
ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2018, Volume 15, Number 4

Handling missing continuous outcome data in a Bayesian network meta-analysis 

Handling missing continuous outcome data in 
a Bayesian network meta-analysis

Danila Azzolina (1), Ileana Baldi (1), Clara Minto (1), Daniele Bottigliengo (1), Giulia Lorenzoni (1), Dario Gregori (1),

(1) Unit of Biostatistics, Epidemiology and Public Health, Dept. of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Italy 

CORRESPONDING AUTHOR: Prof. Dario Gregori, Unit of Biostatistics, Epidemiology and Public Health, Dept. of Cardiac Thoracic Vascular Sciences and 
Public Health, Via Loredan, 18, 35121 Padova – Italy Phone: +39 049 8275384, Fax: +39 027 00445089, Email: dario.gregori@unipd.it

DOI: 10.2427/12985
Accepted on November 22, 2018

ABSTRACT 

Background: A Bayesian network meta-analysis (NMA) model is a statistical method aimed at estimating the relative 
effects of multiple interventions against the same disease. The method has recently gained prominence, leading to 
the synthesis of the evidence regarding rank probabilities for each treatment. In several cases, an NMA is performed 
excluding incomplete data of studies retrieved through a systematic review, resulting in a loss of precision and power.
Methods: There are several methods for handling missing or incomplete data in an NMA framework, especially for 
continuous outcomes. In certain cases, only baseline and follow-up measurements are available; in this framework, 
to obtain data regarding mean changes, it is necessary to consider the pre-post study correlation. In this context, in 
a Bayesian setting, several authors suggest imputation strategies for pre-post correlation. In other cases, a variability 
measure associated with a mean change score might be unavailable. Different imputation methods have been 
suggested, such as those based on maximum standard deviation imputation. The purpose of this study is to verify the 
robustness of Bayesian NMA models concerning different imputation strategies through simulations. 
Results: Simulation results show that the bias is notably small for every scenario, confirming that rankings provided by 
models are robust concerning different imputation methods in several heterogeneity-correlation settings.
Conclusions: This NMA method seems to be more robust to missing data imputation when data reported in different 
studies are generated in a low-heterogeneity scenario. The NMA method seems to be more robust to missing value 
imputation if the expectation of the prior distribution, defined on the heterogeneity parameter, approaches the true 
value of the variability across studies. 
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INTRODUCTION

Network meta-analysis (NMA) is an increasingly 
popular statistical method used to perform a simultaneous 
comparison in the effectiveness of treatments against the 

same disease [1, 2]. The possibility to summarize evidence 
from studies reporting direct treatment comparisons and to 
infer indirect effects between interventions that have not 
been directly compared in head-to-head studies makes this 
method very attractive for clinical researchers [3]. 
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NMA’s advantage over classical pairwise meta-
analysis lies in gathering direct and indirect evidence to 
provide comparisons between the relative effectiveness of 
all treatments included in the network [4]. In this framework, 
calculations of the probability of one treatment being the 
best or worst for a specific outcome through the final ranking 
of available treatments against the same disease are usually 
employed to facilitate the interpretation of the results [5, 6]. 
NMA models are available for a broad range of underlying 
data and summary effect measures, being implemented in 
both frequentist and Bayesian frameworks [7].

Among studies identified through a systematic literature 
review, only those reporting complete data on a treatment 
effect and its uncertainty usually contribute to an NMA 
model. In the literature, it is assessed that, for quantitative 
synthesis of evidence, the continuous outcome is more 
difficult to synthesize in an NMA than a binary endpoint 
for several reasons. For example, the research articles 
may not report all the information required to perform a 
meta-analysis [8]. The most common method to analyze 
this kind of outcome in meta-analysis is to consider the 
mean change from baseline, including also an associated 
variability measure (standard deviation SD) [9]. However, 
in a different situation [10], no or incomplete variability 
measures have been reported in clinical trial publications 
[11]. In several cases, an NMA performed on a continuous 
endpoint involves the exclusion of the trial from the NMA 
due to the incompleteness of information [11]. 

The omission of studies with incomplete information 
may affect the results of an NMA through a loss of 
statistical power and bias in the final estimates [11]. By 
far the most common approach to the missing data is to 
omit those studies with the missing data from the analysis. 
This approach is known as the complete-case analysis or 
list-wise deletion. Some authors suggest that, implicitly, 
in this case, all missing data are considered as missing 
completely at random (MCAR) [12]. If the missing data 
are MCAR, they are entirely independent of observed and 
unobserved data [13]. This assumption is not verifiable 
for data about candidate studies to be included in an 
NMA model; the missing information may be considered 
a function of the missing data itself and may be influenced 
by other variables related to study characteristics, for 
example, sample size [14] or the effect size reported in 
the study [15]. In fact, significant results are more likely to 
be reported entirely in clinical trial publications [10, 16].

This study investigates the problem of missing data 
imputation in an NMA on continuous outcomes where the 
treatment effect is expressed as delta (i.e., mean variation) 
between baseline and follow-up for each treatment 
included in the network. In this framework, different 
imputation strategies may be performed depending on the 
missing information. Some studies may report an average 
effect related to baseline and follow-up assessment 
and omit the mean treatment effect (with corresponding 
variability measure) in terms of delta variation. In this case, 

different strategies are provided by the literature, mostly 
based on the imputation of the pre-post study correlation 
[17] that is used to obtain the delta variability measure 
[18]. The correlation may be imputed considering other 
comparable studies [19] or using a conservative estimate 
of 0.5 [19]. Among Bayesian alternatives, Abrams and 
colleagues suggest the exploitation of complete available 
evidence composed by baseline, follow-up and delta data 
to obtain a posterior distribution for the correlation [17].

If a study just reports the delta without related variability 
and mean effect at baseline and follow-up, the imputation 
strategy is reduced to the imputation of standard deviation 
(SD). Several approaches have been proposed, among them 
maximum SD imputation [20], arithmetic mean [21], linear 
regression [22], the coefficient of variation [23], bootstrap 
method [24, 25] and multiple imputations [13, 26].

The purpose of this study is to verify the robustness 
of a Bayesian NMA model concerning some common 
imputation strategies on data characterized by different 
levels of between-trial heterogeneity. A simulation study has 
been performed to assess the performance of the method 
in ranking treatments accurately when the network includes 
imputed data. Data have been simulated referring to the 
effects of treatments, as reported in the literature, against 
knee osteoarthritis.

MATERIALS AND METHODS 

Imputation methods

Let xij and yij denote the ith outcome in the jth group of 
the study at baseline and follow-up, respectively. Let dij the 
mean difference in change from baseline to follow up ith in 
the group of the jth study, and σ2

dij (ρ) its associated variance. 
The following approaches are evaluated in this study: 

Maximum SD imputation

This method is based on a direct SD imputation 
from studies included in the meta-analysis [20]. Although 
other more sophisticated methods are available [27], 
this approach is commonly used in practice to obtain 
conservative estimates [8].

Correlation approach

The variability of mean change score dij defined V(dij)
can be calculated as:

In this setting, using complete evidence composed by 
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baseline, follow-up and delta data, a meta-analysis of the 
Fisher transformations, Sij is considered. Therefore, data 
derived from J studies having complete data are used to 
derive the posterior distribution for correlation. 

The Fisher transformation is [17]

The mean of the transformation is a normally distributed 
random variable with a normal distribution on the mean 
and a Gamma distribution on the variance: 

The correlation is strictly related to the Fisher 
transformation via the δ parameter, as shown below:

The use of a fully Bayesian approach for the 
imputation of correlation is suitable not only because it 
leads the researcher to include in the computation pertinent 
study information but also because it takes into account a 
source of uncertainty in parameter estimation [17]. 

All these factors eliminate the need for sensitivity 
analyses with respect to an arbitrary choice of the within-
subject correlations [17].

Simulation framework

Seven hundred full databases, including study-level 
baseline (xij), follow-up (yij), and delta variation (dij), 
including 50 two-arm trials of size nij, are simulated (j=2 
pairwise comparisons). Trial data are simulated considering 
as an outcome the delta variation in the Western Ontario 
and McMaster Universities index (WOMAC) [28], 
widely used to assess the severity of symptoms in knee 
osteoarthritis. Baseline data are obtained by sampling from 
bounded 0-100 normal distributions with mean 41.8 and 
SD 21.5, to mimic the support of WOMAC score [29]. 
Delta variation data are simulated from normal distributions 
with parameters provided by a literature review about six 
non-steroidal anti-inflammatory drugs (NSAIDs) against 
symptoms of knee osteoarthritis, as shown in Table 1.

For each simulated trial, treatments involved have 
been randomly drawn from the list of treatments shown in 
Table 1. Follow-up variability data (standard error of the 
mean) are derived from the generated delta and baseline 
variability measures, using the inverse formula, setting 

hypotheses on pre-post correlation (ρ) and considering, in 
each scenario, a sequence of ρ values from 0.3 to 0.95 
by in increments of 0.05. The sample size ni is obtained 
by sampling from a uniform distribution bounded 50-100, 
reflecting the general framework of the sample size in 
rheumatological trials [30]. 

Between-trial heterogeneity τ has been included as a 
variability measure by following, for each simulation setting, a 
wide range of heterogeneity values consisting in a sequence 
from 0.1 to 5 by 0.1. Each simulation scenario provides 
different combinations of between-trial heterogeneity and 
pre-post correlation, totalling 700 scenarios. 

More details about the simulation plan are shown in 
Figure 1.

Imputed data generation process

Imputed database I. In the first case, information 
about delta variation is randomly removed from the full 
database, leaving only baseline and follow-up data. 
Out of 50 studies, the variability information has been 
randomly removed in 10 studies. Variability of mean 
change has been imputed using the correlation method. 

Imputed database II. In this case, information at 
baseline and follow-up are also removed, and then delta 
variability is imputed with maximum SD method. 

Bayesian NMA analysis

A multiple-treatment Bayesian NMA, with random 
effects and a uniform (0,5) prior distribution on the 
heterogeneity parameter [31], has been performed on 
each simulated dataset consisting of 50 studies, using 
an arm-based approach [19]. An arm-based approach 
models the arm-level data referring to a specific treatment 
effect within each trial. For comparison, a contrast-based 
approach would be based on the parametrization of 
the contrast trial level summary (for example, the mean 
difference in treatment effect within the trial). The results 
provided by both approaches are very similar [32]. An 
arm-level approach, compared to contrast-based ones, 
leads to the incorporation of multi-arm trials without the 
necessity to employ multivariate distribution to determine 
specific treatment effects [32]. 

An MCMC approach was used to sample from 
the posterior distribution estimated by the NMA model. 
The sampling processes involved 200,000 iterations, 
including a burn in of 20,000 steps, from 4 chains. The 
results are compared in term of ranking probability [33].

For each scenario, the bias and the standard 
deviation of the first rank probability estimates, between 
full and imputed databases, have been computed to 
investigate the robustness of NMA results with respect to 
the considered imputation methods.
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RESULTS 

The network plot (Figure 2) is a graphical representation 
of the overall evidence leading to a concise description of 
its characteristics. Each node of the graph represents the 
interventions, and edges represent the available direct 
evidence between treatments. The size of the node is 
proportional to the sample size in each treatment, and 
line thickness is proportional to the number of pairwise 
comparisons between treatments. The network structure 
is the same in every scenario. Observing the structure of 

the network, it is possible to see that no indirect evidence 
is included in the meta-analysis. In fact, all comparisons 
report direct evidence in the network structure shown in 
Figure 2.

Results are synthesized in term of first rank probabilities 
for each treatment reported in Table 2. The simulation 
results are coherent for each scenario for all the imputation 
methods. The first rank probabilities are higher for 
etoricoxib followed by diclofenac and rofecoxib and they 
are always equal to zero for licofelone, naproxen, and 
placebo. The ranking provided by the models is robust 

FIGURE 1. Simulation plan: the treatments are sampled from the drugs reported in Table 1, the sample size, instead are drawn 
from a uniform 0-100 distribution. 
The delta data are sampled from information provided in Table 1, and the baseline data are drawn from a 0-100 Normal 
distribution having mean 41.8 and SD 21.5. 
The imputed databases (I) have been obtained randomly removing, from the full database, information about delta data. 
The Imputed databases (II) have been obtained randomly removing baseline and follow up information. 

TABLE 1. Delta Mean and Standard deviation of NSAIDs treatment derived by the literature. The parameters are used to generate 
data for delta variation treatment effect.

Mean delta SD delta Author-Year

Rofecoxib -26.7 22.99 Cannon, 2000 [29]

Diclofenac -29.6 23.39 Cannon, 2000 [29]

Etoricoxib -31.03 20.13 Reginster, 2007 [45]

Licofelone -18.18 25.88 Raynauld, 2009 [46]

Naproxen -19.31 25.68 Raynauld, 2009 [46]

Placebo -9.94 21.29 Kahan, 2009 [47]
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with respect to different imputation methods in several 
heterogeneity/correlation settings.

The robustness of the final inference to missing data 
imputation has been evaluated considering bias and 
standard deviation within scenario (Table 3). The results 
are similar across different correlation settings. Smallest 
values of bias and SD are obtained from smaller values 
of heterogeneity. The bias increases as heterogeneity 
increases. This pattern is evident only in the presence of 
the lowest and highest values of heterogeneity, as shown 
in Figure 3. Additionally, it may be observed that the 
lowest bias and SDs are obtained, not only in the case of 
the lowest heterogeneity setting but also for heterogeneity 
values of 2.5 to 3.5, near the expectation of the uniform 
prior distribution chosen on heterogeneity parameters 
(Figure 3).

DISCUSSION

Imputation methods are generally viewed as the 
preferred analytical approach to the missing data problem 
in NMA [11, 34]. When no particular imputation method 
is preferable to others, a sensitivity analysis of NMA results 
concerning different imputation strategies is advocated 
[35]. It should be noted that few NMA studies report the 

FIGURE 2. Network plot of the simulated evidence. Each 
node represents a treatment included in the network. The line 
width is proportional to the number of studies reporting the 
specific pairwise comparison.

FIGURE 3. Bias and Standard deviation within scenarios for different correlation settings. In Bayesian NMA prior to heterogeneity 
τ, has been chosen as a Uniform (0,5) distribution. 
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TABLE 2. First Rank probabilities for each treatment in each scenario. 

Diclofenac Etoricoxib Licofelone Naproxen Placebo Rofecoxib τ ρ Imputation

0.191 0.792 0 0 0 0.017 0.1 0.3 Full DB

0.197 0.786 0 0 0 0.017 0.1 0.3 Max SD 

0.194 0.790 0 0 0 0.017 0.1 0.3 Abrams 

0.191 0.792 0 0 0 0.017 0.1 0.5 Full DB

0.197 0.786 0 0 0 0.017 0.1 0.5 Max SD 

0.194 0.788 0 0 0 0.018 0.1 0.5 Abrams 

0.191 0.792 0 0 0 0.017 0.1 0.7 Full DB

0.197 0.786 0 0 0 0.017 0.1 0.7 Max SD 

0.192 0.789 0 0 0 0.019 0.1 0.7 Abrams 

0.191 0.792 0 0 0 0.017 0.1 0.9 Full DB

0.197 0.786 0 0 0 0.017 0.1 0.9 Max SD 

0.195 0.787 0 0 0 0.018 0.1 0.9 Abrams 

0.161 0.828 0 0 0 0.011 1 0.3 Full DB

0.169 0.818 0 0 0 0.013 1 0.3 Max SD 

0.169 0.819 0 0 0 0.012 1 0.3 Abrams 

0.161 0.828 0 0 0 0.011 1 0.5 Full DB

0.169 0.818 0 0 0 0.013 1 0.5 Max SD 

0.166 0.822 0 0 0 0.012 1 0.5 Abrams 

0.161 0.828 0 0 0 0.011 1 0.7 Full DB

0.169 0.818 0 0 0 0.013 1 0.7 Max SD 

0.163 0.825 0 0 0 0.012 1 0.7 Abrams 

0.161 0.828 0 0 0 0.011 1 0.9 Full DB

0.169 0.818 0 0 0 0.013 1 0.9 Max SD 

0.166 0.822 0 0 0 0.012 1 0.9 Abrams 

0.232 0.729 0 0 0 0.039 2 0.3 Full DB

0.236 0.730 0 0 0 0.033 2 0.3 Max SD 

0.233 0.732 0 0 0 0.035 2 0.3 Abrams 

0.232 0.729 0 0 0 0.039 2 0.5 Full DB

0.236 0.730 0 0 0 0.033 2 0.5 Max SD 

0.230 0.734 0 0 0 0.036 2 0.5 Abrams 

0.232 0.729 0 0 0 0.039 2 0.7 Full DB

0.236 0.730 0 0 0 0.033 2 0.7 Max SD 

0.230 0.733 0 0 0 0.037 2 0.7 Abrams 

0.232 0.729 0 0 0 0.039 2 0.9 Full DB

0.236 0.730 0 0 0 0.033 2 0.9 Max SD 

0.229 0.735 0 0 0 0.036 2 0.9 Abrams 

0.091 0.892 0 0 0 0.018 3 0.3 Full DB

0.082 0.902 0 0 0 0.016 3 0.3 Max SD 

0.085 0.898 0 0 0 0.017 3 0.3 Abrams 

0.091 0.892 0 0 0 0.018 3 0.5 Full DB

A simulation scenario consists of different combination of heterogeneity () and correlation (ρ = 0.3, 0.5, 0.7, 0.9).
First Rank probability estimates are reported for an NMA computed on Full Databases and imputed databases (Maximum SD and Abrams method).
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results of sensitivity analysis after imputation [21, 36, 37], 
especially for variance imputation on continuous outcomes.

Some authors have investigated the performance of 
the missing variance imputation strategies on continuous 
data considering a pairwise meta-analysis setting [38], 
showing the substantial robustness of results in several 

scenarios, especially when a random-effect meta-analysis 
has been performed. This study, instead, verifies the 
robustness of a Bayesian NMA model concerning different 
imputation strategies through simulations and reaches 
similar conclusions which are known to hold for pairwise 
meta-analysis in other research settings [39]. Our findings 

TABLE 2 (CONTINUED). First Rank probabilities for each treatment in each scenario. 

Diclofenac Etoricoxib Licofelone Naproxen Placebo Rofecoxib τ ρ Imputation

0.082 0.902 0 0 0 0.016 3 0.3 Max SD 

0.085 0.898 0 0 0 0.017 3 0.3 Abrams 

0.091 0.892 0 0 0 0.018 3 0.5 Full DB

0.082 0.902 0 0 0 0.016 3 0.5 Max SD 

0.086 0.897 0 0 0 0.018 3 0.5 Abrams 

0.091 0.892 0 0 0 0.018 3 0.7 Full DB

0.082 0.902 0 0 0 0.016 3 0.7 Max SD 

0.087 0.897 0 0 0 0.016 3 0.7 Abrams 

0.091 0.892 0 0 0 0.018 3 0.9 Full DB

0.082 0.902 0 0 0 0.016 3 0.9 Max SD 

0.086 0.898 0 0 0 0.017 3 0.9 Abrams 

0.112 0.842 0 0 0 0.046 4 0.3 Full DB

0.122 0.829 0 0 0 0.049 4 0.3 Max SD 

0.118 0.833 0 0 0 0.048 4 0.3 Abrams 

0.112 0.842 0 0 0 0.046 4 0.5 Full DB

0.122 0.829 0 0 0 0.049 4 0.5 Max SD 

0.113 0.839 0 0 0 0.047 4 0.5 Abrams 

0.112 0.842 0 0 0 0.046 4 0.7 Full DB

0.122 0.829 0 0 0 0.049 4 0.7 Max SD 

0.113 0.838 0 0 0 0.050 4 0.7 Abrams 

0.112 0.842 0 0 0 0.046 4 0.9 Full DB

0.122 0.829 0 0 0 0.049 4 0.9 Max SD 

0.112 0.840 0 0 0 0.048 4 0.9 Abrams 

0.181 0.777 0 0 0 0.042 5 0.3 Full DB

0.191 0.763 0 0 0 0.045 5 0.3 Max SD 

0.182 0.774 0 0 0 0.044 5 0.3 Abrams 

0.181 0.777 0 0 0 0.042 5 0.5 Full DB

0.191 0.763 0 0 0 0.045 5 0.5 Max SD 

0.184 0.771 0 0 0 0.045 5 0.5 Abrams 

0.181 0.777 0 0 0 0.042 5 0.7 Full DB

0.191 0.763 0 0 0 0.045 5 0.7 Max SD 

0.183 0.771 0 0 0 0.046 5 0.7 Abrams 

0.181 0.777 0 0 0 0.042 5 0.9 Full DB

0.191 0.763 0 0 0 0.045 5 0.9 Max SD 

0.186 0.769 0 0 0 0.045 5 0.9 Abrams 

A simulation scenario consists of different combination of heterogeneity () and correlation (ρ = 0.3, 0.5, 0.7, 0.9).
First Rank probability estimates are reported for an NMA computed on Full Databases and imputed databases (Maximum SD and Abrams method).

e12985-7



ORIGINAL ARTICLESEpidemiology Biostatistics and Public Health - 2018, Volume 15, Number 4

Handling missing continuous outcome data in a Bayesian network meta-analysis 

show that the first rank probability bias is small over 
a broad range of imputation scenarios, showing the 
substantial robustness of final inference. 

The results of our study are in line with previous 
findings that suggest, in the presence of missing variance 
data, we should consider an imputation method rather 
than exclude the study from the analysis [40]. In fact, 
we have to consider that it is difficult to suppose that the 
missingness in variance study-level data may be caused by 
MAR mechanism [14, 15]. 

Another noteworthy aspect of this paper is 
the sensitivity of NMA after imputation in different 
heterogeneity scenarios across studies. Heterogeneity is 
a crucial element in a meta-analysis. We have to take 
into account that heterogeneity is a source of variability, 

related to differences across the trial populations and 
considered interventions, which can occur in many 
studies that are candidates for inclusion in a meta-analysis 
[41]. In addition to missing data, heterogeneity between 
trials is a component that may affect final inference. 
Heterogeneity between trials indicates a source of 
variability in treatment effects that, if misspecified (i.e. 
poorly identified by the prior distribution) in an NMA 
model, results in a limitation in the external validity of 
the results [33], downing the possibilities of generalizing 
inferential results to other situations. 

This additional source of variability may occur when 
studies differing in trial characteristics, outcome definition, 
inclusion criteria or follow-up duration are included in the 
same meta-analysis [42]. Opportune statistical methods 
are available to handle this additional source of variability, 
for example, a random effect NMA may be implemented 
in a Frequentist or a Bayesian setting [43]. In practical 
approaches, the Bayesian methods for mixed-treatment-
comparison meta-analyses are widely used compared to 
frequentist NMA [43].

The literature on the relationship between continuous 
missing data imputation methods and heterogeneity 
focuses on pairwise meta-analysis [34]. Specifically, 
scholars suggest that random-effect meta-analysis, even 
in cases of missing data, might be replaced with fixed-
effect meta-regression to handle a source of heterogeneity 
that is not influenced by the known source of variability 
across studies. Instead, in the setting of a Bayesian NMA, 
different authors suggest some good practices to deal with 
heterogeneity, especially to define priors on heterogeneity 
across studies [31, 44]. In this work, in line with the 
literature, we confirm that this source of variability is an 
important issue to consider. In fact, the correct specification 
of the prior defined on the heterogeneity leads to more 
robust results to imputation, especially if the prior on 
heterogeneity value has an expectation near the true value 
of the variability across studies. 

Study limitations

In further research, it may be useful to assess the performance 
of the NMA with respect to missing imputation, considering a 
smaller number of trials in the network, and including a different 
proportion of direct and indirect comparison. 

CONCLUSIONS

Inference provided by NMA models is robust with 
respect to different imputation strategies or considering 
different combinations of heterogeneity and correlation 
when the proportion of missing data is 20%. The Bayesian 
NMA leads to a better performance also when data are 
imputed, especially when the extent of heterogeneity 
across studies is limited. The definition of the prior on 

TABLE 3. Mean of Bias (Absolute Values) and Standard 
Deviation (*100) between treatments in each simulation 
scenario.

Bias SD τ ρ

0.137 0.125 0.1 0.3

0.163 0.136 0.1 0.5

0.146 0.152 0.1 0.7

0.188 0.136 0.1 0.9

0.319 0.195 1 0.3

0.276 0.17 1 0.5

0.221 0.172 1 0.7

0.278 0.171 1 0.9

0.056 0.172 2 0.3

0.103 0.206 2 0.5

0.084 0.21 2 0.7

0.108 0.214 2 0.9

0.279 0.177 3 0.3

0.26 0.178 3 0.5

0.26 0.177 3 0.7

0.277 0.176 3 0.9

0.348 0.213 4 0.3

0.25 0.222 4 0.5

0.276 0.247 4 0.7

0.232 0.233 4 0.9

0.286 0.241 5 0.3

0.33 0.235 5 0.5

0.33 0.248 5 0.7

0.373 0.237 5 0.9

The Bias has been computed as the mean of the differences between 
first rank probability estimate on the imputed database and the same 
estimate obtained on the full database. 
The Standard deviation has been computed on the first rank estimates 
computed by NMA in each scenario.

e12985-8



ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2018, Volume 15, Number 4

Handling missing continuous outcome data in a Bayesian network meta-analysis 

heterogeneity is an important issue in this context: the 
inference performed with an NMA on imputed data 
is more robust to missing value imputation if the prior 
distribution is well specified.
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