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Statistical modeling of complex health 
outcomes and air pollution data: Application 
of air quality health indexing for asthma risk 
assessment

ABSTRACT 

Background: When fitting statistical models for complex health outcome data; zero inflation, autocorrelation, 
confounding, and seasonality play an important role in accurately assessing air pollution risk, especially when using 
such model estimates for national air quality health indices (NAQHI) formation. NAQHI generalizes model estimates 
across all geographies and seasons and neglects area and season specific variations. The aim here is to develop 
complex statistical models, specific to the data structures and to demonstrate effectiveness of these model estimates in 
public health message delivery using NAQHI.
Methods: I fitted zero inflated, auto regressive, Poisson and Negative Binomial models with lagged effects for sparse 
asthma admissions and ambient air pollution data and compared the model risk estimates with that of the NAQHI. 
Data came from two sites, Halifax, an urban, traffic and industry polluted site and Sydney, a rural waste disposal 
polluted site, in the province of Nova Scotia, Canada. Data complexity structure was assessed by comparing the 
estimates with and without each structure.
Results: NAQHI used three pollutants, Nitrogen Dioxide, Ozone and particulate matter. I found Carbon monoxide 
in the urban site and lead in the waste disposal site as prominent pollutants with significant seasonal differences. The 
findings demonstrated severe under-assessment of asthma admission relative risk by NAQHI, when auto correlation 
and zero inflation are ignored whereby prominent pollutant effects are omitted.
Conclusion: This study demonstrated the importance of complex statistical model use and the consequences of not 
consideration of specific data structures in public health risk assessments.
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INTRODUCTION

Epidemiologic assessments of the association between 
ambient air pollution exposure and asthma morbidity 

have produced inconsistent results in different areas with 
diverse pollutant sources. Additionally, the discrepancies 
between site specific research findings may be due 
to divergence of data structures arising from seasonal 
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variations, zero inflation, autocorrelation and confounding 
among pollutants and between meteorological conditions 
and not using the appropriate statistical models that 
incorporate this complex data structures. The situation 
threatens national air quality index (NAQHI) development 
and use. This paper introduces statistical models that 
incorporate aforementioned complex data structures that 
are common in time series of sparse health outcomes 
and demonstrate the importance of use of such models in 
public health risk assessment. Though NAQHI, a health 
risk assessment index, is applicable to a wide spectrum 
of diseases that can be impacted by pollution exposures, 
the present investigation is only on asthma. The statistical 
methods described herein can be applied to any health 
outcomes and exposures with similar data structures.  

This paper will contribute to the epidemiologic 
knowledge on air pollution health risk assessment in 
areas with sparse asthma hospital admission data, 
emphasizing the need for site-season specific pollution 
index development that account for zero-inflated, ARIMA 
models. The present study asthma risk assessment is 
based on the human health hazardous gaseous and 
particulate pollutants in the environment, using ambient 
levels (that exceed thresholds) of sulfur dioxide (SO2), 
carbon monoxide (CO), nitrogen dioxide (NO2), ozone 
(O3) and particulate; total suspended particulates (TSP), 
particulate matters (PM10) and lead (Pb) levels. Those 
pollutants have been identified by the United States Clean 
Air Act as endangered to public health, if exceeded 
specific threshold levels specified by the act [1]. Therefore, 
national air quality standards have been established for 
those pollutants [2]. Though ambient pollutant levels do not 
provide accurate personal exposures, they have been used 
as surrogate measures for public health risk assessment 
and warning message delivery, due to ease of availability. 
In Canada, routine random testing is done for a multitude 
of pollutants and the ones that exceed minimal acceptable 
standards (thresholds) will be continuously monitored. This 
continuously monitored pollutant level data are available 
for public use. Therefore, all pollutants included in the 
present analyses have recorded levels higher than the 
Canadian national acceptable standards [3] at some 
point during the random testing. 

Air quality health indices are primarily used as 
predictors of environmental health risk. The Canadian 
NAQHI is based on a mathematical formula that combines, 
O3, particulate matters (less than 2.5 µg/m3 PM2.5 or less 
than 10 µg/m3 PM10) and NO2 into one index with scaled 
values ranging from 1-10 [4]. The index is extensively used 
for Canada wide public health warning message delivery. 
The combination of pollutants in NAQHI varies by country. 
The Chinese index uses PM10 and NO2 [5]; the Russian 
index includes formaldehyde, CO and TSP [6] and 
PM10; SO2 and NO2 are used in the European regional 
index [7]. I was unable to find research based evidence 
on intra country spatial variations of the index. When 

building those national indices, seasonal variations were 
ignored even in countries, where there are strong seasonal 
weather patterns. Zero inflation that arises in “small” area 
level health outcomes is unique to less populated areas 
and this feature was not taken into consideration in the 
national index development efforts. The two sites of interest 
of this paper were excluded from the Canadian NAQHI 
development process due to unavailability of PM10/2.5 data 
at the time of the index development [8]. But the Canadian 
government websites use the index to calculate and deliver 
public health risk assessments and warning messages 
throughout the country [9]. The NAQHI was originally 
developed based on mortality data and the researchers 
who developed the index carried out sensitivity analysis 
and found that the index is sensitive to asthma morbidity 
risk assessment [8]. Later other researchers have shown 
that the index derived risk estimates were significantly 
predicting asthma morbidity, emergency visit, hospital 
admission and outpatient visit risks, in densely populated 
areas, where the mortality and pollution data were used 
for the index development [10, 11]. Szyszkowicz and 
Kousha (2014) found Canadian NAQHI as a significant 
predictor of asthma emergency visits in Windsor, Ontario, 
Canada [11]. Hospital admission for asthma is of 
particular interest of this paper. To et al. (10) analysed 
Ontario provincial data comprising more than one third 
of Canada population. They supported the use of 
Canadian NAQHI as a chronic disease mobility risk 
index showing NAQHI’s ability to assess asthma hospital 
admission risk, indicating that the risk ratio significantly 
increased with each unit increment of Canadian NAQHI. 
Findings of those two studies came from large population 
based analysis and from the areas where the data were 
contributed to the index development. My research 
was motivated by the above two studies to investigate 
the relationship between NAQHI and asthma hospital 
admissions in two Canadian sites with small population 
densities and the data from the two sites were not used in 
the NAQHI development. This paper includes a statistical 
model building and epidemiologic assessment exercise 
with an analytical critique and/or appraisal to interrogate 
or support the wide overuse of air quality health indices 
geographically and making generalizability of the index 
use across different health outcomes.

The pollutants included in the present research were 
all shown to have significant effects on asthma in different 
areas but the compositions and combinations are site and 
season specific. Worldwide literature supports the effect 
of CO on asthma hospital admissions and a confounding 
effect with O3 [12, 13] as well as its’ seasonal significance 
in the warm seasons were also found [12-18]. O3 formation 
is dependent upon warm weather and CO is a precursor 
for O3. SO2 and asthma morbidity significance is masked 
by its correlation with particulate matters and O3 [12, 
14, 17-19]. CO and asthma association is known to be 
masked by NO2 [8]. Short-term PM exposure had indicated 
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increased risk of morbidity (hospitalizations and emergency 
visits) with (lag period 2-3 days) and also increased risk of 
mortality due to respiratory conditions [13, 17, 20-25]. 
Ambient Pb exposure and its association with asthma 
morbidity, among humans, were not extensively studied 
except in cases, where lead poisoning related asthma 
attacks among children in which significant effect was 
justified [26]. A review article showed that the mechanism 
that connects lead exposure to asthma was through 
oxidative stress and immune and inflammatory response 
alternations [27]. Given that there are clinical evidence, 
Pb exposure is included in the present statistical modeling 
exercise. Effect of seasonal weather changes on asthma 
and above mentioned pollutants were confirmed in other 
ecological studies [15, 28, 29]. Therefore confounding 
with climatic conditions were included in the statistical 
models in the present study. 

Significance of the use of asthma hospital admissions, 
the two study sites and the selection of the study period, 
are worth explanations. Among several asthma health 
outcomes that have been studied hospital admissions 
have the unique advantage (over emergency room and 
general practitioner visits) to be a reliable health outcome 
measure given that the person voluntarily sought a 
physician’s medical advice due to symptom exacerbations 
prior to being admitted to the hospital, at which point 
the diagnosis of asthma is justified [19]. Death may not 
be the immediate effect of air pollution, but an asthmatic 
is admitted to the hospital prior to death and hospital 
admission provides a better indicator to be used in early 
health risk assessments to deliver public health warnings. 

The two sites are situated in the province of Nova 
Scotia (NS), Canada, with notably high rates of asthma 
hospital admissions [30]. During the study period, the 
Sydney area in NS had tar ponds (a waste disposal 
site of coke ovens and steel manufacturing plants) and 
the surrounding areas were known to be Canada’s 
worst contaminated sites, even decades after closing 
down the pollutant generating industries [31]. In Sydney, 
the presence of lead, arsenic and polycyclic aromatic 
hydrocarbon were noted by researchers [31] but no 
studies have examined ambient air pollution and asthma 
hospital admissions. Whereas the Halifax site, situated in 
the capital city of the province of Nova Scotia (NS) was 
noted as having highest (among those living in six other 
Canadian cities) prevalence of wheezing among children 
and the researchers noted heavy exposure to traffic as the 
associated environmental health risk factor [32]. In addition 
to the noted traffic pollution in Halifax, there are harbour 
pollutions, pollution due to poor waste management, ship 
emissions, burning of oil for power generation, the refinery 
emissions and coastal smog conditions. Thus Halifax 
provides a prime site for urban pollution studies. The two 
sites bring perspectives on urban pollution (Halifax) and 
waste disposal pollution (Sydney). 

The study period of 1990-1998 was selected due 

to three reasons; the completeness and accuracy (since 
the database was validated for this period) of the asthma 
admission data for both sites, there were no environmental 
catastrophes noted for the study sites during this period 
and finally this period overlaps the study period of 
Canadian AQHI index formulation, 1981-2000 [8]. 
Therefore, ecological relationships that occur in a natural 
exposure setting can be explored and a direct comparison 
with the NAQHI risk assessment is warranted within the 
study period. 

The primary objective of the present study is to 
develop zero inflated Poisson/Negative Binomial ARIMA 
model based estimates for air quality health risk assessment 
indexing and to compare the results with NAQHI. Lastly 
I aim to carry out an analytical critique to interrogate 
the consequences of neglecting particular data related 
complexities; auto correlation, seasonality, confounding, 
zero inflation and exposure effect dispersed over distributed 
lag times in the formulation of air quality health indices.  

METHODS

Data

Daily hospital admissions of residents admitted to 
hospitals for asthma, in the two study sites were extracted 
for the period 1990 to 1998, from the NS provincial 
Medical service insurance (MSI) database which capture 
complete and accurate hospital admissions in the province 
since all services are paid through MSI. The International 
classifications of disease, Ninth Revision (ICD-9) codes 
listed for asthma under 493.00 to 493.91 were used 
for the identification of asthma [33]. Hospital admission 
data were extracted using postal codes surrounding the 
air pollutant monitoring station and included approximate 
areas of 97.2 square kilometer in Halifax, the capital 
city, with only one tertiary care hospital and 25.2 square 
kilometer area in Sydney with a low population density. 
Researchers have used 100 [34] and a 144 square 
kilometer areas grid [2] surrounding the monitoring station 
as exposure area coverage. The atmospheric temperature, 
humidity/precipitation, wind speed, rain fall and snow 
data were obtained from the Atmospheric Environmental 
Service monitoring stations in each study area and 
were used as confounders. Pollutant data, in the two 
monitoring stations of each site were obtained from the 
Department of Environment, Canada and the Provincial 
Department of Environment and Labour. The monitoring 
stations collect hourly means of O3, CO, NO2, SO2 and 
TSP in Halifax and Pb, TSP, PM10, SO4, SO2 in Sydney. 
Given that cumulative exposures are needed for symptom 
exacerbation, a cumulative exposure for the entire day 
(24 hours) was used for the statistical modelling. A 6 day 
moving average smoother eliminated the missing value 
problem for this data that were collected once in 6 days.
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Statistical analysis

Zero inflated Poisson/negative binomial autoregressive 
models (ZIP autoregressive or ZINB autoregressive model) 
were fitted to the asthma hospital admission daily totals 
and autoregressive terms and pollution distributed lags up 
to 2 days were added to the models. Akaike’s Information 
Criteria (AIC) that gave a minimum value guided the 
best model [35]. In what follows, Xkt represents the daily 
cumulative exposure of the kth pollutant at day t. To take 
into account the variation of hospital admissions due to 
clinic closures on weekends, a weekday indicator variable 
was included in all of the models. 

ZIP autoregression is a combination of methods 
used for zero inflated Poisson (ZIP) regression and 
autoregression models. Daily counts of hospital admissions 
data, often violates Poisson assumption of equality of the 
mean and the variance due to excess zero admission 
days, a concept known as zero inflation [36]. ZIP model 
was first introduced by Lambert (1992) to model defected 
manufacturing products [37] and later the model was 
extended to use in healthcare utilization data [38]. Lambert 
(1992) showed how the maximum likelihood method 
can be used to estimate ZIP regression model co-variate 
estimates using EM algorithm [37]. Using simulated data, 
the application of the zero inflated auto regressive time 
series model to assess hospital admission risk from air 
pollution were proven to provide optimum results [39, 40].    

ZIP model is a two-component mixture model that can 
be described as follows. Let the asthma admission on the 
day t is Yt then Yt takes values from 0, 1, …., n. 

Let P(yt|Xt)=Pt(0) then P(yt>0|Xt)=1-Pt(0)  where Xt 
represents pollution variables vector at time t. The zero 
inflated part (ie. whether or not Yt=0) is modelled using 
the logistic link function with a Binomial distribution and 
the non-zero part P(yt>0|Xt)=1-Pt(0) is assumed to follow 
Poisson distribution with log link [41]. For simplicity AR(1) 
presentation is given below.

If the conditional distribution of the ZIP process has 
the mean then 

The zero inflated part is modelled using a logistic link 
function,

       (1) 

and the non-zero model is given by

	 (2) 

Without loss of generality it is assumed that for 

stationary models the autocorrelation at lag 1 is stable 
whether the correlation is between 0 counts followed (or 
preceded) by greater than 1 counts or otherwise. Therefore 
the coefficient representing AR(1) parameter estimates 
represent lag 1 autocorrelation, g in equation (1) and 
a in equation (2), are equal for a stationary processes 
[39, 40]. I used Dickey and Fuller (1979) test to test the 
stationarity of the process [39]. 

Negative Binomial distribution is used when Poisson 
assumption of homoscedasticity (simply put when 
Mean=variance) is violated. Homoscedasticity was check 
by the departure of the ratio,

  from 1, in which case the 
negative binomial distribution was used. Where 

for yt > 0, and k is the negative binomial dispersion 
parameter. 

More general expression for an autoregressive process 
of order greater than 1 can be written as follows.

The general logistic model with lagged variables is 
given by

Similarly, the Poisson autoregressive model fitted was 

where Xk(t-j) indicates daily cumulative exposure at 
day t-j for the kth pollutant and j=0, 1,2,.., depending on 
the lag time. The notation of vt and ut represents a linear 
combination of lagged variables of Yt depending on the 
order of AR process. The joint likelihood was maximized 
using Newton-Rapson method that uses a penalized 
likelihood approach. More details of the zero inflated 
time series count data modeling are given by Hasan et al 
(2012) [40].

Model selection

I included the weekday variable, meteorological 
factors, in the zero inflated Poisson/negative binomial 
auto regressive and logistic models as confounders. 
Minimum AIC was used to select the best model using one 
by one backward elimination of variables with the highest 
p-value. Relative risk was interpreted for the increment 
equivalent to inter quartile range (IQR) increase that has 
been done elsewhere [28, 29, 42]. 
Data analysis and Computational support

The data were analysed using SAS software version 
9.3 [39].Eight models were fitted for each of four seasons 

e12092-4



ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2017, Volume 14, Number 1

Statistical modeling complex health data

and for the two sites. The time-series plots showed only the 
observed data with random missing imputed values. I used 
the methods described in Hasan et al. (2012) to fit Zip 
models to the time series of emergency room visits and air 
pollution data. To make computations simple, I followed a 
two-step process of first identification of the time series model 
with estimates for the hospital admission time series and then 
fitting a ZIP model using SAS proc countreg procedure [43]. 

RESULTS AND DISCUSSION 

There were 0-11 admissions (per day) in Halifax, with 
a daily average of 2.15 (SE=0.032). Daily mean for the 
Sydney site was 1.02 with se=0.02, 38% zero admission 
days with 0-7 admissions per day. Figure 1 contains 
mean hospital admissions for each season of the year with 
vertical bars showing corresponding confidence intervals. 
That shows a seasonal pattern with the lowest values in the 
summer and the highest values in the fall of each year. In 
Halifax, there were 36% zero admission days in the winter 
and spring seasons and 46% days in the summer. The 
downward annual trend that is apparent (figure 1) was also 
shown in other Canadian studies and the researchers noted 
this as resulting from increased asthma management efforts 
and hospital bed reductions [44]. I argue that if that is the 
case with these sites this should occur in all seasons of the 
year. Confidence intervals (CI) shown in figure 1 overlapped 
across years and seasons and therefore downward trend 
cannot be statistically justified. Here the patterns may be due 
to other reasons such as pollution control mechanisms since 
the statistical significance of the trend appeared only in the 
winter time (p<0.0001). Therefore, the seasonal models 
were fitted without trend removal. 

Multi pollutant ZIP, autoregressive, distributed lag 
models by season: Eight models, four for each of the study 
site corresponding to each of the four seasons were fitted. 

Four seasonal models fitted for Halifax are listed under 
equations (3)-(6) below and for Sydney are listed under 
(7)-(10). Of all the meteorological variables included in the 
models, there were considerable amount of confounding 
and only the temperature showed a significant effect and 
that was also only shown in the zero inflated part of the 
model. Figure 2, 3 shows the relative risk (RR) of hospital 
admissions for an unit increment for Halifax and Sydney 
pollutant levels for the non-zero model. The zero model did 
not show any significant pollutant effects. Numerical results 
for Halifax and Sydney for IQR increments are shown in 
Table 1. Note that, in Table 1, the multipollutant models 
with 24 hour cumulative exposure for certain variables are 
noted as redundant due to lack of variation over the study 
period when adjusted for other variables. 

The four final models with estimates (nearest 4th 

decimal place) for the Halifax urban site are presented 
as follows (Table 1 depicts RR, for IQR increment, and 
CI for each model equation listed in 3-10). Note that 

the confounder temperature was excluded in the model 
presentation below. 

The relative risk estimates of asthma hospital admission, 
for unit increase, from the respective models (listed above), 
in relation to each pollutant level increment was calculated 
by exponentiation the beta coefficient included in the final 
four models, one for each season, and the confidence 
intervals (CI) were calculated using e (βx±1.96*SE). Of all 
urban environmental pollutants in Halifax (see figure 2), 
CO shows consistently the highest statistically significant 
risk for asthma admissions, followed by NO2 (except 
in the spring) and TSP levels (except in the spring). A 
delayed effect of up to lag 2 is seen in the fall CO levels 
and this was consistently noted elsewhere in the literature 
[45, 46]. O3 is significant in the single pollutant models 
(results not shown here) when unadjusted for CO and this 
is due to confounding. This confounding effect is consistent 
with the literature [21, 47, 48]. NO2 was included in the 
Canadian AQHI since it was found significant for asthma 
admissions in other Canadian studies [29, 49]. Our 
finding of NO2 confounding with O3 was also noted by 
other researchers [50]. Halifax TSP levels shows significant 
effects in all but spring seasons regardless of the presence 
or absence of other pollutants (figure 2). SO2 levels are 
not significantly associated with asthma RR when adjusted 
for NO2 and O3 this is again possibly due to confounding 
as noted in the literature [51, 52]. With respect to above 
findings I suggest that the relative risk of each pollutant and 
the combination of pollutants that effect asthma admissions 
is subject to change seasonally for the urban pollutant site 
of Halifax. Moreover, of the combination of pollutants in 
NAQHI, only NO2 found to play a significant role for 
asthma admission risk assessment for Halifax urban site. 

The four final models for the Sydney (waste) site are 
listed below. 

Of all waste disposal environmental pollutants in Sydney 
(see figure 3), Pb shows consistently the highest significant 
risk for asthma. Delayed effects are seen in the winter, 
spring and summer seasons. In this waste disposal site, 
lead levels are prominent but TSP levels are redundant 
possibly because of confounding with Pb. Sydney PM10 
levels are significant in the fall and winter seasons 
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when adjusted for Pb (figure 3). In Sydney, particulates, 
including Pb are found to be contributing to increased risk 
of asthma admissions more than other pollutants. Sydney 
waste disposal pollutants also shows seasonal differences. 

It is unlikely that a one unit increment of pollutant level 
provides a reasonable estimate of exposure risk and the 
researchers have used interquartile range (IQR) of pollution 
level increment to quantify risk [27, 28, 46]. To gain a better 
understanding of the pollutant risk, I incorporated pollution 
level variation by calculating the asthma admission risk for 
interquartile increment (see Table 1). In what follows the 
discussion is based on relative risk of asthma admissions 
for an IQR increment, e βxIQR, confidence interval (CI) e 
(βxIQR±1.96*SExIQR) of pollutant levels. Table 1 displays the IQR, 
RR and CI for each urban (Halifax) and waste disposal 
(Sydney) site specific exposure models where β coefficients 

are listed under the models equations 3-10. Note that 
each site, each multipollutant model variable is listed in 
the first column and the confounder listed in the last column 
indicates the variable which is significant in a marginal 
model but became insignificant when the main variable 
in the first column is added to the model. Marginal (single 
pollutant) model results are not shown here. 

CO and NO2 in the urban site and Pb in the waste 
site contributes statistically significantly to the highest 
asthma relative risk. Urban site pollution effects in different 
seasons are different from that of the waste disposal site 
seasonal effects for two of the common pollutants, TSP and 
SO2, thereby indicating the importance of source and site 
specific analyses. The present study results show delayed 
effects up to lag 2 for CO, NO2 in Halifax and for Pb and 
PM10 levels in Sydney and this result is consistent with other 

FIGURE 1. Halifax and Sydney hospital admission (mean and CI) by year and season.
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Canadian studies [53, 54]. However, longer lag effects 
for NO2, SO2 up to 4 days were found in other Canadian 
studies [53, 54] and in small areas it is not possible to 
assess longer lag effects due to data variation redundancy 
in multipollutant models. 

The fitted models are assessed and then the estimates 
(Beta coefficients) are used in the air quality health index 
formation. From the findings Sydney models are far too 
sparse (data redundancy) and are solely driven by lead 
and other particulate levels. Due to low admissions in 
Sydney and lack of variations in the ambient pollutant 
levels most variables lack variation to provide model 
estimates and are noted as redundant (Table 1). Multi 
pollutant index formulation was only possible for Halifax 
estimates. Halifax model estimates are used for the 
goodness of fit and air quality health index assessments.

Goodness of fit based model assessment: Goodness 
of fit of the zero inflated, auto regressive seasonal 
multipollutant models presented in this paper, for Halifax 
(equations 3-6 above) is assessed first to assess goodness 
of fit to the actual data (appendix A, details and findings) 
and then to assess the significance of each of the specific 
data structures. Evidently, the models fitted reasonably 

well for zero and non-zero admissions. Next part of model 
evaluation is to compare model based asthma admission 
risk scores with NAQHI risk scores of the models fitted with 
and without CO and also set of models fitted with and 
without considering auto correlation and zero inflation. 

Implications for asthma admission risk assessment: 
Comparison of model based index with NAQHI values

In this model evaluation, traditional AQHI parameters 
needed to be adjusted due to lack of PM data and this 
is done using a linear prediction of TSP levels and the 
relationship between TSP and PM was theoretically and 
practically justified in the literature [55, 56]. 

NAQHI used pooled weighted estimates across 
11 national sites to formulate a national index and the 
details are in Stieb et al. (2008) [8]. For the purpose 
of comparison with model based estimates of this paper 
from a single Halifax site, I use the unscaled version of the 
NAQHI. Another change is that NAQHI was formulated 
based on single pollutant models beta coefficients and 
therefore scaled version includes exponentiation of each 
beta coefficient multiplied by the pollutant level and then 

FIGURE 2. Halifax Asthma relative risk for unit increase in pollutant level by season.

Note: Season_number indicates the lag time of the pollutant that was associated with asthma RR for the particular seasonal model
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subtracting 1 from each component. The model based 
index (MBI) in this paper is based on multipollutant models 
and therefore MBI is formed by multiplying exponents of 
a linear combination of beta coefficients multiplied by the 
pollutant level and then subtracting 1 to scale down to 0. 
Indices are listed below.  

The unscaled version Canadian NAQHIl, based on 
NO2, PM10 and O3 described in Stieb et al (2008) [8]
is given by

The significant beta coefficients (see Table 1 for 
significance) from equations 3-6 above displayed for 
Halifax is used to formulate model based indices (MBI) risk 
scores for each season. 
Present study model based index (MBI), with CO (MBI+CO) 
and without CO (MBI-CO) scored for each season is listed 
in Table 2 column 3 and 4. MBI with CO for winter is 

and without CO for winter was 

Daily NAQHI and two MBI (with and without CO) 
based asthma admission risk scores are calculated for each 
day based on each of the three indices for each season, 
formulated as above, using the beta coefficients, listed in 
the equations (3)-(6) and then multiplied by the respective 
ambient pollutant levels for each day of the season. Daily 
values are plotted in Figure 4 and the means and standard 
errors, aggregated for the season were calculated and 
are listed in Table 2. NAQHI scores are categorized by 
Environment Canada as low risk (category 1, below 3), 
moderate risk (category 2, 4-6) and high risk (category 
3 from 7-10) [10, 20]. Percentage of days by each risk 
category are listed in Table 2 in each row second line. For 
example winter (97.6, 2.1, 0.28) for MBI+CO indicate 
the model estimated risk scores were 97.6% days with 
low risk, 2.10% days with moderate risk and 0.28% days 
with high risk scores. In order to understand the influence 
of zero inflation, four seasonal models are fitted to asthma 
admissions without considering zero inflation and the 

FIGURE 3. Sydney Asthma relative risk for unit increase in pollutant level by season.

Note: Season_number indicates the lag time of the pollutant that was associated with asthma RR for the particular seasonal model

e12092-8



ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2017, Volume 14, Number 1

Statistical modeling complex health data

corresponding risk scores are listed in column 5 of Table 
2 and the values are plotted in Figure 4 lower left panel. 
Another four models are fitted without autocorrelation and 

the model resulting scores are plotted in Figure 4 lower 
right panel and the risk scores are summarized in column 
6. Model based indices (MBI+CO, MBI-CO without 

TABLE 1. Adjusted relative risk of asthma admissions for IQR increments of pollutant levels.

Season/model Pollutant IQR Relative Risk (RR)
(95% CI) Pollutant lag days Confounder

Halifax (urban site) Winter 
(Model equation (3))

CO (ppm) 9.8 1.16 * (1.09-1.23) 2 O3

NO2 (ppb) 211.8 1.16* (1.01-1.33) 0 SO2, O3

SO2(ppb) 214.8 0.84mns (0.71-1.01) 0 O3, NO2

TSP (µg/m3) 168.0 1.20* (1.11-1.31 1 None

O3 (ppb) 357.6 1.08ns (0.95-1.23) 0 CO, NO2

Halifax (Urban site) Spring 
(Model equation (4))

CO ppm 7.4 1.32* (1.18-1.47) 0 O3

NO2 ppb 257 1.28ns (0.95-1.74) 0 SO2, O3

SO2 ppb 244.5 1.001ns (0.76,1.31) 0 O3,NO2

O3 ppb 326.4 0.89* (0.81-0.98) 1 CO, NO2

TSP µg/m3 156 1.08ns (0.98-1.19) 1 none

Halifax (Urban site) Summer 
(Model equation (5))

CO ppm 10.6 1.11* (1.05-1.17) 1 O3

NO2 ppb 210.8 1.33* (1.12-1.54) 2 SO2, O3

SO2 ppb 193.0 0.88ns (0.65-1.11) 2 O3, NO2

O3 ppb 320.4 0.95ns (0.83-1.08) 2 CO, NO2

TSP µg/m3 132 1.16* (1.08-1.24) 0 None

Halifax (Urban site) Fall 
(Model equation (6))

CO ppm 13.3
1.14* (1.02, 1.27)
0.91ns (0.81, 1.02)
1.13* (1.01, 1.26)

0
1
2

O3

NO2 ppb 219 1.26*(1.05, 1.51) 2 SO2, O3

SO2 ppb 182.4 2.69ns (0.31-23.54) 0 O3, NO2

O3 ppb 314.4 0.55ns (0.03-9.83) 0 CO, NO2

TSP µg/m3 156 1.12* (1.04-1.20) 0 none

Sydney (waste site) winter 
(model equation 7)

Pb µg/m3 0.36 1.55*(1.003-2.40) 1 None

PM10 µg/m3 192.0 1.08*(1.02-1.14) 2 Pb, TSP

SO2 ppb 81.0 Redundant - None

TSP µg/m3 480.0 Redundant - PM10

Sydney (waste site) Spring 
(model equation 8)

Pb µg/m3 0.36 1.46* (1.14-1.89) 2 PM10

SO2 ppb 41.7 Redundant - None

TSP 456.0 Redundant - None

PM10 µg/m3 120.0 Redundant - None

Sydney (waste site) Summer 
(model equation (9))

Pb µg/m3 0.24 1.30*(1.03-1.65) 0 None

SO2 ppb 33.26 1.13*(1.04-1.22) 2 None

TSP µg/m3 258.0 Redundant -- None

PM10 µg/m3 168.0 Redundant -- Pb

Sydney (waste site) Fall 
(model equation (10))

Pb µg/m3 0.24 0.99ns (0.94-1.06) 0 PM10

PM10 µg/m3 156 1.08* (1.01-1.15) 2 Pb

SO2 ppb 57.4 1.05ns (0.99-1.11) 0 PM10

TSP µg/m3 432.0 Redundant -- None

*Highly significant, mns =marginally non-significant, ns=non-signficant; lag days=0 for same day admissions
Confounder = Significant in the marginal model and insignificant when the confounder is added to the model
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FIGURE 4. Model based relative risk with and without CO, auto correlation and zero inflation- comparison with aqhi based relative risk

TABLE 2. Mean measures of Canadian air quality index, model predicted index with and without CO levels for Halifax (rescaled 1-10).

Season
Index based mean + SE for each season and (% days in risk category) with significance

NAQHI  MBI+CO  MBI-CO MBI+CO, no zero 
inflation MBI+Co without AR

Winter (1.87+0.01)
(99.9, 0,0.1)

(2.01+0.01)
(97.6,2.1,0.28)

(1.69+0.01)
(99.9,0.14,0)

(2.02+0.01)
(98.5,1.3,0.3)

2.20+0.02
(96.7,2.9,0.4)

Spring (1.86+0.01)
(100,0,0)

(2.37+0.02)
(60.1,34.5,5.3)

(1.57+0.01)
(100,0,0)

(2.22+0.02)
(97.3,2.7,0)

2.74+0.03
(70.8,25.9,3.3)

Summer (1.81+0.01)
(99.9,0.1,0)

(2.46+0.02)
(73.7,22.0,4.3)

(2.26+0.02)
(93.5,4.7,1.8)

(1.23+0.01)
(100,0,0)

5.16+0.10
(9.3,20.5,70.3)

Fall (1.82+0.01)
(100,0,0)

(2.05+0.02)
(93.1,5.3,1.6)

(1.93+0.01)
(99.7,0.3,0)

(2.58+0.03)
(90.4,5.4,4.2)

2.96+0.03
(63.9,31.3,4.9)

P value  0.445 0.0001 0.0001 0.0001 0.0001

p-value for chi square test of independence between season and risk category 1=low, 2-moderete and 3=high.
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zero inflation and without auto correlation) are developed 
based on asthma hospital admissions and therefore the 
estimates listed in Table 2 correspond to asthma admission 
relative risk. 

According to the results shown in figure 4 and Table 
2, the Canadian NAQHI underestimates the Halifax, 
urban pollution based asthma admission risk. This is in an 
area where CO showed highly significant effect on asthma 
admissions. In terms of risk categorization NAQHI would 
categorize as no risk in all seasons and the MBI+CO 
would categorize as 34.5% and22% days as moderate 
risk for spring and summer seasons respectively. More 
over NAQHI would miss 5.3% and 4.3% high risk days 
in the spring and summer seasons respectively.  Without 
CO the risk is lower and closer to NAQHI based risk. Zero 
inflated models estimate the effect of having any admission 
and exclusion of zero inflation seriously underestimates 
the asthma risk (Table 2, Figure 4). Zero inflated models 
estimate the effect of having any admission and the zero 
inflation part of this study is mostly accounted by the 
week day and temperature variations. Clearly, the zero 
inflation effects are prominent in the spring and summer 
seasons, during which time a clear underestimation is 
displayed without zero models (figure 4, Table 2). Asthma 
admission time series are auto correlated and the fitted 
models with and without autocorrelation show significant 
differences. There are serious overestimation, especially 
in the summer and fall seasons, when autocorrelation is 
ignored. Autocorrelation, makes the lower values staying 
lower and higher values staying higher. Overestimation 
is higher in warmer seasons, summer and fall, where the 
autocorrelation is larger than the cooler seasons of winter 
and spring. Moreover, no zero inflation model based risk 
scores without auto correlation (AR part) certainly provide 
significantly different risk scores. This indicates that the use 
of NAQHI for Halifax asthma admission risk assessment is 
problematic without incorporation of local level estimates 
that are coming from complex models particularly suited to 
complex data structures. Another significant feature of the 
local indices is inclusion of delayed effects, which were 
ignored in NAQHI.   

These results suggest that the risk of asthma admissions 
is highly sensitive to local level pollutant combination effects 
that vary by season. There are few Canadian studies that 
have explored AQHI and asthma admissions and the 
lowest AQHI was found in the fall season (3.18+1.19) 
and the highest (3.2+0.02) was recorded for summer 
[10,11]. Congruent with the literature, the highest value in 
the present model is also in the fall (Table 2). 

CONCLUSION

The findings of this paper suggest that the complex 
model fitting introduced herein enable accurate prediction 
of asthma hospital admission relative risk. In Canada 

NAQHI is recommended to provide advice to patients 
by family physicians [4]. Though two other Canadian 
city based studies [10, 11] found NAQHI as a good 
predictor of asthma admission risk evaluation, the model 
based estimates of this paper prove the opposite. The 
researchers who formulated NAQHI found that the 
mortality based NAQHI as having weak correlation 
with hospital admissions. I find the Canadian NAQHI 
seriously underestimates Halifax fall asthma admission 
risk with sparse (zero admissions) data and therefore 
stresses the importance of using an index that includes CO 
levels for urban small city specific air quality health risk 
assessment and also to use a model that fits well with site 
specific complex data structures. Even the model without 
CO provided lesser AIC indicating that the site specific 
indices provide accurate predictions. Lead is a prominent 
contributor in waste disposal site asthma risk. 

This study has several limitations. Ecological time 
series studies have limitations that assume ambient exposure 
is homogeneous across all genders, age groups and 
areas. Besides methodological complexity, the present 
study findings indicates that it is vital to include local level, 
ambient air pollution data structure specific modeling in 
estimating asthma morbidity health risk. Further it is revealed 
the importance of consideration of season specific models 
that incorporate zero inflation and auto correlation in the 
estimation and risk assessment even when the average 
ambient pollution levels are below the specific standards.  

APPENDIX A: GOODNESS OF FIT OF THE MODEL

The whole model goodness of fit was assessed, 
by comparing the model estimated probabilities based 
asthma admissions with actual asthma admissions for each 
season for Halifax. Using the model (3-6 equations) based 
probabilities for x number of admissions (x=1, 2,…11) 
was calculated by multiplying the total number of days. 
Note that zero admission days were calculated using zero 
inflated models (not shown here). Chi-square goodness of 
fit statistics follows 10 degrees of freedom 
and the chi-square probability p > 0.05 indicated a 
significant goodness of fit.
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