of *C. gigas* (Fig. 15). The lattermost Lutetian CNE12 and CNE13 Zones were recognized using the first rare and scattered occurrence of *R. umbilicus* (Fig. 15).

On the contrary the biozones of Martini (1971) and Okada & Bukry (1980) are not always applicable for the dating of the "Tertiary Flysch Auctt.". For example, *E. macellus*, marker for Zone NP3/NP4 and Zone CP2/CP3 boundary, is rare and scattered (i.e. Tabs 2b, 5, 6). *Fasciculithus tymaniformis*, marker for Zone
NP4/NP5 and Zone CP3/CP4 boundary, is discontinuous in its initial range and less reliable than F. ulii (i.e., Tabs 4-5). *Tribrachius bramlettii*, marker for Zone NP9/NP10 boundary, has a sporadic distribution (Tabs 14-15a), and *C. eodela*, marker for Zone CP8a/CP8b boundary, was not recorded. *Tribrachius contortus*, marker for Zone NP10/NP11 and Zone CP9a/CP9b boundary, is discontinuous and rare in its final range (Fig. 20). *Rabdospheera inflata*, marker for Zone CP11/CP12a boundary, is rare (Tab. 16) or not recorded in the early Lutetian sections, excluding section 16 (Fig. 23), and *N. alata*, marker for Zone NP14/NP15 and Zone CP12b/CP13a boundary, co-occurs with *N. cristata* (Fig. 15), or was not recorded.

Taking into account the reconstructed lithostratigraphic framework, the dating of the successions investigated in this study (Figs 3-6), and the dating reported in literature (Tab. 1), the ages of the "Tertiary Flysch Awdt." are described below and summarized in Figure 27.

In the uppermost part of the Mt. Caio Flysch we recorded Zone CNP1, that corresponds to the *Briolithus sparsus* Zone of Romein (1979), to which Rio et al. (1983) ascribed the Mt. Caio Flysch. In the Bersatico-Folgheto Mb. of the Mt. Caio Unit we recognized Zones CNP6, CNP7, CNP11 and CNE2, that confirm and improve ages previously assigned to Zones NP2, NP5 to NP7 and NP9 by Cerrina Feroni et al. (1991). In the Castelmazzano Mb. we recorded Zones CNE4 and CNE5, that improve the ages assigned to Zones NP10 and NP14 by Cerrina Feroni et al. (1991).

We dated the lower part of the Predalbora Mb. of the Farini Unit to Zone CNP4, and the upper part to Zone CNP11. In this member Rio & Archilli, (1980), Ottria (1997), Martini & Zanuzzo (2002) recognized Zones NP1 to NP10. In the Rigolo Mb. we documented Zones CNE1 to CNE8, that agree with ages ascribed to Zones NP10 to NP14 by Rio & Archilli (1982) and Martini & Zanuzzo (2002). In the Carpadasco Mb. we recognized Zones CNE10 to CNE13, that improve the age assigned to Zone NP15 by Rio & Archilli (1980) and Martini & Zanuzzo (2000).

In the uppermost part of the Rio Brugnara Mb. of the Mt. Sporno Unit, we recognized Zones CNP11, CNE2 and CNE3 that improve the ages previously assigned to Zones NP7 and NP9 by Cerrina Feroni et al. (1991). In the overlying Armorano Mb. we recognized Zones CNE3, CNE4 and CNE6-CNE7, that confirm the ages referable to Zones NP10 to NP14, documented in Rio (1987) and Cerrina Feroni et al. (1991). In the Calestano Mb. we recorded Zone CNE8 on the occurrence of *N. cristata* that was also used by Rio (1987) and Cerrina Feroni et al. (1991) to identify Zone NP15. We also documented for the first time a succession of zones, from CNP11 to CNE 8, for the Mt. Penice Flysch. In particular, Zones CNP11 to CNE2 were recorded in the pelitic-arenaceous lithofacies, and Zones CNE3 to CNE8 were recorded in the marly-calcareous lithofacies.

Conclusions

This study is part of a multidisciplinary work aimed at constraining the tectono-sedimentary evolution of the External Ligurides of the Northern Apennines, and reconstructing the geodynamic evolution of the External Ligurian domain, a key sector of the Western Tethys, located between the Ligurian-Piedmont ocean and the continental margin of the Adriatic Plate. Our effort focused on refining the biostratigraphy and the chronostratigraphy of the Northern Apennines "Tertiary Flysch Awdt." (External Ligurides). Although the sampled sedimentary record was fragmented, the recovered rich calcareous nanofossils assemblages allowed us to recognize most of the Paleocene-middle Eocene events proposed by Agnini et al. (2014).

From the early Paleocene to the middle Eocene we used the following primary events: Base *Prismsus martinii*, Base *Sphenolithus moriformis* group, Base *Fasciculithus ulii*, Base *Discoaster multiradiatus*, Base *Tribrachius orthostylus*, Base *Discoaster lodoensis*, Top *Tribrachius orthostylus*, Base *Discoaster sublodoensis*, Base *Namnetetrima cristata*, Base and Top *Chiasmolithus gigas*, and Base *Reticulofenestra umbilicus*. Taking into account the features of the studied assemblages, we substituted the Top *Fasciculithus richardii* group with the Top common *Fasciculithus* and the Top *Fasciculithus tymaniformis* with the Top *Fasciculithus*.

We also used some additional events: common occurrence of *Thoracosphaera* to identify Zone CNP1, Base *Discoaster diastypus* to identify Zone CNE2, and Base *Coccolithus crassus* to identify Zone CNE5. In addition, the appearance of the genera *Dictyococcales*, *Reticulofenestra* and *Cidyargolithus*, the appearance of *Rabdospheera inflata* and the occurrence of *Sphenolithus furcatolitoides* seems useful to increase the biostratigraphic resolution of the late Ypresian-early Lutetian time span. On the contrary, we had to group Zones CNE6 and CNE7, as Top of *Discoaster lodoensis* revealed biostratigraphic problem, and we also grouped Zones CNE10 and CNE11, as *Sphenolithus curvisculus* was not recognized in the assemblages.

The features of the assemblages investigated in this study and the recognized markers refined the biostratigraphic and chronostratigraphic frame of the Paleocene-middle Eocene formations of the Caio, Farini, Sporno and Penice Units, that belong to the "Tertiary Flysch Awdt.". In the Caio Unit Zones CNP6 and CNP7 partially covered the gap between Zones NP2 and NP5, and Zones CNE2 to CNE5 close the gap.
between Zones NP9 and NP14. Zone CNE13 recorded at the top of the Carpadasco Mb. provided age younger than that previously recorded for the Farini Unit, and Zones CNP11 to CNE8 recognized in the Penice Unit, allowed a correlation of this unit with the “Tertiary Flysch Auct.”

Appendix

Taxonomic list

- **Blackites** Hay and Towe, 1962
- *Braaspholidiida* Dellandré, 1947
- *B. bigelowi* (Gran and Braarud, 1935) Dellandré, 1947
- *Calcisolenia* Kampsner, 1950
- *C. protosolenia* (Gartner, 1971) Loeblach & Tapan, 1978
- *Calcisolenia* Gran, 1912
- *C. aperia* (Hay and Mohler, 1967) Bown, 2005
- *Campylophidium* Kampsner, 1965
- *Chiasmodolites* Hay Mohler and Wade, 1966
- *Californicites* (Sullivan, 1964) Hay and Mohler, 1967
- *Conoides* (Brentzen, 1959) Hay and Mohler, 1967
- *C. elongatus* Perch-Nielsen, 1971
- *C. medius* Perch-Nielsen, 1971
- *C. tenuis* Gartner, 1970
- *Chisphragmalites* Bramlette and Sullivan, 1961
- *Coccolithus* Schwarz, 1984
- *C. crassi* Bramlette and Sullivan, 1961
- *C. explegicus* (Bramlette and Riedel, 1956) Bramlette and Sullivan, 1961
- *C. pelagicus* Schröder, 1950
- *Crassiovalvula* Hay and Mohler in Hay et al., 1967
- *C. asymmetrica* van Heck & Prins, 1987
- *C. primus* Perch-Nielsen, 1977
- *C. tenus* (Stradner, 1961) Hay and Mohler in Hay et al., 1967
- *Cyclusiscolithus* Bukry, 1971
- *C. floridanus* (Roth and Hay in Hay et al., 1967) Bukry, 1971
- *Dictyocystites* Black, 1967
- *Discocystites* Tan Sin Hok, 1927
- *D. arvensis* Bukry, 1971
- *D. basiliensis* Tan Sin Hok, 1927
- *D. binodosa* Martini, 1958
- *D. crassifrons* Martini, 1958
- *D. deflandrei* Bramlette and Riedel, 1956
- *D. dehiscens* Bramlette and Sullivan, 1961
- *D. discontinuus* Martini, 1958
- *D. geminifer* Stradner, 1961
- *D. kweppe* Stradner, 1959
- *D. lenticularis* Bramlette and Sullivan, 1961
- *D. lodensis* Bramlette and Riedel, 1954
- *D. mammatus* Stradner, 1959
- *D. medius* Bramlette and Sullivan, 1961
- *D. megastigmu* Bramlette and Sullivan, 1961
- *D. mirus* Dellandre in Dellandré and Fert, 1954
- *D. molleri* Bukry and Percival, 1971
- *D. multiradiatus* Bramlette and Riedel, 1954
- *D. mubli* Martini, 1961
- *D. nonaradiatus* Klump, 1953
- *D. spinaenensis* Bramlette and Riedel, 1954
- *D. sulcitigenus* Stradner, 1961
- *D. septemradiatus* (Klumo, 1953) Martini, 1958
- *D. striatus* Stradner, 1961
- *D. subbifurcatum* Bramlette and Sullivan, 1961
- *Elliposolenia* Sullivan, 1964
- *E. bohni* Perch-Nielsen, 1977
- *E. macules* (Bramlette and Sullivan, 1961) Sullivan, 1964
- *Eupitonia* Black, 1964
- *E. formosa* (Kampsner, 1965) Haq, 1971
- *E. subradiata* (Roth and Hay in et al., 1967) Roth in Baumann and Roth, 1969
- *E. subquadrata* Hay and Mohler, 1967
- *Favosiculites* Bramlette and Sullivan, 1961
- *F. alani* Perch-Nielsen, 1971
- *F. andersiei* Haq and Aubry, 1981
- *F. biradiatus* Romein, 1979
- *F. buki* Perch-Nielsen, 1971
- *F. clavatus* Bukry, 1971
- *F. inovolucrus* Bramlette and Sullivan, 1961
- *F. janii* Perch-Nielsen, 1971
- *F. lakanias* Perch-Nielsen, 1971
- *F. magnicordia* Romein, 1979
- *F. magus* Bukry and Percival, 1971
- *F. pleistatus* Bukry, 1973
- *F. richardii* Perch-Nielsen, 1971
- *F. shaukii* Hay and Mohler, 1967
- *F. sideresus* Bybell and Self-Trall, 1995
- *F. thomasi* Perch-Nielsen, 1971
- *F. torus* Perch-Nielsen, 1971
- *F. tenuisformis* Hay and Mohler in Hay Mohler et al., 1967
- *F. uli* Perch-Nielsen, 1971
- *Girginia* Varol, 1989
- *G. gammonatia* Bramlette and Sullivan, 1961
- *Heliosphora* Kampsner, 1954
- *H. bramletti* Muller, 1970
- *H. densus* Perch-Nielsen, 1971
- *H. lophata* Bramlette and Sullivan, 1961
- *H. reticulata* Bramlette and Wilcoxson, 1967
- *H. saebrosa* Perch-Nielsen, 1971
- *H. seminulum* Bramlette and Sullivan, 1961
- *Lanternidium* Stradner, 1962
- *L. minutum* Stradner, 1962
- *L. simplex* Bown, 2005
- *Lopodolithus* Dellandre in Dellandre and Fert, 1954
- *L. nascens* Bramlette and Sullivan, 1961
- *Makaulius* Bramlette and Martini, 1964
- *M. apertus* Perch-Nielsen, 1979
- *M. inversus* (Bramlette in Dellandre and Fert, 1954) Bramlette and Martini, 1964
- *Nannolitrum* Achuthan and Stradner, 1969
- *N. cristata* (Martini 1958) Perch-Nielsen, 1971
- *Neochiastosigma* Perch-Nielsen, 1971
- *N. modestus* Perch-Nielsen, 1971
- *N. perfectus* Perch-Nielsen, 1971
REFERENCES

