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Non-parametric estimation of survival 
probabilities with a time-dependent exposure 
switch: application to (simulated) heart
transplant data

ABSTRACT 

Background: To summarize the survival experience of patients waiting for heart transplant and to compare it with the 
post-transplant survival it is not possible to use the Kaplan-Meier estimator considering the intervention status as fixed 
in time because of the well known “immortal time bias” issue.
Methods: We reviewed and applied to a simulated dataset the available methods to perform a non-parametric 
analysis accounting for the time-varying nature of the transplant status. Specifically we considered the Simon-Makuch 
estimator and the recently proposed “clock-back” estimator.
Results: We showed that the Simon-Makuch estimator for the survival of patients on list is unbiased but the 
corresponding estimator of the post-transplant survival is not reliable for non-markov contexts like the one considered. 
Instead, if the semi-Markov assumption could be postulated (the post-transplant mortality depends mainly on the time 
since transplant and not on the waiting time to the intervention), the "clock-back" estimator produces valid results.
Conclusion: We enlightened the importance of testing the process memory assumptions (e.g. Markov properties) in 
order to choose the approach more reliable. Moreover, we recommend the use of the Simon-Makuch method to 
study the survival of patients before the intervention and the use of the "clock back" estimator for the post-intervention 
survival in semi-markovian contexts.
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INTRODUCTION

Heart transplant (HTx) is often the only treatment 
option for patients affected by end-stage cardiomyopathy 

with a short life expectancy. Due to the large gap between 
demand and supply, selected candidates are added on a 
waiting list until a compatible functioning organ becomes 
available. In this context, an interesting issue could be 
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to estimate the expected survival outcome while waiting 
on list and that after receiving HTx. Besides the impact 
of clinical and demographic characteristics, the Kaplan-
Meier (KM) estimator is usually employed to summarize the 
overall survival experience of a homogeneous cohort [1, 
2]. In this case, however, the application of such method is 
complicated by the time-dependent nature of the treatment 
variable: all patients are HTx-free at the beginning (i.e. 
at the time of entry in the list) and they may change their 
treatment status after some waiting time. As a consequence, 
an analysis that considers a time-fixed indicator to classify 
subjects as transplanted or not would be affected by the 
well-known “time-dependent bias” [3]. In fact, the time to 
death for a HTx recipient is certainly greater than his/her 
waiting time to HTx (“immortal time bias”) while subjects 
in list with short survival times have more chances to be 
included in the non-transplanted group since they may not 
survive long enough to receive HTx (“mortal time bias”) 
[4]. Apparently, the problem could be tackled from the 
multi-state models point of view [8]. Patients are involved 
in a three-state process (Figure 1) where, from the initial 
state 0 (being on the waiting list), one can possibly move 
to the final state 2 (death) either directly or by transiting 
through to the intermediate state 1 (HTx). The multi-state 
models framework, which represents an extension of 
the competing risks methodology, allows to predict the 
probability of each state occupation in time, using some 
model based estimate of the transition intensities plugged 
into the Aalen-Johansen estimator for the crude incidence 
[5]. Results provide a nice description of the process but 
since it is not possible to get rid of the dynamic proportion 
of patients receiving HTx in time, the method does not 
allow to directly see the impact of HTx on survival. 
Historically, the first attempt to address this issue was the 
“landmark” method which was proposed by Anderson 
et al. [6] to compare responders and non-responders to 
some treatment in a situation where patients may achieve 
the response after some time since therapy start. The 
idea, with reference to our example, is to set a fixed time 
point, called “landmark”, and classify patient according to 
their HTx status at that time point. Avoidance of the time-
dependent bias is counteracted by several drawbacks. 
First, events and censored observations before landmark 
are excluded from the analysis causing a loss of efficiency 
and introducing some selection bias. Starting the curves 
from landmark has an impact also on the interpretation 
of the theoretical quantities they represent; in fact, such 
estimates are now related to a survival probability which is 
conditional on being failure free at landmark. Moreover, 
the resulting curves may strongly depend on the choice of 
the landmark point which generally has to be set based 
on a trade-off between clinical meaning and empirical 
motivation (i.e. ensuring a decent amount of patients at risk 
within groups). Besides these limits, the method has been 
extensively applied in the cardiovascular literature [7].

An extension of this method was proposed by Simon 

and Makuch [9] consisting in using a time-updated indicator 
of treatment status. In practice a patient contributes to the 
hazard estimation involved in the KM formula for the no 
HTx group but her/his observation is censored as she/
he changes treatment condition. Hereafter, the survival 
contribution of this patient is attributed to HTx and left 
truncation is adopted to account for late entry in the new 
“at risk” group. The landmark point is still needed only 
in situations where there are no (or few) patients in the 
new treatment group at the beginning but can be set as 
early as possible compatibly with the group size. In our 
context of interest it happens that for some patient the 
new organ is immediately available thus allowing for a 
non-empty HTx group even at time zero. The interpretation 
of the theoretical quantities behind this estimator has been 
debated [10]. In a recent paper [11] we showed, also 
through a simulation protocol, that: the method always 
provides unbiased estimates of the survival probability 
while waiting in list; concerning HTx group, however, 
results can be properly interpreted only in situations where 
the Markov assumption is reasonable. Moreover, we 
proposed a different approach based on the “clock-back” 
time scale that is valid under the semi-Markov assumption 
which is more plausible in many contexts including the 
case of HTx.

The aim of this work is to review the KM estimators 
according to the Simon-Makuch and clock-back versions 
and to apply these methods to a simulated data set 
inspired by real data on HTx.

FIGURE 1. Multi-state representation of the basic event 
process involving patients candidate to receive heart 
transplant. The potential times to transition between states 
are also shown.
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METHODS

Notation, assumptions and data simulation

Figure 1 represents the three-state event process on 
which the motivating example is based. The random 
variables involved in the process are denoted as follows:

• T02: potential time from entry in the list to death 
while still on list;

• T01: potential time from entry in the list to HTx;
• T12: potential time from HTx to death;
• T012 = T01 + T12: potential time from entry in the 

list to death after HTx;
• X = I(T01 ≤ T02): indicator of the HTx status so that 

T02 is observable only when X = 0 while T01, T0 
and T12 are observable only when X = 1;

• T = (1-X) x T02 + X x T012: time from entry in the list 
to death either without or after HTx;

• C: time from entry in the list to right censoring;
• Z= min(T;C): observable time to death or right 

censoring;
• ∆= I(T ≤ C): observable death or censoring 

indicator;
• E= I(T01 Z): observable indicator of the HTx status.
For each patient i = 1;...; n, we observe the following 

data:
• ti: time from entry in the list to death or right 

censoring either without or after HTx;
• ∂i: death (∂i= 1) or censoring (∂i= 0) indicator;
•	 ℇi: indicator of the HTx status (ℇi = 1 if the patient 

is transplanted and ℇi = 0 otherwise);
• T01

i: time from entry in the list to HTx, observed 
only if ℇi = 1.

The vector of observed data (ti;∂i;ℇi;ℇi . t01
i) is the 

sampling realization of (Z;∆;E;E . T01).
Finally, we define:
• tj ; j = 1; ...; J: ordered observed times from entry 

in the list;
• sj ; j = 1; ...; Js: ordered observed times from HTx 

(only for patients with ℇi = 1).
Our goal is to obtain unbiased estimates of two 

quantities. The first is the survival probability of a patient 
on list as if she/he will never receive HTx:

          (1)

Of note, this quantity is guided only by the hazard 
of dying while on list, dened as λ02(t) = lim∆t→0 P(t < T02 
< t + ∆t|T02 > t)/∆t. The second quantity is the survival 
probability of a patient that receives HTx immediately after 
entering on list:

            (2)

The notation T01 = 0 is used to indicate that the 
survival probability refers to a patient whose waiting time 

on list is nearly null. Of note, this quantity is guided only 
by the hazard of dying after HTx, which in general may 
also defined on the waiting time T01. For the case where 
T01 = 0 it is dened as λ12(t; T01 = 0) = lim∆t→0 P(t < T012 < 
t + ∆t|T012 > t)/∆t.

With reference to the motivating example, we make 
the following assumptions:

1. C⊥T: this is the standard independent censoring 
assumption;

2. T02⊥T01: among candidate patients to HTx with 
high priority we can assume that the time until 
HTx corresponds to the time to find a compatible 
donor and thus it does not depend on the 
potential time to death while waiting on list;

3. “semi-Markov property”: we assume that the 
hazard after HTx depends only on T12 and not 
on T01, in other words we assume that the time 
spent waiting on list does not affect the mortality 
after HTx. In fact, it is reasonable to think that the 
time to death after HTx depends largely on the 
intervention itself rather than on the length of the 
waiting period, even if the patient condition is 
changed during this period;

Of note, the last assumption is different from the 
“Markov property” which would imply that post-transplant 
mortality depends on time since entry in list (T012 ) but neither 
on the waiting time to HTx T01 nor on the time after HTx T12. 
Although often implausible, as in this case, this is a common 
assumption in the multi-state models framework which is 
adopted to ease the development of proper estimators [12].

The analyzed data consists of 500 observations, 
simulated using the inversion method of Bender et al. 
[13] and according to the above assumptions. The 
potential times T02 and T12 were generated using a 
Weibull distribution with scale and shape parameters 
(0.8, 0.4) and (0.3, 0.5), respectively. The potential 
time T01 was generated using an Exponential distribution 
with parameter (2). The theoretical hazard and survival 
functions corresponding to the potential times are shown 
in figure 2A-B. Finally, the censoring time was generated 
from a Uniform distribution with range (0.25,8). In the 
simulated scenario, the amount of observations with E = 1 
(i.e. transplanted patients) was 298 (59.6%) while the total 
number of events (i.e. deaths) was 309.

The R code used for data generation and to perform 
the analyses presented is available as a supplementary file.

Kaplan-Meier estimator with time-fixed HTx indicator

The KM estimator of the survival while waiting on list 
that considers the HTx status as time-fixed and known from 
the beginning of the follow-up is defined as:

  

            (3)
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The hazard  in (3) is generally a biased 
estimator of λ02(t) because it involves patients that at time 
t must satisfy the condition (Z ≤T01), on top of conditions 
(T02 > t) (which is the only required by λ02(t)) and (C > t) 
(which can be avoided due assumption 1.). Consequently, 
estimator (3) is biased with respect to (1).

The analogous KM estimator of the survival related 
to HTx is:

  

            (4)

The hazard  in (4) is generally a biased 
estimator of λ12(t; T01 = 0) because it involves patients 
that at time t must satisfy the condition (Z > T01), on top of 
conditions (T012 > t) (which is the only required by λ12(t; T01 
= 0)) and (C > t) (which can be avoided due to assumption 
1.). Consequently, estimator (4) is biased with respect to (2).

Analysis with time-varying HTx indicator

Simon-Makuch estimator

The estimator of the survival while waiting on list according 
to the Simon and Makuch method is defined hereby:

  

            (5)

In practice, all patients not yet transplanted until time 
t contribute to the estimation. Patients receiving HTx are 
censored at their time of transplantation t01

i. The hazard 
in (5) is an unbiased estimator of  = lim∆t→0 P(t < 
T02 < t + ∆t |(T02 > t)	∩ (T01 > t) ∩ (C > t))/∆t, but due to 
assumptions 1. and 2. the conditions (C > t) and (T01 > t), 
respectively, can be avoided.

Consequently, λ02(t) =  and estimator (5) is 
unbiased with respect to (1).

The estimator of the survival after an immediate HTx 
according to the Simon and Makuch method is the following:

  

            (6)

In practice, as patients receive HTx they start to 
contribute to the estimation. Computationally, their time of 
transplantation t01

i is used as left-truncation. The hazard in 
(6) is an unbiased estimator of  = lim∆t→0 P(t < T012 
< t + ∆t|(T012 > t)	∩ (T01 ≤ t) ∩ (T01 ≤ T01) ∩ (C > t))/∆t. 

Conditions (C > t) and (T01 T02) can be avoided thanks 
to assumptions 1. and 2., respectively, but the equality 

 = λ12(t; T01 = 0) would be valid only under the 

Markov assumption (the hazard would not depend on 
T01 and thus also condition (T01 ≤ t) could be avoided). 
However, in a semi-markovian context like that considered 
here, estimator (6) is biased with respect to (2).

Clock-back estimator of survival after HTx

The estimator of the survival after an immediate HTx 
according to the “clock-back” approach is the following:

  

            (7)

In practice, the observed death/censoring times of 
transplanted patients are re-scaled by subtracting their waiting 
time to HTx T01 i . The hazard in (7) is an unbiased estimator 
of  = lim∆t→0 P(t < T12 < t + ∆t|(T12 > t)	∩ (C > t))/∆t

As usual, condition (C > t) can be avoided thanks 
to assumption 1. Moreover, due to assumption 3., the 
hazard under HTx administered at time T01 = 0 is equal 
to the hazard under HTx administered at any time T01. 
Consequently,  = λ12(t; T01 = 0) and estimator (7) is 
unbiased with respect to (2).

RESULTS

Check the process memory assumptions

To check whether the data satisfy either the Markov, 
semi-Markov or none of the two assumptions (the latter 
case is often called “extended semi-markovian” process) 
we should study the impact of the waiting time T01 on the 
hazard of death after HTx [14]. If the process is markovian, 
the hazard of two patients at time t since entering on list is 
the same even if their T01 is different.

Thus, we can fit a Cox model only on transplanted 
patients using their original death/censoring times and 
using the waiting time T01 as left-truncation to account 
for the possible delayed entry in the “at risk” group. We 
include in the model T01 as the only covariate. On our 
data, the resulting effect (i.e. hazard ratio, HR) is equal 
to 2.2 (95% CI: 1.3;3.7, p=0.003), thus suggesting a 
violation of the Markov assumption. Of note, this result 
is valid to the extent that the simple proportional hazard 
model is reasonable, otherwise a model including a time-
varying coefficient is more appropriate. If the process is 
semi-markovian, the hazard of two patients at time s since 
HTx is the same even if their T01 is different. Thus, we can 
fit a Cox model only on transplanted patients using their 
re-scaled death/censoring times by subtracting the waiting 
time T01. Again, we include in the model T01 as the only 
covariate. On our data, the resulting effect is HR=1.1 
(95% CI: 0.7;1.8, p=0.731), thus suggesting that the 
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semi-Markov assumption is compatible with our data. Of 
course, this was expected since data were generated 
according to a semi-Markov process.

Kaplan-Meier estimator with time-fixed HTx indicator

The survival curves estimated by the KM analysis 
considering the HTx status fixed and known from origin 
are depicted in Figure 3. Only patients that are never 
observed to be transplanted, either because they die or their 
observation is censored before their potential time to HTx, 
contribute to the estimation of the solid line curve (according 
to equation (3)). The survival contribution while on list of 
patients who will receive HTx is ignored causing an upward 
bias with respect to the true hazard of death while waiting 
HTx and consequently a downward bias with respect to 
the corresponding survival. In practice, only patients with 
short potential death times while on list tend to be included 
in the estimation because patients with long potential times 
more likely reach the time until an available organ is found. 
In contrast, the patients contributing to the estimation of the 
dashed line curve (according to equation (4)) are only those 
who are observed to be transplanted and even their survival 
period spent on list is artificially considered as a post-HTx 
time. This causes a downward bias with respect to the true 
hazard of death after HTx and consequently an upward 
bias with respect to the corresponding survival. In fact, 
patients actually receiving HTx have to survive while on list 
for a period at least equal to their potential time to HTx, but 
this “immortal time period” is erroneously attributed to HTx.

Analysis with time-varying HTx indicator

The analysis based on product-limit estimators 
accounting for the possible shift of the HTx status in time is 

represented by Figure 4. The solid line curve is the result 
of the Simon- Makuch approach to estimate the survival on 
list (equation (5)). The estimator involves both the whole 
contribution of patients never reaching HTx and the pre-
HTx contribution of transplanted patients and, as long as 
the independence between the potential time to death on 
list and the potential time to HTx can be assumed, it is 
unbiased with respect to the true survival on list.

The Simon-Makuch approach for the survival after HTx 
(equation (6)) resulted in a biased curve (dash-dot line), 

FIGURE 2. Hazard (A) and survival (B) functions of the generated potential times of transition between states.

FIGURE 3. Survival curves according to the Kaplan-Meier 
estimator with time-fixed HTx indicator. The true potential 
survival curves are superimposed (gray lines).
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lower than the true one. This is due to the non-markovian 
nature of the data generating process. In practice, at each 
time point t the estimator attempts to calculate the hazard of 
death of an hypothetical patient immediately transplanted 
after waiting list entry by using the observation at time t since 
entry on list of patients transplanted at any time before t. 
However, in a non-markov setting, patients transplanted at 
different times are generally exposed to different mortality 
rates at time t, possibly because of the impact of time to 
HTx and/or because of the different period length spent 
after HTx. In our context, the true post-HTx hazard of death 
is a decreasing function (Figure 2A, dashed line) thus, at 
time t since entry on list, the longer is the time to HTx, the 
shorter is the time since HTx and the higher is the value of 
the mortality rate. This results in a overestimation of the true 
hazard of death of a patient immediately transplanted after 
waiting list entry with a corresponding underestimation of 
the survival probability. The dashed line curve obtained 
applying the “clock-back” estimator (equation (7)) lies very 
close to the true survival after HTx function. This estimator 
involves a calculation of the hazard of death for a patient 
immediately transplanted after waiting list entry that uses 
the observation of all transplanted patients at the same time 
point t since HTx. Adopting this “clock-back” time scale, 
the impact of the time since HTx on the mortality rate is 
automatically accounted for. Moreover, due to the semi-
markovian nature of the data generating process, the time 
to HTx does not affect the post-transplant mortality thus the 

contributions of all transplanted patients, even with different 
waiting times, can be involved in the estimation.

DISCUSSION

In this paper we showed how to summarize, using 
product limit estimators, the survival experience of patients 
included in a HTx waiting list before and after the 
intervention. In this setting, the challenging issue is due 
to the time-varying nature of the HTx administration 
which generally depends mainly on the availability of a 
compatible organ. Data were simulated allowing to check 
the performance of the methods applied. We showed that 
the naive KM estimator that ignores the possible shift in the 
HTx status and classify patients either as not transplanted or 
as transplanted from the beginning of the follow-up leads 
to biased results. This problem, known as “immortal time 
bias” is very well known among statisticians but it was 
found several times in the medical literature [15, 16, 17, 
18, 19, 20, 21]. To address this issue we analyzed data 
accounting for the time-varying HTx status. 

First, we used the Simon-Makuch method to estimate 
the survival of patients while on list showing that it 
produces reliable results. Subsequently, we focused on 
the post-HTx survival showing that, in the present context, 
it leads to downward biased results. In fact, as explained 
in [11], the Simon-Makuch estimator for the survival after 
the intervention produces valid results only within a Markov 
data generating process, where the hazard of death is 
inuenced by the time from origin (here the entry on list) 
but not by the waiting time to the intervention neither by 
the time since the intervention was administered. In many 
situations, including the one we considered, this assumption 
is not plausible. More likely, the hazard of death after HTx 
strongly depends on the time since HTx but not (or very 
weakly) from the waiting time until a compatible organ is 
found. This situation describes a semi-markovian scenario 
and valid estimation of the post-HTx survival is possible 
using the “clock back” method. This estimator is based on 
the clock back time scale meaning that for transplanted 
patients the time is measured starting from HTx.

The resulting survival curve represents the probability 
of remaining alive for an hypothetical patients transplanted 
immediately after entering on list but, due to the negligible 
affect of the waiting time to HTx, it could represent the 
survival probability of a patient transplanted at any time. 
Obviously, in a more complex situation where both the 
time since the intervention and the waiting time to the 
intervention have an impact (i.e. extended semi-Markov 
process) even the “clock-back” estimator is no longer 
correct. However, it is possible to check both the Markov 
and the semi-Markov assumptions from the data using for 
example an hazard model (e.g. Cox, Poisson regression) 
applied on the sub-sample of patients receiving the 
intervention.

FIGURE 4. Survival curves according to the Simon-
Makuch and "clock-back" estimators with time-varying 
HTx indicator. The true potential survival curves are 
superimposed (gray lines).
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Beside the common assumption of independent 
censoring, another crucial (untestable) property must 
hold in order to obtain reliable results by applying the 
Simon-Makuch and “clock-back” estimators. Namely, the 
potential time to death before the intervention should not 
be related to the potential waiting time. In a context of 
a homogeneous cohort of highly cardiopathic patients, 
the time to HTx depends mainly on the availability of 
a compatible organ and it is likely not related to the 
condition of the patients while on list.

In conclusion, we reviewed and applied non-
parametric methods for the analysis of the survival of 
patients included in a waiting list for receiving HTx. We 
enlightened the importance of testing the process memory 
assumptions (e.g. Markov properties) in order to choose 
the approach more reliable. In particular, we recommend 
the use of the Simon-Makuch method to study the survival 
of patients before the intervention and the use of the 
“clock back” estimator for the post-intervention survival in 
semi-markovian contexts where indeed the mortality rate 
depends on the time since intervention and the impact of 
the waiting time is negligible.
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