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Poisson mixture analysis

Poisson mixture distribution analysis for North 
Carolina SIDS counts using information criteria 

ABSTRACT 

Aims: In this paper, we demonstrate the use of information criteria in a finite mixture of Poisson models framework 
to choose the optimal number of clusters in the North Carolina SIDS data (Symons, et al. 1983), a set of 100 
overdispersed counts (mean = 6.67, var. = 60.55).
Methods: In addition to deriving information criteria with likelihood functions, we provide an empirical comparison 
between minimum Hellinger distance (MHD) estimation and EM estimation for finding parameters in a mixture of 
Poisson distributions with artificial data.  This is further supplemented by an analysis of Bayes error in the context of 
classification problems with mixtures of 2, 3, 4, and 5 Poisson models.
Results: Our mixtures of Poisson distributions framework identified 4 naturally occurring clusters, each of which is 
nearly equidispersed.  We determined that Robeson county has a suspiciously elevated number of counts, which we 
independently verified using 3 spatially explicit clustering methods from the literature.  Through the examples with 
artificial data, we found that a combination of BIC with an EM parameter estimation procedure is best-suited for the 
proposed framework.  
Conclusion: Using information criteria to select the optimal number of clusters from a finite mixture of Poisson 
distributions provides an effective, data-driven method for thresholding a set of counts into clusters in which the 
equivariance assumption of the Poisson model is upheld. 
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INTRODUCTION

The techniques described in this paper belong to the 
branch of machine learning that deals with unsupervised 
classification. The data have no group labels, although 
one may suspect that there is underlying group structure 
present due to heterogeneity within the population from 
which the data have been sampled. The primary goal 
is to develop tools, called mixture distribution models or 
finite mixture (FM) models, that provide group labels for 

these kinds of data. We are specifically interested in 
labeling count data since they are important for the fields 
of epidemiology and health care. Note, we will use the 
terms group, class, and cluster interchangeably.

Computational advances within the last 20 years have 
facilitated the emergence of FM modeling as one of the 
most popular ways to perform unsupervised classification 
tasks. The underlying principle behind FM modeling is that 
one treats data as having been sampled from a convex 
sum of distributions [2] [3] [4]. This idea reflects the 
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main assumption in FM modeling, which is that the data 
themselves come from a population that is segmented into 
homogeneous subpopulations [4].

The goal when we use FM modeling is to determine 
the true number of clusters that exist in a data set. We first 
estimate the maximum number of clusters that we suspect 
may exist, Gmax, based on prior knowledge of the system 
from which the data are sampled. Alternatively, see [3] 
for heuristics on how to choose Gmax. For each G = 1, 
…, Gmax, we compute information criteria scores; the true 
number of clusters in the data set is the G for which the 
information criteria are minimized.

Statistical model selection via information criteria 
exists as an alternative approach to traditional p-value-
driven statistics. The technique relies on the choice of an 
appropriate criterion that can be used to compare 2 or 
more candidate models. In this paper, we will be scoring 
AIC and BIC. Formal expressions of these criteria follow 
in Section 2.

Most algorithms that exist for parameter estimation of 
FM models are expectation-maximisation (EM) procedures. 
In addition to EM, we will use the minimum Hellinger 
distance (MHD) procedure to find parameter estimates. 
This technique was first described in [5], and extended 
for use on count data in [6]. The benefit of using a MHD 
procedure is that its parameter estimates are much more 
robust to contaminated data compared to parameter 
estimates from EM estimation [7] [8].

In this paper, we will utilize the class of minimum 
Hellinger distance algorithms popularized by Karlis and his 
collaborators [8] [9] [10] [11]. Although we did not use 
them in this paper, we also mention algorithms from Woo 
and Sriram (2007) who proposed an estimator based 
on minimizing their Hellinger Information Criterion [12]; 
and, from Umashanger and Sriram (2009) who described 
an “L2E” estimator that minimized the L2-error between 
distributions [13].

The data we use to demonstrate our mixture distribution 
analysis framework come from a study that sought to identify 
counties at high risk of SIDS in North Carolina. The value 
assigned to each county represents the number of deaths 
in infants between 28 days and 1 year old attributed to 
SIDS in a 4-year span, from 1-Jul-1974 to 30-Jun-1978.  
The data were first introduced in their entirety in [1], and 
have often been used to demonstrate various clustering 
applications in the literature.

The remainder of this paper is structured as follows: in 
section 2, we derive formulas to compute the information 
criteria scores and describe an algorithm that can be used 
to select the optimal number of clusters; in section 3, we 
introduce the concept of Bayes error. In sections 4 and 5, 
we apply our algorithm to synthetic and real data using 
MATLAB 2016b. Sections 6 and 7 are for the discussion 
and conclusion.

METHODS

Observe that the joint pmf for n observations taken 
from a finite mixture of G Poisson distributions is given in 
[8] as

    (1)

The mean parameters within each component, λg, g 
= 1, …, G, contribute G parameters to the total overall 
number of parameters to be estimated, while the mixing 
proportions, , g = 1, …, G, contribute G – 1 since- 

 . This gives a total of 2G – 1 estimated 
parameters.

Suppose we have estimated the set of parameters 
to find the model from equation (1) that best fits a given 
dataset. Let  be the maximized log-likelihood of equation 
(1), so that , where ^ denotes 
a parameter estimate. Then, the equations for expressing 
the information criteria are given below:

•	AIC = –2 + 4G – 2,
•	BIC = –2  + (2G – 1)(log n + 1).

For each G = 1, …, Gmax, where we have 
predetermined a suitable Gmax, we compute EM and/
or MHD parameter estimates to score AIC and BIC. The 
G for which one, the other, or both of these information 
criteria is minimized is deemed the optimal number of 
groups for the given set of data.

When using FM modeling to sort data, observe that 
we assign observation i to group g = 1, …, G, which we 
denote by γi = g, if the following holds:

 
That is, observation i belongs to the group where its 
posterior probability is maximised. See [2] for more 
information on this concept.

Bayes error estimation

The Bayes error is the smallest error rate that a 
classifier, e.g. a finite mixture of Poisson distributions, 
may achieve [14]. Let Cg refer to the g-th component 
in equation (1), and define  as the region in 
which the FM model classifies observations to Cg. From 
[14], the Bayes error, EB, is precisely
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It is much easier to visualize Bayes error. Suppose we 
have an artificial mixture of 2 Poisson distributions whose 
pmf is , 
where f1 and f2 refer to the usual Poisson model for the 
given mean parameters. The weighted versions of f1 and 
f2 are shown in Figure 1, not f itself. In particular, the 
red and blue regions in Figure 1 correspond to C1 and 
C2, respectively, as they were defined in the preceding 
paragraph.

Where C1 and C2 overlap, in violet, is the 
region where observations from C1 are misclassified as 
belonging to C2 and vice versa. The area of this region 
is the Bayes error. Hence, if we used the model described 
by f to classify a data set for which we know the true 
group labels, the minimum possible misclassification rate 
we could achieve is 3.42%.

Artificial data example

We constructed separate examples using artificial 
data to separately (1) compare MHD and EM parameter 
estimates for Poisson mixture models; and, (2) assess the 
component selection accuracy of models fit using MHD 
and EM parameter estimation.

Experiments 1 and 2

In our first example, we were interested in estimating 
how closely parameter estimates, recovered from random 
samples taken from a mixture of 2 Poisson distributions, could 
estimate the true Bayes error of the distribution. For each δ 
from 1 to 15 we randomly sampled 1000 values from a 
Poisson distribution with mean parameter , and another 
1000 values from a Poisson distribution with mean parameter 

δ (note: the superscripts denote experiment). We 
recorded the true Bayes error for the pair ( ), then 
recorded the Bayes error for the pair of parameters estimated 
from the artificial data using EM and MHD. We repeated this 
experiment 1,000 times for each δ.

The second example was set up in the same way as 
the first, except this time we used samples taken from a 
Poisson distribution with mean parameter 201, and a 
separate Poisson distribution with parameter δ, 
for δ = 1, …, 100. In doing so, we hoped to demonstrate 
the importance of data scale when considering Bayes error 
within our proposed framework.

Figure 2 shows the true and estimated Bayes error rates 
for experiments 1 and 2. Notice in the left-hand pane how 
the estimates are nearly identical. Further, the error rate is 
essentially negligible once the difference in mean parameters 
is 15. Contrast this with the results from the second experiment 
in the right-hand pane: we are still able to achieve negligible 
error rates but only once the distributions are much further 
apart, corresponding to  = 201 and 301.

FIGURE 1. Graphic showing the pmfs of the Poisson component models comprising the mixture model referred to as f in the text 
of section 3. In red, is the region corresponding to the first component, C1, and in blue is the region corresponding to the second 
component, C2. Where the two overlap, in violet, observations in C1 are misclassified as belonging to C2, and vice versa. The 
area of this region is the Bayes error, equal here to approximately 0.0342. 
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Experiments 3, 4, and 5

The goal of experiments 3, 4, and 5 was to 
demonstrate using the information criterion framework to 
choose the optimal number of mixture components from 
artificial datasets where we knew the true distribution. 
A total of 1000 samples were drawn 1,000 times 
from the densities summarized below in Table 1. The 
performance of our method with respect to MHD and EM 
parameter estimation, and with respect to AIC and BIC, is 
summarized in Table 2. Additionally, Figure 3 shows the 
estimated Bayes errors for these experiments. 

In every example, the average optimal number of 
groups chosen by BIC is closer to the truth than that chosen 
by AIC, suggesting that this score is less susceptible to 
model over- or under-fitting in the context of finite mixtures of 
Poisson distributions. With respect to parameter estimation, 
EM estimates lead to more accurate classifications. This 
tendency is most overt when examining the results from 
experiments 4 and 5: in particular, the parameter estimates 
from MHD seem to encourage model overfitting.

The estimated Bayes error rates shown in Figure 3 
are consistent with the results in Table 2 in that we see 
better performance from EM estimates than from MHD. The 
Bayes errors computed using EM parameter estimates are, 
on average, closest to the true Bayes error (the solid black 
line) for each experiment.

Note that for each of the 1000 trials there is 
a corresponding Bayes error estimate, however we 
constructed these boxplots using only the trials where 
the true number of groups was identified; going from 
experiment 3 to 5, this means we used 989, 983, and 
736 out of 1000 trials each for EM, and 991, 170, and 
204 out of 1000 trials each for MHD. Despite this, the 
error rates for MHD estimates in experiment 5 are still much 

higher than the true error rate.
Figure 3: Boxplots of the estimated Bayes error rates 

for experiments 3, 4, and 5 as described above, with 
the true Bayes error of the model used in each experiment 
represented by the solid black line. We only used trials 
where BIC correctly identified the true number of groups to 
create the boxplots; from experiment 3 to 5, that is 989, 
983, and 736 out of 1000 for EM, and 991, 170, and 
204 out of 1000 for MHD.

NORTH CAROLINA SIDS DATA EXAMPLE

Classifying North Carolina counties by SIDS count

Our example with real data looks at sudden infant 
death syndrome (SIDS) cases in North Carolina counties 
between 1-Jul-1974 and 30-Jun-1978. These data were 
originally published by Symons et al [1]. They used mixtures 
of Poisson distributions to sort the rate data into 2 groups 
corresponding to normal- and high-risk counties. No 
consideration was given to fitting more than these 2 groups.

The data are briefly summarized in Table 3. The 
smallest count was 0, seen in 13 counties, up to a 
maximum count of 44. The variance is one order of 
magnitude higher than the mean, suggesting the presence 
of real overdispersion that may be caused by clustering. 
In support of this, Dean’s test [15] for overdispersion 
is significant (PB = 7.23, p-value << 0.0001). Zero-
generation was restricted only to SIDS observations, so 
there was no need to consider a zero-inflated model. 

To test for heterogeneity in the data, we fit mixture models 
of 1 up to Gmax = 5 components using the EM estimates. As 
we did this, we compared the information criteria scores.

FIGURE 2. Minimum misclassification rates from experiments 1 and 2 as described above, where  λ1 =1 or 201, and  λ2= λ1+ δ.  
In the left-hand pane, the estimated Bayes error rates from EM and MHD parameter estimation are nearly identical to the true 
error, this error is mostly negligible once samples are being drawn from distributions with mean parameters at 1 and 15.  In 
the right-hand pane, the estimated errors from EM and MHD converge to the true error at different values of δ.  Moreover, we 
achieve near-perfect classification again, but only once the mean parameters are located at 201 and 300.
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RESULTS

Table 4 shows the information criteria scores for 
mixture models fitting up to 5 components to the NC 
SIDS data. Both AIC and BIC criteria select G = 4 as the 
optimal number of groups.

We show the summary statistics for each group in the 

G = 4 model in Table 5. Observe that groups 1, 2, and 
3 show near equidispersion. In group 4, the variance is 
still higher than the mean suggesting some overdispersion 
is still present. However, the amount of excess variation 
within the component is substantially less than what was 
originally observed, and is not significant according to 
(Dean’s test (; PB = 1.44, p-value = 0.08).

TABLE 1. True mixture model densities that were used for drawing artificial data samples in Experiments 3, 4, and 5.

EXPERIMENT 3: TRUE G = 3

EM MHD

G = AIC BIC AIC BIC

2 0 0 0 1

3 883 989 978 991

4 117 11 22 8

Avg.
(s.d.)

3.12 
(0.32)

3.01 
(0.10)

3.02 
(0.15)

3.01 
(0.09)

EXPERIMENT 4: TRUE G = 4

EM MHD

G = AIC BIC AIC BIC

3 0 0 217 236

4 880 983 180 170

5 120 17 603 594

Avg.
(s.d.)

4.12 
(0.33)

4.02 
(0.13)

4.39 
(0.82)

4.36 
(0.84)

EXPERIMENT 5: TRUE G = 5

EM MHD

G = AIC BIC AIC BIC

4 103 106 123 136

5 736 838 196 204

6 161 56 681 660

Avg.
(s.d.)

5.06 
(0.51)

4.95 
(0.40)

5.56 
(0.70)

5.52 
(0.72)

TABLE 2. Summary of results from experiments 3, 4, and 5, carried out as described above. The frequency with which the number 
of components are chosen is shown for each information criterion score, and for parameters estimated using MHD and EM.
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FIGURE 3. Boxplots of the estimated Bayes error rates for experiments 3, 4, and 5 as described above, with the true Bayes error 
of the model used in each experiment represented by the solid black line.  We only used trials where BIC correctly identified the 
true number of groups to create the boxplots; from experiment 3 to 5, that is 989, 983, and 736 out of 1000 for EM, and 991, 
170, and 204 out of 1000 for MHD.

No. obs. 100

Min. 0

Max. 44

Mean 6.67

Var. 60.55

TABLE 3. Summary statistics for the North Carolina SIDS data, published by Symons et al. (1983).

G AIC BIC
1 1014.29 1016.89

2 684.77 689.98

3 617.93 625.75

4 594.08 604.50

5 595.92 608.95

TABLE 4. Information criteria scores for finite mixtures of up to 5 Poisson models fit to the NC SIDS data. Notice that both AIC and 
BIC are minimized for G = 4.

C1 C2 C3 C4

No. obs. 24 51 21 4

Min. 0 2 9 29

Max. 1 8 23 44

Mean 0.46 4.57 13.38 35.50

Var. 0.26 3.29 13.05 47.00

TABLE 5. Summary statistics for each component in the mixture of 4 Poisson models chosen by the information criteria to model 
the NC SIDS data.
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We provided a map of North Carolina counties with the 
counties colored by component ID in Figure 4 using ArcMap 
10.4.1. Green counties contain the lowest counts (either 0 or 
1), and these are traditionally rural regions of North Carolina. 
Meanwhile, orange and red counties are medium-high and high 
counts, and we see that these generally correspond to larger 
metropolitan areas. The top 11 cities in North Carolina by 
population as of the 2010 U.S. Census are also shown on the 
map [16], and each of these cities is in an orange or red county.

In Figure 5, we created a bar chart of the SIDS 
data with the finite mixture model pmf overlaid for the G 
= 1 and 4 models. The model that was chosen by the 
information criteria, G = 4, is in blue. We see that the 
first two peaks of the G = 4 model follow the peaks in the 

data quite closely; the tail behavior of this model is also 
much heavier than the G = 1 model, and the G = 2 and 
3 models (not shown). The log-likelihood values, which 
we use to estimate the lack-of-fit portions of AIC and BIC, 
heavily favors the G = 4 model.

DISCUSSION

One general criticism of the Symons paper is with 
how they handled the mixtures of Poisson distributions 
problem. In brief, they found a p-value corresponding to a 
null hypothesis that the rates of SIDS deaths per 1000 live 
births were all sampled from the same distribution. Once 

FIGURE 4. Map of North Carolina counties colorized by component ID from a finite mixture of G = 4 Poisson models.  Notice that 
most of the higher SIDS counts are associated with counties where a populous city is located. The 2 counties without a city shown 
are Robeson (southwest of Fayetteville) and Onslow (southeast of Fayetteville). 

FIGURE 5. The black bars show the frequencies of observed counts in the North Carolina SIDS data set.  We overlaid the 
estimated finite mixture model pmfs for G = 1 and 4 components, and show their respective log-likelihood values in the legend.
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they determined that this p-value was sufficiently small, 
they chose to accept an alternative hypothesis that the rate 
data must have been sampled from 2 separate distributions 
instead of investigating other integer values.

Regardless of whether theirs was the correct decision, 
when we fit the same rate data to mixtures of up to 5 
exponential distributions, G = 1 was chosen. Therefore, 
at least based on the rate data they were using, there is 
no reason to suspect underlying heterogeneity if we treat 
the rates as being sampled from exponentials. That they 
used Poisson distributions and then normalized based on 
number of live births, when perhaps modeling the rates as 
exponential data would have been more appropriate, is 
our other main criticism.

Another way of handling count data such as these 
would be to use a negative binomial distribution. However, 
we fit mixtures of up to 5 negative binomial distributions and 
discovered that G = 1 was chosen, despite the clear multimodal 
behavior in Figure 5Figure 4. The negative binomial distribution 
is undoubtedly useful for modeling overdispersed count data, 
howeverthough its tendency to oversmooth heterogeneous data 
is in fact a detriment in the context of this problem and the NC 
SIDS datahese NC SIDS data.

Out of 100 counties, Symons et al. identified 15 as 
high-risk, and the rest as normal. Of these 15 counties, 
we identified only 7 of these as either high or medium-
high risk in the model: Anson, Northampton, Halifax, 
Columbus, Rutherford, Robeson, and Rockingham (listed in 
order of decreasing rate). In fact, these 7 counties found 
in common with the Symons approach were the 7 counties 
with a high rate and a SIDS count of at least 9 or higher 
in the 4-year window.

This reflects one of the major limitations of our 
approach, which is that we do not in any way normalize 
when using count data in a mixtures of Poisson distributions 
setting. It is vitally important to understand this beforehand. 
Essentially, using this tool allows one to perform data-
driven thresholding in lieu of any subjective alternative.

Given this drawback, there is still much information 
to be gained in this and other similar types of problems 
involving count data. For example, of the 4 counties in 
red corresponding to the highest SIDS counts, 2 of these 
counties do not have a highly populous city highlighted. 
One of these is Robeson county (located to the southwest of 
Fayetteville, NC), which has been identified as a majority-
minority county [17]. As of the 2010 U.S. Census, only 
29.0% of respondents identified as white; 24.3% were 
black or African American, 38.4% were American Indian 
or Alaska Native, and 8.1% were Hispanic or Latino [16]. 
Each of these minority demographics has been shown to 
have significant barriers to health care coverage.

Another limitation to point out is that our approach does 
not incorporate any spatial dependence or adjacency like 
the class of spatially-explicit clustering methods. Moran’s I 
[18], which tests for the presence of spatial autocorrelation, 
is significant (I = 0.24, p-value = 0.02). Thus, there is 

evidence which suggests spatial dependence in these 
data, though we did not consider it in our framework.

We ran Besag-Newell [19], Openshaw’s 
Geographical Analysis Machine (GAM) [20], and 
Kuldorff-Nagarwalla [21] tests in R 3.3.1 using DCluster 
[22] to check for the presence of clustering. In general, 
each of these tests looks for a group of adjacent counties 
where the collective number of observed counts is higher 
than expected, taking into consideration different factors 
depending on which of the tests was chosen. 

Openshaw’s and Kuldorff and Nagarwalla’s 
tests both identified a cluster of counties including and 
surrounding Robeson county; Openshaw’s GAM identified 
2 additional clusters, one near Anson county (the orange 
county due east of Charlotte in Figure 4) and the other 
near Northampton and Halifax counties (orange counties 
in northeast NC, along the border with Virginia in Figure 
4). Besag-Newell identified a cluster consisting of only 
Columbus county, which is due south of Robeson county, 
plus an additional cluster of Northampton and Halifax 
counties. Finally, we determined that Stone’s statistic [23] 
for Robeson county was significant (T = 2.08, p-value = 
0.01); this tested the null hypothesis that relative risks are 
constant as distances to the centroid of Robeson county 
increase, with the alternative that relative risks decrease 
with increasing distance. Although we did not explicitly 
account for spatial dependence with our approach, we 
are able to obtain similar information.

It is important to point out that the MHD procedures, 
which have been previously advocated due to being 
less susceptible to outliers, seemed to struggle in our 
framework. In fairness, none of the experiments we 
designed was set up to validate claims related to this point, 
so we will not draw any conclusions beyond stating that 
an EM procedure for parameter estimation appears to be 
a better match for our modeling framework than MHD.

Keeping this in mind, one final observation comes 
from the results of experiment 2. Given that a Poisson 
distribution with sufficiently large mean parameter can be 
approximated by a normal, it is reasonable to assume that 
the data being generated from each Poisson distribution 
would significantly overlap for smaller mean parameter 
values. In these instances, estimates that are less susceptible 
to extreme values (i.e., MHD estimates) would tend to be 
closer together and therefore lead to increased Bayes error 
estimates, while we would expect the EM estimates to be 
further apart and lead to decreased Bayes error estimates. 
This kind of behavior is evident in the right-hand pane of 
Figure 2, as the estimated Bayes error appears lower for 
the EM estimates and higher for the MHD estimates.

CONCLUSION

In this paper, we demonstrated how to use model 
selection theory to choose the optimal number of 

e12550-8



ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2017, Volume 14, Number 3

Poisson mixture analysis

components in a finite mixture of univariate Poisson 
distributions. Using the North Carolina SIDS data set, we 
provided objective results based on the data rather than 
imposing any kind of subjective restraints. While our results 
demonstrated that higher counts will be associated with 
areas of higher population, we were nonetheless able to 
implicate 2 counties. One of these, Robeson county, was 
independently implicated in 3 separate spatially-explicit 
clustering tests that we ran.

Through a series of experiments with artificial data, 
we showed that an expectation-maximisation procedure for 
parameter estimation appears better-suited for integration 
within our modeling framework versus a minimum Hellinger 
distance procedure. Further, we showed the importance of 
data scale in achieving low misclassification rates.

Future research into this problem will investigate the 
role of data scale within the context of the finite mixtures 
of Poisson distributions problem. It will be interesting 
evaluating to what extent classification rates can be 
improved by shifting count data closer to 0.
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