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ABSTRACT 

Background: Recently, in the context of randomized trials, a measure on the difference scale called the net benefit 
was developed for survival analysis. As this measure does not require the assumption of proportional hazards, it is an 
attractive new measure of the treatment effect to apply instead of the hazard ratio calculated under this assumption. 
However, no method for estimating it has been presented in observational studies. Therefore, we describe a simple 
method to estimate the net benefit adjusted for confounding.
Methods: We reviewed a method for estimating the net benefit in a randomized trial and extended it to a method 
that adjusts for confounding using inverse probability of treatment weights.
Results: We performed Monte Carlo simulations to test the performance of our method. The results show that our 
method estimated adjusted net benefits in an unbiased manner regardless of whether the assumption of proportional 
hazards held. In addition, we illustrated our method using data from an observational study evaluating disease-free 
survival of Ewing’s sarcoma patients. Our method yielded an adjusted net benefit of –0.032, whereas an existing 
method, used to analyze data from randomized trials, yielded an unadjusted net benefit of 0.284.
Conclusions: In observational studies with a time-to-event outcome, the net benefit adjusted for confounding can 
readily be estimated using inverse probability of treatment weights.
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INTRODUCTION

In studies involving a time-to-event outcome, the 
treatment effect is usually reported as a hazard ratio (HR), 

which is calculated using the proportional hazard model 
under the assumption of proportional hazards, under which 
HR is constant over time. However, if the assumption is 
violated, the estimated HR is no longer a reliable measure 
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of the treatment effect because the actual HR changes over 
time. Therefore, several alternatives to the HR have been 
discussed [1]. Recently, a measure called the net benefit 
was developed [2]. As this measure does not require 
the proportional hazards assumption, it is an attractive 
new measure instead of the HR. The net benefit is also 
sometimes termed “the net chance of a longer survival” 
and is defined as the probability that a random patient in 
the treatment group survives longer than a random control 
patient minus the probability of the opposite situation [3]. 
This directly addresses the net chance of surviving longer 
with the treatment than without it.

In randomized trials, the net benefit can readily be 
estimated without making any assumptions, including 
the assumption of proportional hazards, and it has been 
discussed from both theoretical and practical perspectives 
[1-6]. However, no method for estimating it has been 
presented in observational studies. Therefore, we describe 
a simple method for estimating the net benefit adjusted for 
confounding by applying the inverse probability weight 
(IPW). We perform Monte Carlo simulations to test the 
performance of our method, and illustrate it using data 
from an observational study evaluating disease-free survival 
of Ewing’s sarcoma patients.

METHODS

First, we review a method for estimating the net benefit 
in randomized trials. Next, we extend this to a method for 
estimating the net benefit adjusted for confounding in 
observational studies.

Randomized trials

We assume that the numbers of patients in the 
treatment and control groups are n1 and n0, respectively. 
We denote xi=min(xi

0,ui) as the observable value of the 
time-to-event outcome for individual i (i=1,...,n1) in the 
treatment group, where xi

0 denotes the survival time and 
ui the censoring time. Here, we discuss only the case of 
right censoring. Similarly, we denote yj=

 min(yj
0,vj)

 as the 
observable value of the time-to-event outcome for individual 
j (j=1,...,n0) in the control group, where yj

0 denotes the 
survival time and vj the censoring time.

Let us define the censoring indicators as τi (τi =1 if 
xi=xi

0, and τi=0 if xi=ui) in the treatment group and ηj 
(ηj=1 if yj=yj

0, and ηj =0 if yj=vj) in the control group. 
Let us further define a pairwise scoring indicator for the 
pair formed by individual i in the treatment group and 
individual j in the control group as sij. The value of sij is 
defined as in Table 1 [2, 6]. In Table 1, sij =1 implies 
that the survival time of individual i is longer than that of 
individual j. Conversely, sij = --1 implies that the survival 
time of individual i is shorter than that of individual j. 
(τi,ηj)=(1,1) implies that both survival times of individuals 
j and i were observed. Therefore, sij=0 in the cell with 
(τj,ηj) =(1,1) and xi=yj implies that the survival times of 
individuals j and i are equal. However, sij=0 in the other 
cells implies that it is not clear whether the survival time 
of individual i is longer than that of individual j, because 
the follow-up of both or either individual i and/or j 
was censored. This situation is sometimes referred to as 
uninformative or neutral [6].

Using indicator Iij (Iij =1 if sij=1, and Iij =0 otherwise), 
the number of pairs in which a random patient in the 
treatment group survives longer than a random control 
patient can be expressed as , whereas 
the total number of pairs can be expressed as n1xn0. 
Therefore, the probability that a random patient in the 
treatment group survives longer than a random control 
patient, p1, is estimated as

Similarly, using indicator Jij (Jij=1 if sij= --1, and Jij=0 
otherwise), the probability that a random patient in the 
control group survives longer than a random treatment 
patient (i.e., the opposite situation), p0, is estimated as

Consequently, the net benefit, δ, is estimated as

which is interpreted as a 100xδ (%) greater net chance of 

TABLE 1. Value of the pairwise scoring indicator sij in a randomized trial

(τi, ηj) xi>yj xi<yj xi=yj

(1, 1) 1 –1 0

(1, 0) 0 –1 0

(0, 1) 1 0 0

(0, 0) 0 0 0
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the patient surviving longer with treatment compared with 
the control. The confidence interval (CI) and p-value can 
be calculated using the bootstrap method.

Observational studies

Here, we assume the positivity [7, 8]; this requires the 
existence of both exposed and unexposed participants for 
every combination of the values of observed confounder(s) 
in the population under study. Formally, if f(C)≠0 then 
Pr(E=1|C=ck)>0 for e=0,1, where E indicates exposure 
status (E=1 if exposed and E=0 if unexposed), C indicates 
the set of measured confounders, and f(.) is the probability 
density function. We also assume the conditional 
exchangeability [7, 8] (i.e., no unmeasured confounder 
exists after conditioning on C).

To estimate the net benefit adjusted for confounding 
in observational studies, we apply the IPW using the 
propensity score pk=Pr(E=1|C=ck) [9], where k=i for 
patients in the treatment group and k=j for patients in the 
control group. While various forms of IPW have been 
proposed [10,11], we recommend using the normalized-
stabilized weight [11] that can be expressed as

for exposed individuals and

for unexposed individuals. The use of the normalized-
stabilized weight guarantees that and 

. When these two equalities do not hold, the 
variance of the estimated net benefit may be excessively 
large or small.

In a randomized trial, one individual i in the 
treatment group and one individual j in the control 
group form 1x1=1 pair. In an observational study, 
when we consider the pseudo-population [7] created 
using the IPW, in which it can be assumed that no 
confounder exists, we can consider nswi individuals in 
the treatment group and nswj individuals in the control 
group to form nswi x nswj pairs. Therefore, the net benefit 
adjusted for confounding can be estimated by applying 

rather than sij=1 and 
instead of sij= --1 in Table 1; consequently, the adjusted 
net benefit, δIPW, is estimated as

The CI and p-value can be calculated using the bootstrap 

method. The adjusted probability that a random patient in 
the treatment group survives longer than a random control 
patient, p1

IPW, is estimated as

where Iij
IPW=sij

IPW if sij
IPW>0, and Iij

IPW=0 otherwise. Similarly, 
the adjusted probability of the opposite situation, p0

IPW, is 
estimated as

where Iij
IPW=--sij

IPW if sij
IPW<0, Iij

IPW=0 and otherwise.

RESULTS

Monte Carlo simulation

We performed Monte Carlo simulations to test the 
performance of our method. In the simulations, we wished 
to determine the true values of the net benefits. However, 
this was a difficult task, because the adjusted net benefit 
discussed in this article is a marginal effect. Therefore, 
we derived a true value distribution using a simulated 
large dataset consisting of 5,000 patients who have two 
outcomes of an actual and the counterfactual outcomes. 
The procedure was as follows.

Step 1 (confounders): We assumed that four 
confounders existed; these were generated as variables 
that independently followed normal distributions with mean 
of zero and unit variance.

Step 2 (treatment group): The true model of the propensity 
score, pk=Pr(E=1|C=ck), was set as a logistic model

The group for each patient (Ek=1 or 0) was simulated using 
the Bernoulli distribution with the parameter pk.

Step 3 (time-to-event outcome): The true hazard, hk(t), 
for each patient was set as

where λ was the true conditional hazard ratio. We 
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examined two scenarios each featuring proportional and 
non-proportional hazards. For the proportional hazards 
scenario, λ was fixed at λ=2/3. For the non-proportional 
hazards scenario, λ was set as λ=2/3 for half of the 
patients and as λ=6/5 for the other half of the patients. 
The time-to-event outcome of each patent, tk, was simulated 
using the exponential distribution with the parameter hk(t). 

Step 4 (counterfactual outcome): We could not 
directly use the value of λ to determine the true value of 
the net benefit, because we discuss the net benefit as a 
marginal effect, estimated by applying the IPW, rather 
than as a conditional effect. Therefore, we simulated the 
counterfactual outcome for each patient. For a patient with 
Ek=ek (ek=0,1) in Step 2, his or her counterfactual group 
was Ek=1--ek, and the counterfactual time-to-event outcome

.
Step 5 (true value): For 1,000 datasets, the net 

benefit, δ, was estimated using 5,000 simulated patients 
and their 5,000 counterfactuals, corresponding to 
10,000 randomized patients; we thus examined 5,000 
x 5,000=25 million pairs to derive the net benefit. 
The range of 1,000 δ would be narrow, and thus the 
distribution would be close to the true value of the net 
benefit.

To test our method, in addition to considering 
both proportional and non-proportional hazards, we 
considered two scenarios about the regression model for 
estimating the propensity score pk; full model to derive 
unbiased propensity scores, which was the same as the 
logistic model in the above Step 2, and reduced model 
to derive biased propensity scores, in which the fourth 
confounder, C4, was removed from the logistic model. 
We also considered two scenarios about censoring of 
the time-to-event outcome tK; no censoring, under which 
no patient suffered from censoring, and censoring, under 

which patients suffered from censoring following the 
Bernoulli distribution with the parameter 0.3. For the total 
2x2x2=8 scenarios, 1,000 datasets were simulated; 
each contained 200 patients. The procedure was the 
same as the above procedure up to and including Step 3. 
Rather than proceeding to Steps 4 and 5, we estimated 
the adjusted net benefit, , using our method.

The results of Monte Carlo simulations are 
displayed as box-whisker plots in Figure 1. Figure 1(a) 
shows the results of the proportional hazards scenario, 
and Figure 1(b) the results of the non-proportional 
hazards scenario. On both horizontal axes, “True” 
indicates δ and S1-S4 indicates  under the 
following scenarios:

• S1: full model of the propensity score pk and no 
censoring of the time-to-event outcome tk,

• S2: full model of pk and censoring of tk,
• S3: reduced model of pk and no censoring of 

tk, and
• S4: reduced model of pk and censoring of tk.

The box-whisker plots of Figures 1(a) and 1(b) are similar 
for the same scenarios. Furthermore, in both Figures 1(a) 
and 1(b), the net benefit under scenario “S1” is close to 
that under “True”. The results reveal that our method does 
not require the proportional hazards assumption.

In scenario “S2”, the net benefit was underestimated. 
Even in randomized trials, estimation of the net benefit 
varies by the censoring pattern imposed on the 
observations [4]. We note that the simulation of Péron et 
al. [6] (in the context of randomized trials) showed that 
the higher the proportion of censored data, the greater 
the underestimation of net benefit.

The results under scenario “S3” reveal that estimation 
of the net benefit is biased when the propensity score is 
biased. Moreover, the results under scenario “S4” reveal 

FIGURE 1. Box-whisker plots of δ and δIPW for 1,000 simulated datasets when (a) proportional hazards hold and (b) proportional 
hazards do not hold, where “True” indicates δ and S1-S4 indicate (δIPW) (S1: full model of pk and no censoring of tk, S2: full model 
of pk and censoring of tk, S3: reduced model of pk and no censoring of tk, S4: reduced model of pk and censoring of tk)
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that both censoring of the time-to-event outcome and 
biased estimation of the propensity score may seriously 
bias the estimation of net benefit.

Illustration

We applied our method to data from an observational 
study evaluating the disease-free survival in 76 Ewing’s 
sarcoma patients; the dataset is from Cole and Hernán 
[12]. Of the 76 patients, 47 received a novel treatment 
(treatment group), while 29 received one of three standard 
treatments (control group). Figure 2(a) shows the unadjusted 
disease-free survival curves for the treatment and control 
groups. The unadjusted HR was estimated as 0.534 (95% 
CI: 0.299, 0.955; p = 0.035) using the proportional 
hazard model. The unadjusted net benefit was estimated 
as (95% bootstrap CI: 0.027, 0.534; p = 0.031), where 

=0.569 and =0.285.
The dataset also includes the serum lactic acid 

dehydrogenase (LDH) level as a binary confounder 
(LDH ≥ 200 IU [abnormally high] or LDH < 200 IU). 
The pre-treatment LDH level was strongly prognostic of 
recurrence, as seen in Figure 3 (HR = 7.613; 95% CI: 
3.995, 14.508). Furthermore, high LDH levels indicated 
a lower likelihood of assignment to the novel treatment 
instead of a standard treatment, where the proportions 
of patients with LDH ≥ 200 IU were 25.5% (12/47) in 
the treatment group and 65.5% (19/29) in the control 
group. Therefore, we need to adjust for LDH to estimate the 
treatment effect in an unbiased manner. As only one binary 
confounder is in play, the normalized-stabilized weight can 
be expressed as

where e=1 for patients in the treatment group and e=0 
for those in the control group, and where c=1 if the 
LDH level is ≥ 200 IU and c=0 if the LDH level is < 
200 IU. Here, we assume that no other confounder or 
residual confounding was in play (i.e., the conditional 
exchangeability assumption held), because we sought to 
illustrate our method. We also note that the above two 
percentages (25.5% and 65.5%) imply that the positivity 
assumption holds.

Figure 2(b) shows the disease-free survival curves 
adjusted for the LDH levels using normalized-stabilized 
weights, estimated by applying the above formula. The 
proportional hazard model with the normalized-stabilized 
weight yielded an HR of 1.094 (95% bootstrap CI: 
0.671, 1.779; p = 0.691), where the bootstrap method 
was used to calculate the CI and p-value following the 

FIGURE 2. (a) Unadjusted disease-free survival curves and (b) inverse probability weighted (adjusted) disease-free survival curves 
of the treatment and control groups

FIGURE 3. Unadjusted disease-free survival curves for 
patients with LDH levels ≥ 200 IU and < 200 IU
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consideration of Austin [13]. However, we consider that 
the estimated HR is not a reliable measure of the treatment 
effect, because the two Kaplan-Meier curves of Figure 2(b) 
cross. Crossing of Kaplan-Meier curves indicates a clear 
departure from the proportional hazards assumption [14].

Our method yielded a net benefit of =--0.032 
(95% bootstrap CI: –0.230, 0.201; p = 0.723), where 

=0.395 and =0.428. The estimated net 
benefit is a more reliable measure of the treatment effect 
in comparison to the HR, because the assumption of 
proportional hazards is not required to estimate the net 
benefit, as evident in the above Monte Carlo simulations.

DISCUSSION

To date, the net benefit has been discussed only in the 
context of randomized trials. However, in observational 
studies, methods developed to assess randomized 
trials generally cannot estimate the net benefit in an 
unbiased manner because of confounding. Here, we have 
presented a method to estimate the net benefit adjusted 
for confounding using the IPW. The method is a simple 
extension of an existing method developed in randomized 
trials. To estimate the adjusted net benefit using our 
method, only the effort to derive the IPW is imposed over 
the method in randomized trials. It will be feasible for 
researchers to analyze their data using our method.

We have discussed the net benefit defined in the 
Introduction, which addresses the net chance of surviving 
longer with treatment than without it. This definition can be 
generalized to the net benefit by at least m months, which 
addresses the net chance of surviving for at  least m months 
longer with the treatment than without it [3]. Methods in 
this article can deal with the general definition simply by 
replacing xi>yj, xi<yj, and xi=yj in Table 1 with xi--yj≥m, 
xi--yj≤--m, and |xi--yj|<m, respectively.

Our Monte Carlo simulation showed that the net 
benefit was underestimated when some patients suffer 
from censoring of the time-to-event outcome. Similar 
results were obtained for simulations in the context of 
randomized trials [6]. In many real-world studies, the 
net benefit may be underestimated when some patients 
suffer from the censoring. In both simulations, the time-to-
event outcome for each patient was simulated following 
an exponential distribution, and censored patients were 
randomly selected. Therefore, more censoring occurred 
earlier than later. However, in many real-world prospective 
studies, less censoring occurs earlier rather than later. Thus, 
compared to our simulation, as real-world studies have 
fewer uninformative (neutral) situations in calculating the 
net benefit, the extent of underestimation will be less. As 
is often remarked, early censoring reflects a problem with 
study quality, rather than underestimation of a net benefit.

Saad et al. [1] summarized the advantages and 

disadvantages of several measures that can be used in 
survival analysis. For example, the restricted mean survival 
time (RMST) [15], which is the area under the survival 
curve, is similar to the net benefit in that it does not depend 
on the assumption of proportional hazards and can be 
readily interpreted. However, if survival curve lies remote 
from 0 at the last follow-up time, the RMST may not be 
readily interpreted, because the entire survival curve to 
a chosen time is considered. On the other hand, the net 
benefit lacks this disadvantage. Saad et al. [1] noted only 
one disadvantage of the net benefit; it was: “Recently 
proposed, hence little experience.”

Traditionally, survival curves and hazard ratios have 
been reported by studies featuring time-to-event outcomes. 
In observational studies, it would be appropriate to present 
weighted (adjusted) survival curves, such as that of Figure 
2(b), and the adjusted net benefits that can be estimated 
using our method.
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