Is vaccination good value for money? A review of cost-utility analyses of vaccination strategies in eight european countries

Marco Barbieri (1), Stefano Capri (2)

Centre for Health Economics, University of York, Heslington, York Y010 5DD, UK
School of Economics and Management, Cattaneo-LIUC University. Corso Matteotti 22, 21053 Castellanza (VA), Italy.

CORRESPONDING AUTHOR: Dr. Marco Barbieri - Via Cracovia 23, Bologna, Italy. - Tel. 0039 339 2714439 - email: mc.barbier@libero.it

DOI: 10.2427/11853

Accepted on July 4, 2016

ABSTRACT

Objective: The objective of this study is to review published cost-utility analyses of vaccination strategies in eight European countries and to assess whether there are differences in cost-effectiveness terms among countries and vaccinations.

Methods: A systematic search of the literature was conducted using the National Health Service Economic Evaluation Database and the PubMed database. Cost-utility analyses of any type of vaccination that used quality-adjusted life years (QALYs) as measure of benefit and conducted in Belgium, France, Germany, Italy, Spain, Sweden, the Netherlands or the UK were included.

Results: A total of 94 studies were identified. As a result of our search methodology, the vast majority of studies were conducted in the Netherlands or UK (33 and 30 studies, respectively). The most frequent vaccination types were against Human Papillomavirus (HPV) with 23 studies, followed by vaccination against pneumococcal infections (19 studies). The analysed vaccinations were generally cost-effective but with high variability. Considering an incremental cost effectiveness ratio (ICER) of 40,000€/QALY, we noticed that the following vaccinations studies are below this threshold, i.e. all varicella and influenza (with one outlier) studies, 90% of the studies for HPV and 75% of the studies for pneumococcal vaccinations. Rotavirus vaccination was considered as not cost-effective, with only 30% of studies below the threshold of 40,000€/QALY. There was no clear trend for vaccinations being more cost-effective in some countries. **Conclusion:** The published literature has shown that vaccination strategies are generally cost-effective in European countries. High heterogeneity in the results among studies and countries was found.

Key words: Vaccinations, Cost-utility, European Countries, Systematic Review

INTRODUCTION

Immunisation through vaccination is one preventive intervention with the potential to bring economic benefits in addition to health benefits of reduced mortality and morbidity. In 2012, a systematic review has shown that vaccines are cost-effective in low and middle-income countries [1]. Other studies have investigated the value for money of a single vaccination in developed countries [2, 3] or the cost-effectiveness of several vaccination strategies

ORIGINAL ARTICLES

in a single country [4]. However, there is no study to date that has considered the cost-effectiveness of all available vaccines in several European countries. Although it has been proved that vaccination is likely to be cost-effective in most countries, it is unclear if some vaccinations are more efficient than others or if there are some countries where the same vaccination policies are more cost-effective. For example, some vaccines might have benefits only over a relatively long time-horizon (e.g., Human Papillomavirus (HPV) vaccine for young girls), whereas others can provide immediate or short-term benefits (e.g. influenza or rotavirus vaccines). In addition, it is unclear whether this has consequences on the value for money of these strategies. There are also epidemiological and clinical practice differences among countries that could lead to a different impact of vaccination. This might be related also to different surveillance systems (also in developed countries) that can in some circumstances underestimate the real spread of the disease. Finally, some age-groups or some individuals at high risk for specific diseases could mostly benefit from vaccination and it is unclear whether it would be better to vaccinate only a specific group of individuals or provide universal vaccination. This might depend also on how much the disease is common in the population and on the impact of herd immunity effects. In this analysis, we attempt to answer these questions by reviewing the published costutility analyses of vaccination strategies in eight European countries and by assessing the possible trend for some vaccinations being more cost-effective options than others.

REVIEW

Methods

A search of the literature was conducted using two electronic databases: the National Health Service (NHS) Economic Evaluation Database (EED) and PubMed. The following inclusion criteria were applied:

- 1. Full economic evaluations of any type of vaccine and vaccination
- 2. Cost-utility analysis with quality-adjusted life years (QALYs) used as outcomes measure
- Conducted in 8 European countries (Belgium, France, Germany, Italy, Spain, Sweden, the Netherlands, the UK)
- 4. Published in English language
- 5. Full published articles (no conference abstracts, posters, grey literature etc)

The choice of the eight mentioned European countries is based on a previous study conducted by Barbieri et al., that had shown that the majority of published economic evaluations on drugs in Europe was performed in those settings [5]. In addition, these eight European countries were those with the most references identified and we focused the analysis only on these. The NHS EED was initially searched (June 12, 2013), as it includes only full economic evaluations, using the following search strategy: (VACCIN*) AND (QALY*) over a publication period from 1960 to present. Additional searches were performed using the keywords of each of the eight countries of interest (Belgium, France, Germany, Italy, Spain, Sweden, the Netherlands and the UK) plus SCOTLAND, ENGLAND and WALES.

Studies were analysed and compared in an attempt to explain the reasons behind the differences in the final incremental cost-effectiveness ratios (ICERs). We chose not to inflate study results to a single year not to use Purchasing Power Parities (PPPs) conversions since we aimed to assess whether a vaccine was cost-effective or not in each country at the time of each study and in each specific setting. The results of the searches are presented in the next paragraphs and in Figure 1.

RESULTS

The results of the NHS EES search were as follows: 213 total references with no country restriction, which fell to a number of 128 references for the main eight countries. The search using the additional three keywords SCOTLAND, ENGLAND and WALES did not identify any further relevant study. After excluding duplicates and considering multicountry studies, a total of 102 studies were finally identified, 41 of which were excluded for the following reasons: 33 referred to other countries (19 were conducted in the USA), one was not published in English language, six did not focus clearly on vaccination strategies and one was not a full economic evaluation. Thus, 61 studies were finally included.

In PubMed, a first search was run on July 8, 2013 using the following search strategy: (vaccin*) AND (QALY*) without any country restrictions or time restriction. A total of 267 studies were identified. After excluding 43 references that had already been identified in the NHS EED database, 199 were excluded for the following reasons: 135 referred to other countries (61 were USA studies), 32 included no vaccination, 14 were in non-English language, 12 were reviews and 6 did not include cost per QALY or were not full economic evaluation. Overall, a total of 25 relevant studies were included in the spreadsheet (Figure 1).

On 21st of September 2013, a further search was carried out in the PubMed database to identify potential missed references using alternative search strategies, supplemented by a manual search of references lists of selected articles found in the first round of the search. The additional search used the following strategy: (vaccin*) AND (qualit*) AND (cost*) without any country restrictions over a publication period from 2000 to present. A total of 836 studies were identified and after excluding nonrelevant studies and references that had already been

identified, six additional studies were included, leading to a total of 92 relevant references. Only two studies were published in the 1990s, 53 studies between 2000 and 2010, and 39 between 2011 and 2013. Figure 1 summarises the findings of the review.

In general, the majority of studies focused on the value for money of HPV vaccination and pneumococcal vaccination, with respectively 23 and 19 studies (Table 1). The other infectious diseases were represented by a sufficient number of studies, as rotavirus with 13 studies, influenza with 12 and varicella/herpes with a total of 11 combining the two infections. For the remaining vaccinations, the number of studies were comprised between one and five. The vast majority of studies were conducted in the Netherlands (33) and UK (30), while we reviewed 11 studies in Belgium and between five and ten in each of the lasting countries (Table 2). Only few studies reported not cost-effective results, and in many cases, the incremental cost-effectiveness ratios (ICERs) were below the threshold of 40,000€/QALY, or even dominant,

particularly when the societal perspective was used. When considering the variability of results, the highest homogeneity was found in the HPV studies and the lowest in rotavirus vaccination.

HPV vaccination

The summary measures of the analysis are presented in Table 3. Methodology, study population and results are particularly homogeneous among all studies. HPV vaccines were cost-effective given standard thresholds: the ICERs ranged from 5,525 to 32,665€/QALY from the payer perspective. Only four studies, in the Netherlands, evaluated the vaccines also from the society perspective with a range of 18,472 to 53,500€/QALY for the ICER. Publications are the most recent of the entire sample of the reviewed studies (2008-2013), given the new technology. All studies had a lifetime horizon and used a decisionanalytic model, either transmission dynamic model or

TABLE 1. Number of studies by type of vaccination.

TYPE OF VACCINATION	NUMBER OF STUDIES
Human Papillomavirus	23
Pneumococcal	19
Rotavirus	13
Influenza	12
Varicella/Herpes zoster	1 1 (6 varicella+ 5 Herpes zoster)
Meningococcal (B, C)	5
Pertussis	5
Hepatitis (A, B)	3
S. pneumoniae (SP) or Neisseria meningitidis (NM)	1
Total	92

TABLE 2. Number of studies by country.

COUNTRY	NUMBER OF STUDIES
The Netherlands	28 (+5) = 33
UK	25 (+5) = 30
Belgium	8 (+3) = 11
Italy	6 (+2) = 8
France	6 (+4) = 10
Germany	5 (+4) = 9
Spain	4 (+2) = 6
Sweden	3 (+2) = 5
Multicountry (Ned 5, Ger 4, UK 5, Fra 4, Swe 2, Bel 3, Ita 2, Spa 2)	7
Total	92

The numbers under brackets represent the multicountry studies.

Markov model. Assumptions about the age of starting vaccination affect the cost-effectiveness of HPV vaccination with a more efficient ICER by starting at early age (12 years). Also the discount rate and the price of vaccine impacted the ICER, particularly in the models published in the Netherlands.

Focusing at country level, the three studies conducted in Belgium showed ICERs of 10,546, 32,665 and $9,171 \in /QALY$, respectively [6-8]. These studies used the same comparisons in the same population (in the base case at least), but the study by Thiry et al. assumed the use of a booster dose of HPV vaccine at age 22 [7], and this might explain the higher ICER compared to the other two studies (the addition of a booster represented the most influential input also in the paper by Annemans and colleagues [6]). In a scenario without the booster dose at age 22, the ICER for vaccination was reduced to $\in 14,382$. The two French studies showed very similar ICERs (9,706 and 13,809 $\in /QALY$) [9, 10], as the two German studies (5,525 and 10,530 $\in /QALY$) [11, 12]. In Italy, the study by Mennini and colleagues reported an ICER of 9,569€/QALY [13], while La Torre et al. reported an ICER of 22,055€/QALY [14]. One of the reasons for this difference might be the use of the same discount rate for costs and benefits in the La Torre paper (3%), while Mennini et al. applied a higher discount rate for costs (3%) than benefits (1.5%). In the third Italian study by Favato and colleagues, the ICER for vaccination compared to screening alone ranged between 12,013 and 15,890€/QALY [15]. Discount rate was a very important parameter in most of HPV cost-effectiveness analyses (given the potential large delay of benefits for girls that receive the vaccination at 12 years). This was shown in the Dutch paper by O'Mahony et al. where the ICER for HPV vaccination compared with screening alone ranged from 22,100 to 29,900€/QALY when a 4% discount rate was applied to costs and 1.5% to benefits, but this rose to 101,700€/QALY applying a 4% discount rate to both costs and benefits [16]. In the other eight studies conducted in the Netherlands (one multicountry that included also the UK), the ICER was below the

Country	No. of studies	Patient population	Intervention (I) Comparator (C)	Perspective	Range ICER €/QALY (or £/QALY for UK)
Belgium	3	12-year-old girls (also from 12- to 40-year-old with increments of 2 years in 1 study)	I: Bivalent (1 study), Quadrivalent (2) C: Conventional screening	Third party payer (TPP)	9,171-32,665 (12 years)
France	2	12- or 14-year-old girls	l: Bivalent (1), Quadrivalent (1) C: Conventional screening	ТРР	9,706-13,809
Germany	2	12-year-old girls or 12- to 17-year-old girls	I: Quadrivalent (2) C: Conventional screening	TPP	5,525-10,530
Italy	3	12-year-old girls (also 15, 18, 25 in 1 study)	l: Bivalent (1), Quadrivalent (2) C: Conventional screening	TPP	9,569-22,055
The Netherlands	9	12-year-old girls (6 studies) range 12-50 years in other studies	I: Bivalent (8), Quadrivalent (1) C: Conventional screening/no vaccination	TPP (4) Society (4) Not reported (2)	5,815-19,429 18,472-53,500 19,900-29,900
UK	5	12-year-old girls (also possible catch-up at different ages in 2 studies)	I: Bivalent (3), Quadrivalent (3) Conventional screening/no vaccingtion	TPP	5,917-22,474

TABLE 3.	Overview o	of published	Human	Papillomavirus	(HPV)	vaccination	cost-utility	models.
----------	------------	--------------	-------	----------------	-------	-------------	--------------	---------

The numbers between brackets represent the number of studies concerned.

Note: 1) No studies on HPV vaccination were found in Spain and Sweden; 2) 1 multicountry study (UK and Netherlands); 3) The ranges of ICERs reported represent minimum and maximum values found in the base case of the various studies found for each country.

threshold of 50,000 \in /QALY in the seven analyses that used a 4% discount rate for costs and 1.5% for benefits [17-23] and slightly over this threshold (53,500 \in /QALY) in the only study that applied the same discount rate for costs and benefits (3%) [24]. It should be noticed that the Netherlands was the only country where the perspective of the society was adopted in the majority of the analyses (as recommended in the Dutch guidelines). Finally, relatively similar findings were found in the UK (one multicountry analysis that included also the Netherlands) [23, 25-28] and the ICER ranged from 5,882 to 22,474 \pm /QALY with most studies showing ICERs close to the threshold of 20,000 \pm /QALY. UK analyses appear very similar in terms of intervention compared, population considered, methods adopted and data sources.

Pneumococcal vaccination

The findings of the pneumococcal vaccination studies showed ICERs value generally below the thresholds (Table 4). Only in four studies (three in the Netherlands, one in the UK), the vaccination resulted not cost-effective, and the study population consisted of infants in all cases. On the opposite, the vaccination was always cost-effective in the elderly. Herd immunity assumption might change the results from not cost-effective to cost-effective. Vaccines including a higher number of serotypes were generally more cost-effective or dominant with respect to vaccines with less serotypes (e.g., PCV10 over PCV7 or PCV13 over PCV10).

Pneumococcal vaccination in Belgium was investigated in two studies, both multicountry, that showed that PCV-14 or PCV-23 are likely to be cost-effective in an elderly population (22,847 and 25,907€/QALY in the two analyses) [29, 30]. In one of these two multicountry studies, France was included and showed a similar ICER (19,182€/QALY) [29]. A total of four studies were conducted in Germany (two multicountry) [30-33]. Two analyses showed the dominance of PCV-10 over PCV-7 and PCV-13 over PCV-10 in infants and young children [31, 32]. Very similar results were found in the other two studies that showed, respectively, the cost-effectiveness of PCV-23 vaccination in adults at high-risk and elderly (17,065€/QALY) and of PCV-14 or PCV-23 in the elderly (17,093€/QALY) [30, 33]. The same conclusions were obtained in two Italian studies that also showed, in the elderly population, the cost-effectiveness of PCV-13 (16,987€/QALY) and of PCV-14 or PCV-23 (16,544€/ QALY) [30, 34]. Less homogenous results were obtained

Country	No. of studies	Patient population	Intervention (I) Comparator (C)	Perspective	Range ICER €/QALY (or £/QALY for UK)
Belgium	2	>65 years	I: PCV-7 (1); PCV-14, PCV-23 (1) C: No vaccination	TPP (1) Society (1)	22,847-25,907
France	2	>65 years	I: PCV-7 (1); PCV-14, PCV-23 (1) C: No vaccination	TPP (1) Society (1)	17,444-19,182
Germany	4	Infants and young children (2) >65 years (1) Adults and elderly (1)	PCV-10 vs PCV-7 PCV-13 vs PHiD-CV, PCV-7 PCV-23 vs no vaccination PCV-23 or PCV-14 vs no vaccination	TPP (3) Society and payer (1)	PCV-10 dominated PCV-7; PVC-13 dominated PHiD-CV 17,065-25,687 (PCV- 23 and PCV-14 over no vaccination)
Italy	2	>65 years	I: PCV-13 (1); PCV-14, PCV-23 (1) C: No vaccination	TPP (2)	16,544-21,493
The Netherlands	7	>65 years (2) Infants (5)	I: PCV-7 (3), PCV-13 (2), PCV-7, PHiD-CV and PCV-13 (1), PCV- 14 and 23 (1) C: No vaccination (6), PCV-7 and PHiD- CV (1)	TPP (2) Society (5)	PCV13 dominated PCV10 and 38 over PCV7; PCV-7 over no vaccination 14,000- 113,891 PCV-14 and 23 over no vaccination 13,740 PCV-10 or PCV-13 over no vaccination 14,416-approx. 50,000
Spain	3	>65 years (2) Infants (1)	I: PCV-7 (1), PCV-13 (1), PCV-14 and PCV- 23 (1) C: No vaccination	TPP (2) Society (1)	10,407-12,027
Sweden	5	>65 years (2) Infants (3)	I: PCV-7 (2), PHiD- CV(2), PCV-14 and 23 (1), PCV-13 (1) C: no vaccination (4), PCV-13 (1)	TPP (2) Society (3)	PCV-13 dominated PHiD-CV PHiD-CV dominated PCV-13 23,657-32,675
UK	6	>65 years (2) Infants (4)	I: PCV-7 (2), PCV-13 (2), PHiDCV (1); PCV- 14 and 23 (1), PCV- 13 and 23 (1) C: No vaccination (5), PCV-7 (1)	TPP (5) Society (1)	PHiD-CV dominated PCV-13 PCV-13 cost-effective over PCV-7 in 100% simulations PCV-13 plus 23 in high-risk children not cost-effective 13,920-14,892 (Scotland) 17,228-59,945 (Eng/Wal)

TABLE 4. Overview of published pneumococcal vaccination cost-utility models.

The numbers between brackets represent the number of studies concerned.

Note: 1) Three multicountry studies; 2) The ranges of ICERs reported represent minimum and maximum values found in the base case of the various studies found for each country.

PCV: Pneumococcal conjugate vaccine; PHiD-CV: Pneumococcal non typeable Haemophilus influenzae protein D conjugate vaccine.

in the Netherlands [30, 32, 35-39]. Five of the seven Dutch studies on pneumococcal vaccination focused on the population of infants and young children. Among these, two studies, that assessed the cost-effectiveness of universal PCV-7 vaccination in infants, ended up with very different ICERs (71,250 and 14,000 \in /QALY, respectively) [35, 36]. The reason for this difference

appears to be the inclusion or exclusion of herd immunity, which is considered in the Hubben study but not in the Bos analysis [35, 36]. This point is explicitly reflected in a study by Rozenbaum et al. that found an ICER of $72,360 \notin QALY$ for PCV-7 in infants when herd effects were not considered but a much lower ratio (16,750 $\notin QALY$) when these indirect effects were included [38].

toph

Similarly, another study by Rozenbaum et al. showed that the cost-effectiveness of PCV vaccines (PCV-7, PCV-10 or PCV-13) is strongly influenced by vaccine price and doses and by herd immunity assumptions [37]. The other Dutch studies conducted on the elderly population showed cost-effective results (13,740 and 14,416 $\!$ QALY) [30, 39]. As regards Spanish studies (three studies, two multicountry), similar findings were obtained for pneumococcal vaccination both in the elderly and in infants (compared to no vaccination) with ICERs ranging from 10,407 to 12,027€/QALY [29, 30, 40]. Also in Sweden (five studies), PCV vaccination always resulted cost-effective, regardless of the population studied (elderly or infants) and number of serotypes included in the vaccine [29, 30, 41-43]. However, also in Sweden, two elements previously emphasised were confirmed: a) vaccination with more serotypes are cost-effective or dominant compared with those with less serotypes; b) the inclusion of herd immunity has a very strong effect on ICERs. Finally, in the UK, key results of the six studies selected can be synthesised as follows: pneumococcal vaccination appears not costeffective in infants (59,945£/QALY) unless herd immunity is included; vaccination instead could be cost-effective only in certain groups of high-risk adults (those with chronic liver disease) and in the elderly [29, 30, 44-47].

Rotavirus vaccination

In all studies, the societal perspective was analysed and in some cases, the payer perspective as well (Table 5). These assumptions strongly influenced the results, which were generally cost-effective from the societal perspective (ICERs often lower than 50,000€/QALY and in some cases dominant), but not cost-effective from the payer perspective. Regarding the two available vaccines, RotarixTM and Rotateq, the former was always more costeffective, probably due to the lowest number of doses (two vs. three). Assumptions about herd immunity, hospitalisation risk, work lost by caregivers and incidence of the infections explained most the variability of the results.

Italy was the country with the best results in terms of value for money for rotavirus vaccine, probably due to the higher probability of hospitalisation following a diarrhoea episode compared to the other European settings. In the study by Panatto et al., the ICER of vaccination with RotarixTM compared to no vaccination in new-borns was 9,186€/QALY using the third-party payer perspective, while it was dominant from the societal viewpoint [48]. Higher ICERs were found in the other countries. In Belgium, in the two studies identified (one multicountry), both vaccines were cost-effective from the societal perspective (7,572 and 30,227€/QALY), but not from the third-party payer perspective (using a threshold of 50,000€/QALY) [49, 50]. The same conclusions were obtained in the only Spanish study identified, with both vaccines cost-effective

at a threshold of 50,000€/QALY using the societal perspective but not from the third-party payer perspective [51]. The 3 French studies (one multicountry) showed contradictory results, as in one study, the ICER was above 130,000€/QALY, in another study over 60,000€/QALY (from the healthcare provider perspective) and in a third one lower than 50,000€/QALY [50, 52, 53]. The reasons for these differences are unclear, although it should be noticed that the study with the lowest cost-effectiveness ratio was the only one that used a lower discount rate for benefits (1.5%) than for costs (3%). However, since benefits for rotavirus vaccination generally occur in the first years of life, it is unclear if this could be a key element to explain the different findings. Assumptions on disease incidence, hospitalisation and indirect protection might be other influential parameters. The majority of the studies on rotavirus were conducted in the Netherlands (six) [50, 54-58]. In three studies that adopted both the payer and the societal perspective, the ICERs resulted higher than 50,000€/QALY from the thirdparty payer viewpoint and lower than this threshold from the societal viewpoint [50, 54, 55]. In the other three studies that used only a societal perspective, ICERs were quite different, ranging from a minimum of 15,600 to a maximum of 46,717€/QALY [56-58]. One of the Dutch studies showed that vaccination in high-risk infants was much more cost-effective than universal vaccination [55]. Vaccine prices appear to be an important parameter that could have determined differences among Dutch studies. Finally, two out of three UK studies showed not cost-effective findings for both vaccines (ICERs much higher than 20-30,000£/ QALY) [50, 59], while the study by Martin et al. showed an ICER of 23,298£/QALY from the NHS perspective and 11,459£/QALY from the societal perspective [60]. Reasons for these differences appear to be assumptions on QALYs lost by caregivers per diarrhoea episode, risk and costs of hospitalisations, vaccine prices and inclusion of indirect protection. However, it is not possible to quantify the impact of each of these factors on cost-effectiveness results.

Influenza vaccination

Results suggest that influenza vaccination has been studied in a very heterogeneous population, from six-monthold children to over 65-year-olds (Table 6). Also the timehorizon ranged from one year to lifetime. In spite of these differences in the two crucial assumptions, the vaccination showed to be cost-effective in all cases (the only exception is a UK study with an ICER of 304,000 (QALY by Allsup et al., in 2004 [61]). We found, like in other vaccinations, better results from the societal perspective, where in some cases the vaccination was dominant. In terms of study countries, UK published six studies out of the total of ten (the total number is 12 including two multinational studies).

One multicountry study considered the cost-effectiveness of extending influenza vaccination to the healthy population

Country	No. of studies	Patient population	Intervention (I) Comparator (C)	Perspective	Range ICER €/QALY (or £/QALY for UK)
Belgium	2	Infants	I: Rotarix (2), RotaTeq (2) C: No vaccination	TPP and society	Rotarix 51,030, RotaTeq 65,767 (payer); Rotarix 7,572, RotaTeq 30,227 (society) Not cost-effective (>50,000 per QALY) from payer perspective in both studies
France	3	Infants	I: Rotarix (3), RotaTeq (2) C: No vaccination	TPP (1) Society (2)	Rotarix 44,583- 98,000 RotaTeq 151,000
Italy 1		New-borns	I: Rotarix C: No vaccination	TPP and Society	Dominant (society), 9,186 (payer)
The Netherlands	6	Infants	I: Rotarix (5), RotaTeq (5), Targeted Rotarix (1) C: No vaccination (5), Universal vaccination (1)	TPP and society (3) Society (3)	Targeted (high risk) more cost-effective than universal; 3,800 - >50,000 (depending on price, study, herd immunity) Rotarix more cost- effective than RotaTeq
Spain	1	Infants	l: Rotarix, RotaTeq C: No vaccination	TPP and society	Rotarix 52,603 (payer), 23,435 (society); RotaTeq 74,958 (payer), 45,624 (society)
UK	3	Infants	I: Rotarix (3), RotaTeq (2) C: No vaccination	TPP (1) Payer and society (2)	Rotarix 11,459 (society); 23,298- 60,928 (payer); RotaTeq 79,905 (payer)

TABLE 5. Overview of published rotavirus vaccination cost-utility models.

The numbers between brackets represent the number of studies concerned.

Note: 1) No studies found for Germany and Sweden; 2) One multicountry study (Belgium, France, UK and the Netherlands); 3) The ranges of ICERs reported represent minimum and maximum values found in the base case of the various studies found for each country.

aged 50 to 64 years (in addition to those at-risk at that age) in Germany, Italy and France [62]. In all countries, this strategy resulted cost-effective both from the third-party payer and the societal perspective: the ICER from the perspective of third-party payer was 13,156€/QALY in France, 31,387€/QALY in Germany and 15,652€/ QALY in Italy; from the societal perspective, universal vaccination was dominant in Germany and Italy, while the ICER was 7,989€/QALY in France. The same analysis was conducted in Spain on the same patient population, with similar findings; the ICER of vaccination was 14,919€/ QALY from the perspective of the third-party payer and 4,149€/QALY from a societal perspective [63]. In the other French study identified, influenza vaccination in children aged less than five years resulted in a cost-effective option (about 5,000 to 10,000€/QALY, converting French francs to Euros) [64]. Similar results were found in an Italian study that investigated influenza vaccine in the same population (13,333€/QALY) [65]. In another Spanish study, Navas and colleagues found even better results in vaccinating children between three and 14 years (18€/QALY from

third-party payer perspective and dominant from societal perspective) [66]. In a more recent study by Lugnér et al. conducted in Germany, the Netherlands and the UK, three strategies for vaccination against influenza in a pandemic framework were considered: vaccination for the whole population, vaccination of people 65 years old or older and vaccination of people with a high transmission rate (those aged five to 19 years) [67]. Vaccination was cost-effective for all scenarios: in particular, the ICER for vaccinating high transmitters was 7,325€/QALY in Germany, 10,216€/ QALY in the Netherlands and 7,280€/QALY in the UK. All the remaining economic evaluations were performed in the UK [61, 68-72]. These studies focused on different populations: children, pregnant women, adults, those aged over 65 years and those aged between 65 and 74. In all cases but one, influenza vaccination resulted cost-effective assuming a threshold of 20,000 to 30,000£/QALY or dominant. The only exception, as previously mentioned, was a study by Allsup et al. (2004) that showed that vaccinating community-dwelling people between the ages of 65 and 74 years, without any of the chronic illnesses for

Country	No. of studies	Patient population	Intervention (I) Comparator (C)	Perspective	Range ICER €/QALY (or £/QALY for UK)
France	2	50-64 years <5 years	I: Universal vaccination C: Vaccination only at high risk 50-64 years (1) No vaccination (1)	TPP and society (1), TPP and co-payments (1)	7,989 (society)-13,156 (payer) (universal vs high-risk) 34,050FF/QALY (payer), 64,688FF/ QALY (payer and co- payments)
Germany	2	50-64 years Whole population, elderly, 5-19 years	1: Universal vaccination C: Vaccination only at high risk 50-64 years (1) No vaccination (1)	TPP (2) Society (1)	Dominant (society), 31,387 (payer) (universal vs high-risk) 7,325 (no vaccination)
Italy	Italy 2		I: Universal vaccination C: Vaccination only at high risk 50-64 years (1) Vaccination children at high risk (1)	TPP and society (2)	Dominant (society), 15,652 (payer) (universal vs high-risk) Dominant (society) in children 10,000 (children 6-60 months) 13,333 (children 6-24 months)
The Netherlands	1	Whole population, elderly, 5-19 years	I: Universal vaccination C: No vaccination	Payer	10,216
Spain	2	50-64 years 3-14 years	I: Universal vaccination C: Vaccination only at high risk 50-64 years (1) No vaccination (1)	TPP and society (2)	4,149 (payer)-14,919 (society) (universal vs high-risk) Dominant-18,26 in children
UK	7	65 to 74 years > 65 years Pregnant women Whole population, elderly, 5-19 years Elderly 2-18 years Adults	I: Universal vaccination C: No vaccination/ only high risk	TPP (7) Society (1)	304,000 20,000-30,000 <20,000 in most cases 15,000-23,000 7,280 Dominant in most cases 6,174 (payer)-10,766 (society)

TABLE 6. Overview of published influenza vaccination cost-utility models.

The numbers between brackets represent the number of studies concerned.

Note: 1) No studies found for Belgium and Sweden; 2) Two multicountry studies; 3) The ranges of ICERs reported represent minimum and maximum values found in the base case of the various studies found for each country. FF: French franc.

which influenza vaccine was recommended would lead to an ICER of 304,000 (QALY [61].

Varicella/herpes zoster vaccination

As described in Table 7, this vaccination is generally cost-effective and often close to threshold levels (ICERs in some case dominant and from 1,251 to 42,004€/ QALY). Vaccination for varicella obtained better results in children than herpes zoster in the elderly and the results are similar among countries. Whereas in the other vaccination, we found also the comparison between different vaccines, in varicella/herpes zoster studies the comparison was always with no vaccination.

Three studies were conducted in Belgium: Bilcke et

al. in a recent analysis focused on a varicella vaccination programme for children and infants, finding that this costs less than 35,000€/QALY gained for any time horizon [73]; both Annemans et al. (2010) and Bilcke et al. (2012) instead investigated on the cost-effectiveness of herpes-zoster vaccination in individuals aged >60 years and found cost-effectiveness ratios ranging from 1,251 to 303,705€/QALY depending on starting age and favourable or unfavourable assumptions about vaccine efficacy and vaccine price [74, 75]. Similarly, one study conducted in France and two Dutch studies showed that vaccinating the elderly for herpes-zoster represents a cost-effective strategy, with ICERs ranging from 9,513 to 18,385€/QALY in France and from 21,716 to 42,004€/QALY in the Netherlands, depending on the age at vaccination and the perspective [76-78]. Vaccine

Country	No. of studies	Patient population	Intervention (I) Comparator (C)	Perspective	Range ICER €/QALY (or £/ QALY for UK)
Belgium	3	>60 years (2) Children (varicella) and adults (HZ) (1)	I: Varicella (1), HZ (3) C: No vaccination	TPP (2) TPP and society (1)	1,251-303,705 (HZ, depending on age and best-worst scenarios) <35,000 in children plus booster
France	1	>65 years	I: HZ vaccination C. No vaccination	TPP	9,513-18,385
The Netherlands	2	Elderly	I: HZ vaccination C: No vaccination	TPP (1) Society (2)	21,716-42,004
UK	5	Chidren (1) Adults (45, ≥50 years) (2) Elderly (1) Children and elderly (1)	I: Varicella (2), HZ (4) C: No vaccination	TPP (5) Society (2)	Children: dominant (society)-18,000 (payer) Adults and elderly: 11,109-20,412 Key findings: Generally cost- effective, often close to threshold levels Possibly better varicella in children than HZ in the elderly Relatively similar results among countries Always lifetime horizon and always compared to no vaccination Children-elderly: high probability of being cost-effective

TABLE 7. Overview of published varicella/herpes zoster (HZ) vaccination cost-utility models.

The numbers between brackets represent the number of studies concerned.

Note: 1) No studies found for Italy, Germany, Spain and Sweden; 2) No multicountry studies; 3) The ranges of ICERs reported represent minimum and maximum values found in the base case of the various studies found for each country. HZ: Herpes zoster.

price and duration of protection were generally the most influential inputs. The remaining studies (five) were conducted in the UK [79-83]. Three studies evaluated the cost-effectiveness of herpes-zoster vaccination in the adults aged 45-50 years or in the elderly [79, 81, 82], one study focused on varicella vaccine in infants or children [80] and another one considered both varicella vaccine in children and herpes-zoster vaccination in the elderly [83]. In general, varicella vaccination was very cost-effective ranging from dominant (from the societal perspective) to an ICER of 18,000 (GALY from the payer perspective. Also herpes-zoster vaccination is likely to provide good value for money in the UK with ICERs ranging between 11,109 and 20,412 (QALY).

Other vaccinations

Due to relative low number of studies, it is difficult to investigate the characteristics and also to make any comparison for the remaining type of vaccinations. Details on each study identified are given in the online appendix. In general, the key findings are the following:

- Meningococcal (Men) B vaccination was costeffective in two Dutch studies by Bos and colleagues conducted in 2001 and 2006 (combined with pneumococcal vaccination in the 2006 study) with ICERs of 15,721 and 17,700€/QALY, respectively [84, 85], but not cost-effective in a more recent analysis also conducted in the Netherlands by Pouwels et al. [86] who referred to a value of 243,000€/QALY).
- Quadrivalent meningococcal vaccination was not cost-effective with ICERs higher than 600,000€/ QALY compared to MenC vaccination in the Netherlands when started at age 12 years, but it was dominant if started at 14 months [87].
- MenC vaccination was a cost-effective option in the UK compared to no vaccination (2,760£/ QALY in the best scenario) [88]
- Compared to no vaccination, adolescent pertussis vaccination was cost-effective in two Dutch studies (with ICERs ranging from 4,200 to 6,371€/ QALY) [89, 90], but infant vaccination did not

provide good value for money [91]. Pre-school pertussis vaccination might be cost-effective in the UK (14,500 to 35,000£/QALY depending on vaccine efficacy assumptions) [92] while adult vaccination was a cost-effective option in Germany [93] (5,800 to 7,200€/QALY)

Contrasting results were found for hepatitis B vaccination for infants or adolescents in the UK, with an old study showing costeffective results with ICERs ranging from 2,515 to 8,388£/QALY [94] and a more recent analysis showing very high ICERs from 90,000£/QALY for selective infant vaccination to almost 500,000£/QALY for adolescent immunisation [95]. Hepatitis A vaccination in adults was not a cost-effective option in Belgium (around 200,000€/QALY) [96].

DISCUSSION

Most of the studies were conducted in the Netherlands (33) and UK (30) and only two studies were published before year 2000. In general, the majority of studies focused on the value for money of HPV vaccination and pneumococcal vaccination, with respectively 23 and 19 studies (Table 1), probably because these vaccines have been quite recently introduced in many countries compared to the other vaccines.

The analysed vaccinations were generally costeffective and often close to threshold levels in almost every study. However, even in the most homogenous vaccination group, i.e. the HPV, the variability in ICER values is quite high ranging from 5,525 to 101,700€/QALY. The rotavirus case is even more relevant with ICERs ranging from dominant to 98,000€/QALY.

The reason for this variability, which is normally not observed in the economic evaluations of drugs, might be due to the following two features. On the one hand, a vaccination programme is quite complex to simulate since it requires many data and hypotheses, many epidemiological uncertainties, a wide number of influencing variables such as vaccine coverage, herd immunity, cross protection, age of vaccination, high risk versus low risk patients, etc. Also the discount rate applied can have an effect, especially for those diseases that can occur over a long-term after vaccination (e.g. HPV vaccination). On the other hand, the architecture of models might be very different among studies, with different unit costs and organisational settings. The use of an inflation rate or/and PPPs might have led to the contradictory result that a vaccine cost-effective, for example, in the year 2002 for the country analyses, would not be cost-effective in 2014 only because of an increase in the ICER, which might not instead have occurred in the reality. Another possible explanation for the high variability within and among countries is that the QALY gain for

some vaccines is very marginal or small per individual. As the ICER is a ratio, if the denominator is small, if the health benefit is marginal (like often in the particular case of vaccines), a small change in the denominator inflates exponentially this ratio.

According to our results, it appears difficult to assess whether there is a trend for some vaccinations being more cost-effective options than others. When considering the variability of results, the highest homogeneity was found in the HPV studies and the lowest in rotavirus vaccination.

However, based on the cluster shown in the Figures 2-6, a tentative ranking to classify different vaccination strategies on the basis of their ICERs is the following:

- Influenza and varicella have ICERs all below 40,000€/QALY (apart from one outlier study in the influenza);
- HPV has the majority of ICERs below 40,000€/ QALY (13% of the studies have a greater ICER)
- Pneumococcal has also the majority of ICERs below 40,000€/QALY, but 26% above this value
- 4. Rotavirus has only 30% of the studies with the ICER below 40,000€/QALY.

The economic evaluation of drugs is largely applied by comparing one drug with one or more other drugs (comparators). On the opposite, vaccination strategies are mainly compared to "no vaccination" strategy rather than to other vaccines. There are two reasons for this choice. First, the efficacy of different products for the same vaccination is often assumed as almost equivalent. Second, prices of different branded vaccines for the same disease are frequently similar. Actually, since for the public health decision maker the final choice is between introducing a new vaccination campaign or leaving an existing screening or doing nothing (no prevention activity for that specific disease), the decision is often an on-off decision: in case of alternative branded vaccines, the public authority would buy the vaccine trough tender, and in most cases, the price would be similar. Moreover, in most of the European countries, tender is the normal practice to buy the vaccines, which sometimes implies a dramatic reduction of the acquisition cost of vaccines for the public providers compared to the official price, which has been used in the economic evaluation. This means that in most of the cost-effectiveness studies we reviewed in this article, the final ICERs could be even lower according to the real price. Normally, the pricing and reimbursement process is strongly influenced by national or local authorities who are responsible for prevention rather than by physicians or healthcare providers. Then, the ICER of a vaccine compared to another vaccine for the same disease is normally very low or dominant (as we have found for pneumococcal vaccinations). With our "league table", it is not possible (or at least in this paper) to take into account the quality of the studies, the different mechanics of the models, the differences due

FIGURE 2. ICERs of HPV vaccination by countries.

FIGURE 3. ICERs of pneumococcal vaccination by countries.

FIGURE 4. ICERs of rotavirus vaccination by countries.

FIGURE 5. ICERs of influenza vaccination by countries.

FIGURE 6. ICERs of varicella/herpes zoster vaccination by countries.

to jurisdictions (heterogeneity of screening programmes, vaccinations schedules, medical practices, etc.).

It is however relevant to comment some other issues emerging from the review.

- 1. Discounting and the current debate: some authors and institutions think that discounting favours short term over long term policies and so discriminates against preventative and other public health programmes. Interestingly, the National Institute for Health and Care Excellence (NICE) has accepted this view suggesting that "treatment effects are both substantial in restoring health and sustained over a very long period -normally at least 30 years-, the Committee should apply a rate of 1.5% for health effects and 3.5% for costs." [97]. On the opposite, the main stream of economic theory does not allow different rates for costs and benefits. Discounting raises the concern that arbitrary variation in study specification leads to arbitrary variation in results. In order to ensure best practice and correct policy choices, the decision makers and the economists would recognise the need for a common standard, i.e. by using the same discount rate, at least at national level.
- 2. Transparency of models and the current debate:

in particular, transparency ("clearly describing the model structure, equations, parameter values and assumptions to enable interested parties to understand the model") [98] needs to be related to the possibility for the public agencies, decision makers for vaccinations campaign, to replicate the models.

3. The societal perspective strongly influenced the results, which were generally cost-effective from this viewpoint (e.g. in the case of rotavirus vaccination).

Finally, clarity is important, as confusion regarding the validity of comparisons with different discount rates, different age-population and different modelling between analyses can only serve to damage cost-utility analyses' credibility with decision makers and others. We acknowledge that this review might be not exhaustive of the eight countries considered, since only two databases were searched and only papers published in English were considered.

CONCLUSIONS

The published literature has shown that vaccination strategies are generally cost-effective in European countries.

High heterogeneity in the results among studies and countries was found.

Competing interests

Both authors received consulting fees from the GSK group of companies for the completion of this study.

Acknowledgments

The study was supported with a grant from GSK Italy

References

- Ozawa S, Mirelman A, Stack ML, Walker DG, Levine OS. Cost-effectiveness and economic benefits of vaccines in low- and middle-income countries: A systematic review. Vaccine 2012; 31(1):96-108.
- Anonychuk AM, Tricco AC, Bauch CT, et al. Cost-Effectiveness Analyses of Hepatitis A Vaccine. Pharmacoeconomics 2008; 26(1):17-32.
- Szucs TD, Pfeil AM. A Systematic Review of the Cost Effectiveness of Herpes Zoster Vaccination. Pharmacoeconomics 2013; 31(2):125-136.
- García-Altés A. Systematic review of economic evaluation studies: Are vaccination programs efficient in Spain? Vaccine 2013; 31(13):1656-1665.
- Barbieri M, Drummond M, Willke R, Chancellor J, Jolain B, Towse A. Variability of Cost-Effectiveness Estimates for Pharmaceuticals in Western Europe: Lessons for Inferring Generalizability. Value in Health 2005; 8(1):10-23.
- Annemans L, Rémy V, Oyee J, Largeron N. Cost-Effectiveness Evaluation of a Quadrivalent Human Papillomavirus Vaccine in Belgium. Pharmacoeconomics 2009; 27(3):231-245.
- Thiry N, De Laet C, Hulstaert F, Neyt M, Huybrechts M, Cleemput I. Cost-effectiveness of human papillomavirus vaccination in Belgium: Do not forget about cervical cancer screening. International Journal of Technology Assessment in Health Care 2009; 25(02):161-170.
- Demarteau N, Van Kriekinge G, Simon P. Incremental costeffectiveness evaluation of vaccinating girls against cervical cancer pre- and post-sexual debut in Belgium. Vaccine 2013; 31(37):3962-3971.
- Bergeron C, Largeron N, McAllister R, Mathevet P, Remy V. Cost-effectiveness analysis of the introduction of a quadrivalent human papillomavirus vaccine in France. International Journal of Technology Assessment in Health Care 2008; 24(01):10-19.
- Demarteau N, Detournay B, Tehard B, El Hasnaoui A, Standaert B. A generally applicable cost-effectiveness model for the evaluation of vaccines against cervical cancer. Int J Public Health 2011; 56(2):153-162.
- Hillemanns P, Petry K, Largeron N, McAllister R, Tolley K, Büsch K. Costeffectiveness of a tetravalent human papillomavirus vaccine in Germany. J Public Health 2009; 17(2):77-86.

- Schobert D, Remy V, Schoeffski O. Cost-effectiveness of vaccination with a quadrivalent HPV vaccine in Germany using a dynamic transmission model. Health Econ Rev 2012; 2:19.
- Mennini FS, Giorgi Rossi P, Palazzo F, Largeron N. Health and economic impact associated with a quadrivalent HPV vaccine in Italy. Gynecologic Oncology 2009; 112(2):370-376.
- La Torre G, de Waure C, Chiaradia G, Mannocci A, Capri S, Ricciardi W. The Health Technology Assessment of bivalent HPV vaccine Cervarix® in Italy. Vaccine 2010; 28(19):3379-3384.
- Favato G, Baio G, Capone A, et al. Novel Health Economic Evaluation of a Vaccination Strategy to Prevent HPV-related Diseases: The BEST Study. Medical Care 2012; 50(12).
- O'Mahony JF, de Kok IMCM, van Rosmalen J, Habbema JD, Brouwer W, van Ballegooijen M. Practical Implications of Differential Discounting in Cost-Effectiveness Analyses with Varying Numbers of Cohorts. Value in Health 2011; 14(4):438-442.
- Coupé VMH, van Ginkel J, de Melker HE, Snijders PJF, Meijer CJLM, Berkhof J. HPV16/18 vaccination to prevent cervical cancer in The Netherlands: Model-based cost-effectiveness. Int J Cancer 2009; 124(4):970-978.
- Coupé VMH, Bogaards JA, Meijer CJLM, Berkhof J. Impact of vaccine protection against multiple HPV types on the cost-effectiveness of cervical screening. Vaccine 2012; 30(10):1813-1822.
- Bogaards JA, Coupé VMH, Meijer CJLM, Berkhof J. The clinical benefit and costeffectiveness of human papillomavirus vaccination for adult women in the Netherlands. Vaccine 2011; 29(48):8929-8936.
- Luttjeboer J, Westra TA, Wilschut JC, Nijman HW, Daemen T, Postma MJ. Cost-effectiveness of the prophylactic HPV vaccine: An application to the Netherlands taking non-cervical cancers and cross-protection into account. Vaccine 2013; 31(37):3922-3927.
- Westra TA, Stirbu-Wagner I, Dorsman S, et al. Inclusion of the benefits of enhanced cross-protection against cervical cancer and prevention of genital warts in the cost-effectiveness analysis of human papillomavirus vaccination in the Netherlands. BMC Infect Dis 2013; 13:75.
- Westra TA, Rozenbaum MH, Rogoza RM, et al. Until Which Age Should Women Be Vaccinated Against HPV Infection? Recommendation Based on Cost-effectiveness Analyses. Journal of Infectious Diseases 2011; 204(3):377-384.
- Rogoza RM, Ferko N, Bentley J, et al. Optimization of primary and secondary cervical cancer prevention strategies in an era of cervical cancer vaccination: A multi-regional health economic analysis. Vaccine 2008; 26, Supplement 5:F46-F58.
- de Kok IMCM, van Ballegooijen M, Habbema JD. Cost-Effectiveness Analysis of Human Papillomavirus Vaccination in the Netherlands. Journal of the National Cancer Institute 2009; 101(15):1083-1092.
- Dasbach EJ, Insinga RP, Elbasha EH. The epidemiological and economic impact of a quadrivalent human papillomavirus vaccine (6/11/16/18) in the UK. BJOG: An International Journal of Obstetrics & Gynaecology 2008; 115(8):947-956.
- Jit M, Choi YH, Edmunds WJ. Economic evaluation of human papillomavirus vaccination in the United Kingdom. BMJ 2008; 337:a769.
- Kulasingam SL, Benard S, Barnabas RV, Largeron N, Myers ER. Adding a quadrivalent human papillomavirus vaccine to the UK cervical cancer screening programme: A cost-effectiveness analysis.

Cost Eff Resour Alloc 2008; 6:4.

- Jit M, Chapman R, Hughes O, Choi YH. Comparing bivalent and quadrivalent human papillomavirus vaccines: economic evaluation based on transmission model. BMJ 2011; 343:d5775.
- Ament A, Baltussen R, Duru G, et al. Cost-Effectiveness of Pneumococcal Vaccination of Older People: A Study in 5 Western European Countries. Clinical Infectious Diseases 2000; 31(2):444-450.
- Evers SMAA, Ament AJHA, Colombo GL, et al. Cost-effectiveness of pneumococcal vaccination for prevention of invasive pneumococcal disease in the elderly: an update for 10 Western European countries. Eur J Clin Microbiol Infect Dis 2007; 26(8):531-540.
- Talbird SE, Taylor TN, Knoll S, Frostad CR, Martí SG. Outcomes and costs associated with PHiD-CV, a new protein D conjugate pneumococcal vaccine, in four countries. Vaccine 2010; 28, Supplement 6:G23-G29.
- Strutton DR, Farkouh RA, Earnshaw SR, et al. Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands. Journal of Infection 2012; 64(1):54-67.
- Jiang Y, Gauthier A, Annemans L, van der Linden M, Nicolas-Spony L, Bresse X. Cost-effectiveness of vaccinating adults with the 23-valent pneumococcal polysaccharide vaccine (PPV23) in Germany. Expert Review of Pharmacoeconomics & Outcomes Research 2012; 12(5):645-660.
- Boccalini S, Bechini A, Levi M, Tiscione E, Gasparini R, Bonanni P. Cost-effectiveness of new adult pneumococcal vaccination strategies in Italy. Hum Vaccin Immunother 2013; 9(3):699-706.
- Bos JM, Rümke H, Welte R, Postma MJ. Epidemiologic impact and cost-effectiveness of universal infant vaccination with a 7-valent conjugated pneumococcal vaccine in the Netherlands. Clinical Therapeutics 2003; 25(10):2614-2630.
- 36. Hubben GAA, Bos JM, Glynn DM, van der Ende A, van Alphen L, Postma MJ. Enhanced decision support for policy makers using a web interface to health-economic models-Illustrated with a cost-effectiveness analysis of nation-wide infant vaccination with the 7-valent pneumococcal conjugate vaccine in the Netherlands. Vaccine 2007; 25(18):3669-3678.
- Rozenbaum MH, Sanders EAM, van Hoek AJ, et al. Cost effectiveness of pneumococcal vaccination among Dutch infants: economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines. BMJ 2010; 340.
- Rozenbaum MH, Hoek AJv, Hak E, Postma MJ. Huge impact of assumptions on indirect effects on the cost-effectiveness of routine infant vaccination with 7-valent conjugate vaccine (Prevnar®). Vaccine 2010; 28(12):2367-2369.
- Rozenbaum MH, Hak E, van der Werf TS, Postma MJ. Results of a cohort model analysis of the cost-effectiveness of routine immunization with 13-valent pneumococcal conjugate vaccine of those aged ³65 years in the Netherlands. Clinical Therapeutics 2010; 32(8):1517-1532.
- Díez-Domingo J, Ridao-López M, Gutiérrez-Gimeno MV, Puig-Barberá J, Lluch-Rodrigo JA, Pastor-Villalba E. Pharmacoeconomic assessment of implementing a universal PCV-13 vaccination programme in the Valencian public health system (Spain). Vaccine 2011; 29(52):9640-9648.
- 41. Bergman A, Hjelmgren J, Örtqvist Å, et al. Cost-effectiveness

analysis of a universal vaccination programme with the 7-valent pneumococcal conjugate vaccine (PCV-7) in Sweden. Scandinavian Journal of Infectious Diseases 2008; 40(9):721-729.

- By Å, Sobocki P, Forsgren A, Silfverdal SA. Comparing Health Outcomes and Costs of General Vaccination with Pneumococcal Conjugate Vaccines in Sweden: A Markov Model. Clinical Therapeutics 2012; 34(1):177-189.
- Klok RM, Lindkvist RM, Ekelund M, Farkouh RA, Strutton DR. Cost-Effectiveness of a 10- Versus 13-Valent Pneumococcal Conjugate Vaccine in Denmark and Sweden. Clinical Therapeutics 2013; 35(2):119-134.
- Melegaro A, Edmunds WJ. Cost-effectiveness analysis of pneumococcal conjugate vaccination in England and Wales. Vaccine 2004; 22(31-32):4203-4214.
- Knerer G, Ismaila A, Pearce D. Health and economic impact of PHiD-CV in Canada and the UK: a Markov modelling exercise. Journal of Medical Economics 2012; 15(1):61-76.
- Rozenbaum MH, van Hoek AJ, Fleming D, Trotter CL, Miller E, Edmunds WJ. Vaccination of risk groups in England using the 13 valent pneumococcal conjugate vaccine: economic analysis. BMJ 2012; 345.
- van Hoek AJ, Choi YH, Trotter C, Miller E, Jit M. The costeffectiveness of a 13-valent pneumococcal conjugate vaccination for infants in England. Vaccine 2012; 30(50):7205-7213.
- Panatto D, Amicizia D, Ansaldi F, et al. Burden of rotavirus disease and cost-effectiveness of universal vaccination in the Province of Genoa (Northern Italy). Vaccine 2009; 27(25-26):3450-3453.
- Bilcke J, Van Damme P, Beutels P. Cost-Effectiveness of Rotavirus Vaccination: Exploring Caregiver(s) and "No Medical Care" Disease Impact in Belgium. Medical Decision Making 2009; 29(1):33-50.
- 50. Jit M, Bilcke J, Mangen MJ, et al. The cost-effectiveness of rotavirus vaccination: Comparative analyses for five European countries and transferability in Europe. Vaccine 2009; 27(44):6121-6128.
- Pérez-Rubio A, Luquero F, Eiros Bouza J, et al. Socio-economic modelling of rotavirus vaccination in Castilla y Leon, Spain. Le Infezioni in Medicina 2011; 19(3):166-175.
- Melliez H, Levybruhl D, Boelle PY, Dervaux B, Baron S, Yazdanpanah Y. Cost and cost-effectiveness of childhood vaccination against rotavirus in France. Vaccine 2008; 26(5):706-715.
- Standaert B, Parez N, Tehard B, Colin X, Detournay B. Costeffectiveness analysis of vaccination against rotavirus with RIX4414 in France. Appl Health Econ Health Policy 2008; 6(4):199-216.
- Mangen MJ, van Duynhoven YTHP, Vennema H, van Pelt W, Havelaar AH, de Melker HE. Is it cost-effective to introduce rotavirus vaccination in the Dutch national immunization program? Vaccine 2010; 28(14):2624-2635.
- 55. Bruijning-Verhagen P, Mangen MJ, Felderhof M, et al. Targeted rotavirus vaccination of high-risk infants; a low cost and highly cost-effective alternative to universal vaccination. BMC Med 2013; 11:112.
- Goossens LMA, Standaert B, Hartwig N, Hövels AM, Al MJ. The cost-utility of rotavirus vaccination with RotarixTM (RIX4414) in the Netherlands. Vaccine 2008; 26(8):1118-1127.
- Rozenbaum MH, Mangen MJ, Giaquinto C, Wilschut JC, Hak E, Postma MJ. Cost-effectiveness of rotavirus vaccination in the Netherlands; the results of a consensus model. BMC Public Health 2011; 11:462.

- Tu HA, Rozenbaum MH, de Boer PT, Noort AC, Postma MJ. An update of "Cost-effectiveness of rotavirus vaccination in the Netherlands: the results of a Consensus Rotavirus Vaccine model". BMC Infect Dis 2013; 13:54.
- Jit M, Edmunds WJ. Evaluating rotavirus vaccination in England and Wales: Part II. The potential cost-effectiveness of vaccination. Vaccine 2007; 25(20):3971-3979.
- Martin A, Batty A, Roberts JA, Standaert B. Cost-effectiveness of infant vaccination with RIX4414 (RotarixTM) in the UK. Vaccine 2009; 27(33):4520-4528.
- Allsup S, Haycox A, Regan M, Gosney M. Is influenza vaccination cost effective for healthy people between ages 65 and 74 years?: A randomised controlled trial. Vaccine 2004; 23(5):639-645.
- Aballéa S, Chancellor J, Martin M, et al. The Cost-Effectiveness of Influenza Vaccination for People Aged 50 to 64 Years: An International Model. Value in Health 2007; 10(2):98-116.
- 63. Aballéa S, De Juanes JR, Barbieri M, et al. The cost effectiveness of influenza vaccination for adults aged 50 to 64 years: A modelbased analysis for Spain. Vaccine 2007; 25(39-40):6900-6910.
- 64. Livartowski A, Boucher J, Detournay B, Reinert P. Cost-effectiveness evaluation of vaccination against Haemophilus influenzae invasive diseases in France. Vaccine 1996; 14(6):495-500.
- 65. Marchetti M, Kuehnel UM, Colombo GL, Esposito S, Principi N. Cost-Effectiveness of Adjuvanted Influenza Vaccination of Healthy Children 6 to 60 Months of Age. Human Vaccines 2007; 3(1):14-22.
- 66. Navas E, Salleras L, Domínguez A, et al. Cost-effectiveness analysis of inactivated virosomal subunit influenza vaccination in children aged 3-14 years from the provider and societal perspectives. Vaccine 2007; 25(16):3233-3239.
- Lugnér AK, van Boven M, de Vries R, Postma MJ, Wallinga J. Cost effectiveness of vaccination against pandemic influenza in European countries: mathematical modelling analysis. BMJ 2012; 345:e4445.
- Turner DA, Wailoo AJ, Cooper NJ, Sutton AJ, Abrams KR, Nicholson KG. The cost-effectiveness of influenza vaccination of healthy adults 50-64 years of age. Vaccine 2006; 24(7):1035-1043.
- Baguelin M, Hoek Ajv, Jit M, Flasche S, White PJ, Edmunds WJ. Vaccination against pandemic influenza A/H1N1v in England: A real-time economic evaluation. Vaccine 2010; 28(12):2370-2384.
- Baguelin M, Jit M, Miller E, Edmunds WJ. Health and economic impact of the seasonal influenza vaccination programme in England. Vaccine 2012; 30(23):3459-3462.
- Jit M, Cromer D, Baguelin M, Stowe J, Andrews N, Miller E. The cost-effectiveness of vaccinating pregnant women against seasonal influenza in England and Wales. Vaccine 2010; 29(1):115-122.
- Pitman RJ, Nagy LD, Sculpher MJ. Cost-effectiveness of childhood influenza vaccination in England and Wales: Results from a dynamic transmission model. Vaccine 2013; 31(6):927-942.
- Bilcke J, Jan van Hoek A, Beutels P. Childhood varicella-zoster virus vaccination in Belgium: Costeffective only in the long run or without exogenous boosting? Hum Vaccin Immunother 2013; 9(4):812-822.
- Annemans L, Bresse X, Gobbo C, Papageorgiou M. Health economic evaluation of a vaccine for the prevention of herpes zoster (shingles) and post-herpetic neuralgia in adults in Belgium. Journal of Medical Economics 2010; 13(3):537-551.
- 75. Bilcke J, Marais C, Ogunjimi B, Willem L, Hens N, Beutels P. Cost-

effectiveness of vaccination against herpes zoster in adults aged over 60 years in Belgium. Vaccine 2012; 30(3):675-684.

- 76. Bresse X, Annemans L, Préaud E, Bloch K, Duru G, Gauthier A. Vaccination against herpes zoster and postherpetic neuralgia in France: a cost-effectiveness analysis. Expert Review of Pharmacoeconomics & Outcomes Research 2013; 13(3):393-406.
- 77. van Lier A, van Hoek AJ, Opstelten W, Boot HJ, de Melker HE. Assessing the potential effects and cost-effectiveness of programmatic herpes zoster vaccination of elderly in the Netherlands. BMC Health Serv Res 2010; 10:237.
- de Boer PT, Pouwels KB, Cox JM, Hak E, Wilschut JC, Postma MJ. Cost-effectiveness of vaccination of the elderly against herpes zoster in The Netherlands. Vaccine 2013; 31(9):1276-1283.
- Edmunds WJ, Brisson M, Rose JD. The epidemiology of herpes zoster and potential cost-effectiveness of vaccination in England and Wales. Vaccine 2001; 19(23-24):3076-3090.
- Brisson M, Edmunds W. Varicella vaccination in England and Wales: cost-utility analysis. Arch Dis Child 2003; 88(10):862-869.
- Moore L, Remy V, Martin M, Beillat M, McGuire A. A health economic model for evaluating a vaccine for the prevention of herpes zoster and post-herpetic neuralgia in the UK. Cost Eff Resour Alloc 2010; 8:7.
- van Hoek AJ, Gay N, Melegaro A, Opstelten W, Edmunds WJ. Estimating the cost-effectiveness of vaccination against herpes zoster in England and Wales. Vaccine 2009; 27(9):1454-1467.
- van Hoek AJ, Melegaro A, Gay N, Bilcke J, Edmunds WJ. The costeffectiveness of varicella and combined varicella and herpes zoster vaccination programmes in the United Kingdom. Vaccine 2012; 30(6):1225-1234.
- 84. Bos JM, Rümke HC, Welte R, Postma MJ, Jager JC. Health economics of a hexavalent meningococcal outer-membrane vesicle vaccine in children: potential impact of introduction in the Dutch vaccination program. Vaccine 2001; 20(1-2):202-207.
- Bos J, Rümke H, Welte R, Spanjaard L, van Alphen L, Postma M. Combination Vaccine Against Invasive Meningococcal B and Pneumococcal Infections. Pharmacoeconomics 2006; 24(2):141-153.
- Pouwels KB, Hak E, van der Ende A, Christensen H, van den Dobbelsteen GP, Postma MJ. Cost-effectiveness of vaccination against meningococcal B among Dutch infants: Crucial impact of changes in incidence. Hum Vaccin Immunother 2013; 9(5):1129-1138.
- Hepkema H, Pouwels KB, van der Ende A, Westra TA, Postma MJ. Meningococcal Serogroup A, C, W(135) and Y Conjugated Vaccine: A Cost-Effectiveness Analysis in the Netherlands. PLoS One 2013; 8(5):e65036.
- Trotter CL, Edmunds WJ. Reassessing the Cost-Effectiveness of Meningococcal Serogroup C Conjugate (MCC) Vaccines Using a Transmission Dynamic Model. Medical Decision Making 2006; 26(1):38-47.
- de Vries R, Kretzschmar M, Schellekens JFP, et al. Cost-Effectiveness of Adolescent Pertussis Vaccination for The Netherlands: Using an Individual-Based Dynamic Model. PLoS One 2010; 5(10):e13392.
- Rozenbaum MH, De Cao E, Postma MJ. Cost-effectiveness of pertussis booster vaccination in the Netherlands. Vaccine 2012; 30(50):7327-7331.
- 91. Westra TA, de Vries R, Tamminga JJ, Sauboin CJ, Postma MJ. Cost-effectiveness analysis of various pertussis vaccination strategies

primarily aimed at protecting infants in the Netherlands. Clinical Therapeutics 2010; 32(8):1479-1495.

- Stevenson M, Beard S, Finn A, Brennan A. Estimating the potential health gain and cost consequences of introducing a pre-school DTPa pertussis booster into the UK child vaccination schedule. Vaccine 2002; 20(13-14):1778-1786.
- Lee GM, Riffelmann M, Wirsing von Konig CH. Cost-effectiveness of adult pertussis vaccination in Germany. Vaccine 2008; 26(29-30):3673-3679.
- Mangtani P, Hall AJ, Normand CE. Hepatitis B vaccination: the cost effectiveness of alternative strategies in England and Wales. J Epidemiol Community Health 1995; 49(3):238-244.
- 95. Siddiqui MR, Gay N, Edmunds WJ, Ramsay M. Economic

evaluation of infant and adolescent hepatitis B vaccination in the UK. Vaccine 2011; 29(3):466-475.

- Luyten J, Van de Sande S, de Schrijver K, Van Damme P, Beutels P. Cost-effectiveness of hepatitis A vaccination for adults in Belgium. Vaccine 2012; 30(42):6070-6080.
- 97. National Institute for Health and Care Excellence. Guide to the methods of technology appraisal 2013. Available from: RL:http://publications.nice.org.uk/pmg9
- Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model Transparency and Validation: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Medical Decision Making 2012; 32(5):733-743.

APPENDIX

1. HPV VACCINATION

First author, Year	Countries	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Anoenians, 2009	Belgium	HPV quadrivalent vaccination + existing screening	cervical screening alone	12-year-old gitis	various published studies of non- specified design	lifetime	health care payer	80%	3.0% C 1.5% B	130.226	Markov model	one- and two- way SAs	The ICUR was 10,5466	The addition of a booster vaccination and the discount rare were influential inputs but iCURs remained below the threshold of 45,000€/QALY
Thiry, 2009	Belgium	HPV quadrivalent vaccination = existing screening	cervical screening alone	12-year-old girls	meta- analysis and RCTs	lifetime	health care payer	84%, booster: 59%	3.0% C 1.5% B	114.5 0	Markov mode!	Deterministic and probabilistic SAs	Compared to no vaccination, the ICUR with vaccination (plus booster at 22 years) was EUR 32,665€ (ange: EUR 17,447€ to EUR 68,078€). The ICUR for vaccination at 12 years without booster was €14,382/QALY	The HPV vaccination strategy was dominated by screening alone in the scenario that assumed that screening coverage reduced to 59% is reduction of 20%) or with a reduction in screening uptake of 10% or more
Demarteau, 2013	Belgium	HPV hivalent vaccination + existing screening	cervical screening alone	12- to 40- year-old females	RCTs	lifetime	health care payer	80%	3.0% C 1.5% B	4316 (full coarse)	Markov cohort model	one-way and probabilistic SAs	The ICUR of vaccination was 9,1716 at age 12 years, 17,3486 in age 26 years, and 42,8476 at age 40 years.	The discount rate was the most influential parameter to the univariate analyses. The probabilistic sensitivity analysis showed that HPV vaccination would be expected to remain cost-effective for vaccination up to 25–30 years
Bergeron, 2008	France	HPV quadrivalent vaccination = existing screening	cervical screening alone	14-year-old girls	RCTs	lifetime	direct health care costs and third- party payer	80%	3.5% C 1.5% B	E88.10 or E135.60 dependin g on the payer	Markov model	one-way SAs	The ICUR of vaccination was 13,809€ from the perspective of the direct health care payer and 8,408€ from the perspective of the third-party payer	Vaccination was cost-effective (ICUR<€50,000) in all scenarios
Demarteau, 2011	France	HPV bivalent vacéination : existing screening	cervical screening alone	12-year-olá giris	RCTs	lifetima	hesitih care payer	not reported	1.0% C 1.5% B	£133.82	Markov model	deterministic and probabilistic SAs-	The ICUR with screening plus vacunation, compared with screening only, was 9,706€	The discount rate was the most influential parameter in the univariate analyses. The probabilistic sensitivity analysis showed that progression and regression from HPV, CIN), and CIN2/3 were the most influential parameters
Hillemanns, 2009	Germany	tetravalent HPV vaccination for girls aged 12 years added to existing screening	conventional screening alone	i2-year-old girls	RCTs	lifetime	health care payer	80%	4.0% C 1.5% B	6143.8	Markov model of HPV infection and cervical cancer	one-way SAs	The ICUR of vaccination plus screening compared to screening alone was £10,530	ICURs were sensitive to variations in protection duration of less than 20 years and discount rates. Vaccine price did not affect model outcomes.
Schobert, 2012	Germany	quadrivalent HPV vaccination added existing screening	conventional screening alone	girls of 12- 17 years	RCTs	lifetime	third-party payer	45% and 55% fbt the 12-14 and 15- 17 respective Jy	3%	6451.20 (throp doses plus administr ation)	Dynamic transmission model	one-way SAs	The ICUR of vaccutation was £5,525	The results were most sensitive to discount rates, duration of vaccine protection and diality scores.
Mennini, 2009	Italy	quadrivalent HPV vaccine added to existing screening	conventional screening	12-year-old girls	RCTs	lifetime	health care provider	80%	3.0% C 1.5% B	€106	Markov model	one-way SAs	The ICUR of vaccination compared to screening only was £9,569	The ICU/Rs ranged from ranged from €2,781 to €48,122. Influential inputs were discount rates and vaccine efficacy dwartien
La Torre, 2019	Inaly	HPV vaccination (bryalent vaccinc) added to existing screening programme	conventional screening alone	12-year-old girls	meta- analysis of RCTs	lifetime	health care payer	not reported	39h	690.00 (bivalent vaccine)	deterministic mathematics i cohori model with a Markov structure	deterministic SAs-	The ICUR or vaccination was €22,055	Influential inputs were discount rate and age at vaccination.
Favato, 2012	Italy	various cervical cancer screening strategies added to HPV vaccination	screening alone	girls aged 12, 15, 18, and 25 years (depending on the strategy)	RCTs	lifetime	third-party payer (NHS)	Vaccin register of the Basilicata Region (84.7%)	3.0% C 1.5% B	€69.13	Markov state- transition model	probabilistic SA and EVPI	Compared with no vaccination, the ICUR was 612,013 with the two-cohort strategy, 613,232 with the three- cohort strategy, and 615,890 with the four- cohort strategy.	The EVPI analysis suggested that model findings were subject to limited uncertainty
Coupe, 2009	NED	programme of bivalent HPV vaccination for girls aged 12 years, in addition to cytology-based cervical cancer screening for women	cervical screening alone	(2-year-old girls	various published studies of nun- specified design	lifetime	noi explicitly stated but appears third-party payer	85%	4.0% C 1.5% B	£123	Markov model	douerministic Sas (scenario analyses)	The ICUR of adding vaccination to screening alone was £19,425 (mage £11,000 to £25,000)	variations in assumptions on the waning offect and price of vaccination had the storages impact on ICURs
de Kok, 2009	NED	HPV bivalent vaccination added to the existing screening programme in women	conventional screening alone	12-year-old girls	not clearly reported	lifetime	society	85%	3%	£118	Microsimul. screening analysis (MISCAN) model	deterministic SAs	Compared to no screening alone, the ICUR of vaccination was €53,500	The threshold price per vaccine dose at which the cost- effectiveness of HPV vaccination would be £20,000 per QALY gained was £40 under favorable assumptions. Vaccine efficacy and incidence of cervical cancer were also drivers of the model
Boganrds, 2011	NED	HPV vaccination for adult wisnen	nd vaccination	women aged 17 to 25 years	RCT	lifetime	society	50%	4.0% C 1.5% B	three prices 6125 (2010) pharmacy price), 685, and 635	individual- based simulation model	ond-way SAs	At a vaccine price of 6125, the ICUR with vaccination over no vaccination was 648,433 for all 17- to 25 year olds (622,256 at a vaccine price of 665 and 69,572 at a vaccine price of 635).	vaccine price was the main cost driver of the model. Other influential inputs were the discount rete and the inclusion of cross-protection
O'Mabony, 2011	NED	HPV vaccination for girls aged 12 years or older combined with existing screening.	conventional screening alone	12-year-old girls	oot reported (referred to a previous publication)	lifetime	not reported	not reported	4.0% C 1.5% B and also by a common rate of 4%	noc reportod	MISCAN microsimul screening analysis model for 1. 10, 20, and 30 birth- cohorts	One-way SAs	The ICLR with vaccination was £101,700 with a discount rate of 4% for both costs and benefits and ranged between 622,100 to 223,900 depending on model assumptions with a discount rate of 4% for costs and 1.5% for benefits	The ICUR decreases as the number of cohorts increases under differential discounting, but not under equal discounting
Westra, 2011	NED	HPV vascine for women 12-50 years of age	nö vaccination	women 12- 50 years of age	RCTs	lifetime	not reported	190%s	4.0% C 1.5% B	€105	Markov modei	deterministic and probabilistic SAs as well as scenario analyses	The ICURs of vaccination over no vaccination were E19,900 fm 12-year-old gints, 652,100 for 30- year-old womer, and remained below the threshold of E30,000 for womer < 23 years of	ICURS were sensitive to variations it vaccine price and assumptions about vaccine efficacy and duration of protoction

eboh

First author, Year	Countries	Vaccine	Comparator	Patient population	vaccine	Time	Perspective	Vaccine	Discount rates	price (per	Model	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Westra, 2011	NED	HPV vaccine for women 12-50 years of age	no veccination	women 12- 90 years of age	RCTs	lifetime	not reported	100%5	4.0% C 1.5% B	6103	Markov model	deterministic and mobabilistic SAs as well as scenario analyses	The ICURs of vaccination over no vaccination were E19.900 for 12-year-aid yris. 652,100 for 30 year-old women, and remained below the intrashild is 650,000 for women ~ 23 years of ago.	ICURs were sensitive to variations in vaccine price and assumptions about vaccine efficacy and duration of protection
Coupe, 2012	NED	various cervical cancer screening strategies added to HPV vaccination	conventional screening alone (no vaccination)	women of different ages, depending on the screening strategy		lifetime	society	95%	4.0% C 1.5% B		individual- based simulation model	deterministic SAs	Four times HPV DNA screaming between 30 and 60 years was the selected accemation in addition to HPV 16108 vaccimation, whether or four cross-protection was conferred (65,707 and 64)954 QALT7, respectively). In the absence of cross- protection, a fifth screaming round might be considered (ICUR 622,967QALY).	If the vaccine-induced type- specific incidence reduction was lowered to 99%, one screen during lifetime was cost-effective even in addition to 15-valent vaccination
Lattjeboer, 2013	NED	orvalent HPV vaccination	conventional screening	12-year-old girls	inanofactures	lifetimo	not explicitly stated but appears health care payer	100%	4.0% C 1.5% B	€120	Markov cohort model	deterministic and probabilistic SAs plus scenario analyses	The ICUR with vaccination was €3,815 when including cross- protection and €7,142 when excluding it	The median ICUR was 65.028 the full range of simulations fell between 62,800 and 68,700 vaccins price and discount rate were influential inputs
	NED	bivalent and quadrivalent HPV vaccination	no vaccination	12-year-old girls	studies of unclear design	lifetime	not explicitly stated but appears third-party payer	50%	4.0% C 1.5% B	£105	Markov model	one-way SAs	The ICURs with bivalent and quadrivalent vaccines were €17,600 and 18,900, respectively.	Discount rate for health benefits, duration of protection, and vaccine price were influential inputs
Dasbach, 2008	UK	quadrivalent IBEV vaccination for girls agol 12 gram or older combined with oxisting screening	BO vaccination	girls aged 12 years or older	RCT	lifetime	third-party payer (NHS)	12-14 yents 40%, 15- 17 years 30%, 19- 24 years 23% in the first year of casch-up	3,5%	£75	previous diseasc transmission model	ono-way SAs and scenario analyses	Bottner vaccination of 12-year-oldw aw weakly dominated. The IC/LBS week for the and the IC/LBS weak for the IC/LBS weak for the IC/LBS weak for the IC/LBS weak for the IC/LBS section of the IC/LBS section of the IC/LBS section of the IC/LBS section of the IC/LBS with routine weaking and IC/LBS section of the IC/LBS with routine veccination and IC/LBS section of IC/LBS	the two more infragmial model inputs were fealth utility values and dumited of the scine protection
Jit, 2008	UK	routine HPV vaccination of 12- year-old girls ² , three doses, and the use of a bivalent vaccine with protection against HPV types 16 and 18 only	no vaccination	12-year-old girls and other age- sex-stratified cohorts	published sources of unclear design.	lifetime	health care payer	80%	3.5%	£60 (catalogu c price in the USA) and £80.50 (private price in the UK)	transmission dynamic model	deterministic and probabilistic SAs	Compared to no vaccination, the median ICUR with vaccination of 12-year-old girls was £22,474 (95% CI: £13.722 to £32.920).	If vaccine protection lasted for 10 years only, then the ICUR would increase to 533,868, the ICUR with a catch-up programme for girls aged 12 to 18 years was £11,856 (95% CT: cost-saving to £31,107). Vaccination for both girls and boys was not cost- effective.
Kulasingam , 2008	UK	school-based quadrivalent HPV vaccine added to	conventional screening alone	12-year-old girls	RCT plus assumptions and other	lifetime	health care payer	85%	3.5%	£75	Markov model	one- and multi- way Sas	The ICUR of vaccination was £21,059	Results were sensitive to assumptions about the need for a booster, the duration of vaccine
Jir, 2011	UK	bivalent and quadrivalent HPV vaccination	no vaccination	12-year-old girls	RCTs and assumptions	lifetime	health care payer (NHS)	80%	3.5%	£84.50	transmission dynamic model	Probabilistic SAs	Considering various scenarios and assumptions, the ICURs ranged from £12,000 to £22,000 for £12,000 to £16,000 to £41,000 with bivalent vaccination	At a threshold of £30,000 per QALY, the bivalent vaccine needs to be cheaper than the quadrivalent vaccine to be equally cost effective, manly because of its lack of protection against anogenital wars. The price difference per dose tanged from a median of £19 to £35 across scenarios about vaccine duration, cross protection, and end points prevented.
Rogoza, 2008	UK, NED	HPV vaccination for girls aged 12 years or older combined existing screening	conventional screening alone	12-year-old girls	provious modelling studies and RCTs	lifetime	health care payer (UK) and society (the Netherlands)	106%	1.5% UK; 4% C _s 1.5% B NED	©105 in the Netherlan ds and £84 in the UK	Markov model	One-way SAs	The ICUR of vaccination was £18,472 in the Netherlands and £18,037 in the UK	overall, ICURs remained below commonly used cost- effectiveness thresholds

1. Four strategies were considered: routine vaccination at age 12 years, and routine vaccination at age 12 years combined with temporary catch-up vaccination at ages 12–14, 12–17 and 12–24 years. 2. Various alternative HPV vaccination strategies were as follows: vaccinating girls at ages 13 or 14, vaccinating boys and girls at age 12, a catch-up campaign in the first year of vaccination to vaccinate females from age 12 to ages 14, 16, 18 or 25, achieving a coverage of 70% or 90% for the full.

First author, Year	Countries	Vaccine	Comparator	Patient populatio n	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Taibird, 2010	Germany	routine vaccination of influits with a new lo-valant pneutocoocal non-typeable Haemophilus influenzae protein D conjugate vaccine (PCV-10)	7-valem pneumôcoccal conjugate vaccine (PCV- 7)	infants and young children	a published study of non- specified design	one year	health care peyer	about 90%	Undise.	not reported but price patity was asssumed	steady-state population model	doterministic SAs	In the one-year analysis, PCV-10 dominated (i.e. more effective and less expensive than) PCV-7	base case results were robust, vaccine efficacy and waning were the most influential inputs
Jiang, 2012	Germany	23-valent pneumococcal polysaccharide vaccine (PPV23)	no vaccination	inamunoc ompetent adults; immunos uppressed adults; and clderly people	A recent Cochrane systematic literature review and meta- analysis of ten prospective clinical trials	lifetime	third-party payer and society	not clearly reported	3%	€30.25	population- based Markov model	one-way SAs and probabilistic SAs	The ICUR with vaccination over no vaccination was e17,065 from the perspective of the third-party payer and E25,687 from the societal perspective	The ICUR was sensitive to the vaccine effectiveness against nonbacterentic pneumococcal pneumonia (KBPP), waning function and incidence of XBPP PIV23 was cost effective in 86.7% of the cases when the willing-to-pay was set at £30,000 per QALY gained, while the rate increased or 98.1% when the willing-to-pay was at £50,000 per QALY gained.
Boccalini, 2013	italy	various age-based vaccination programmes with 13-valen polysaccharite conjugate vaccine (PCV-13) for shierty people	no vaccination.	subjects aged 65 years or over	RCTN	fiya years	health sare payor	30%	3%	PCV-13: 642.50; PCV-23: 616	mathematical population model	univariase and multivariase SAs	Compared to no- vaccination, the ICURs were E16.987 with the single-cohort strategy. E19.289 with the two- cohort strategy, and E22,109 with the three- obhort strategy. The ICURs increased to E21.493, E24.443, and E27.866, respectively, including the sequential PCV-13 - PCV-23 immunisation.	Base case results were robust, Rate of complatity-sexulted protunois and PCV-13 vaccitation coverage rates were milluential input
Bos, 2003	NED	Universal infant vaccination with the seven-valent pneumococcal conjugate vaccine (PCV-7)	no vaccination	infants	published studies of unclear design	lifetime	society	not reported	4%	640	decision tree model	univariate SAs	at a vaccine price of 640, the ICUR of vaccination was 671,250 (679,500 excluding indirect costs)	incidence of infections, vaccine efficacy and vaccine price were the most influential inputs
Hubbes, 2007	NED	national infant vaccination programme with the four doses PCV-7	no vaccination	infants	various published studies of non- specified design	10 years	society	oot reported	4%	650 (with administ costs)	a provious model	deterministic and probabilistic SAs	The ICUR with vaccination compared to no vaccination was £14,000	The sensitivity analysis showed that assumptions on herd immunity and vaccine cost had a strong impact on the cost- effectiveness results. The ICURs maged from 63 800 to 620 200
Rozenbaum , Hak, 2010	NED	PCV-13 in the elderly	no vaccination (23PPV only to a few individuals at substantially increased risk)	people aged 265 years (both whole populatio n and those at increased risk for pneumon	previous cost- effectiveness analyses	lifetime	sociéty	83% among high-tisk 65% among low-risk	4.0% costs 1.5% benefits	E50 (assumed)	decision-tree analytic model	alternative scenarios about key inputs of the model	In the base case scenario in the total population, the ICUR of vaccination was E14.416 without indirect effect and e31,055 with indirect effects (e8,547 and ERUR 22,152 in the high-risk population).	The model was sensitive to variations of vaccine efficacy parameters
Rozenbaum , Sanders, 2010	NED	three pneumocoocal conjugare vaccinos: PCV-7, PCV-10, nnd PCV-13	no vaccination	infants	RCTs and observations 1 studies	five ygars	not explicitly stated but appeits society	95%	4.0% costs 1.5% benefits	PCV-7-650; PCV-10; 662,25; PCV-13; 668,56	decision nee miodei	deterministic and probabilistic SAs	Compared to no vaccination, the ICUR was Ef 13,891 with four- dose PCV-17 (E82,975 with three-done PCV-7), E32,947 with PCV-10, and E50,042 with four- dose PCV-13 (E35,743) with three-dose PCV- 131	increases in herd protection and reductions in vaccine prices reduced the (CURs, Overall, the likelihood rEPCv7 being cess- effective was low.
Rozenbaum , van Hoek, 2010	NED	routine infant vaccination with PCV-7	tto vaccination	infants	RCT ₅	five years	society	not reported but might be 95% as previous model	4.0% costs 1.5% benefits	£50	a published static cohor. model	sot reported	Compared to no vaccination, the ICUR with PCV-7 was 672,360 without net- indirect effects (herd protection minus serotype replacement) and £16,750 with net- indirect effects	At an ICUR threshold of 50,000, the net-indirect effects of uactination need to be at least 16% of those observed in the US studies for vaccination to remain cost-effective
Diez- Domingo, 2011	Spain	A three-dose scheichtle (two doses and a booster) of PCV. 13, given in the fust year of life	no vaccination	babies in their first year of life	RCTs	lifetime	bealth care payer	95%	3%	64,708 (calculation not clear)	decision tree model	one-way SAs and scenario analyses	The ICUR with vaccination over no vaccination was £10,407	assumptions on herd effects and serotype replacement were model driver but in most scenarios the ICUR remained within the cosi- effectiveness threshold of €30.000
Bergman, 2008	Sweden	PCV-7 in infants	no vaccination	infants	RCT	lifetime	society	close to 100%	3%	€55.30	a published Markov model	one-way SAs	The ICUR was €29,200 (€5,500 when including herd immunity)	the most influential inputs were discount rate, inclusion of indirect costs, vaccine efficacy against acute ofits media (AOM), incidence of AOM, and vaccine mice
By, 2012	Sweden	10-valent pneumococcal non-typeable Haemophilias influenzae proteit D conjugate vacchie (PRID- CV) and 13-valent pneumococcal conjugate vacchie (PCV-13)	no vaccination	infants and young children	a previous cost- effectiveness study	lifetime	society	100%	3%	SEX 518.95	Markov eðhort model	one-way SAs	TCURS were hot exiculated as PHID-CV resulted in improved bealth encomes of 45 QALYS at a cost of 62 million SEX best flam PCV-13. Thus PHID- CV was the dominan stratogy (less costly, more effective) over PCV-13.	results were sensitive to changes in the acute offics media related outcome parameters
Klok, 2013	Sweden	Universal infant vaccination with PCV-10	Universal infant waterination with the 13- valent pneumococcal conjugate vaccine (PCV- 13)	infants	published studies of unclear design plus assumptions	lifetime	health care payer	100%	3.0% C benefits not discounte d	SEK 518.95	decision- analytic model	deterministic SAs	PCV-13 was the dominant strategy over PCV-10	base case results were robust in all scenarios
Melegaro, 2004	UK	Universal infant vaccination with the seven-valent pneumococcal coupigate vaccine (PCV-7)	ne voccination	ittiants	RCT9	lifetime	third-party payer (NHS)	probably 100%	3.5% C 1.5% B	£30	cobort model	deterministic and probabilistic SAs	The ICUR of vaccination over no vaccination was £59.945	the most influential inputs were the incidence of invasive pneumococcal disease, the inclusion of herd immunity effects, and the cost of the veccine. In the base-cost, only 29% of the model aimulations resulted in a cost per QALY gained of less than 330 000

eboh

First author, Year	Countries	Vaccine	Comparator	Patient populatio n	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Knerer, 2012	UK	the pneumococcal non-typeable Harmophilus influenzae protein D conjugate vaccine (PHID- CV), which is a 10-yalent pneumococcal conjugate vaccine was compared to 13-yalent pneumococcal conjugate vaccine (PCV-13)	no vaccination	newborns and young children	published sources of unclear design supplemente d by expert opinion	lifetime	hot explicitly stated but appears third-party payer	100%	лос reported	£27,60	Markov cohort model	deterministic and probabilistic SAs	PHiD-CV vaccination was found to be dominant (more effective and less cosity) over PCV-13	aoute otifis media-related outcome parameters were drivers of the model, the probability that PHID-CV was dominant ever PHCV-13 was 95%
Rozenbram , 2012	UK	13-valent pneumococcal conjugate vaccime (PCV-13) added to the 23-valent polysaccharide vaccimation, for, those at high risk, and the usual mfant vaccination programuje	no PCV-13 vaccination (usual care consisting of the 23-valent polysace, vaccination, for these at high risk, and the usual infant vaccination programme)	people at high risk aged two years or older	an expert panel of five members	lifetime	health care payer (NHS)	risk- groups (100%)	3.5%	£49.]N	eehort decision model	deterministic and probabilistic SAs	The ICUR of the Vaccination programme was estimated to be Lis3,680, assuming no impact on non- bacterearmic pneumonia Only vaccination of one risk group, those with chronic Ilver disease, resulted in a ratio of cost per QALY that was below 23,0080.	When an impact on non- bacterisatio pactiments was, assumed, the ICUKs for the individual risk groups imged from £10,825 to 237,086. Vascime efficacy and predicted bard effects of the inflant programme were influential imputs.
van Hock, 2012	UK	13-valent pneumococcal conjugate vaccine (PCV-13)	discontinuing PCV-7	infants	previous modelling study	30 years	NHS	not reported	3.5%	£49.60	dynamic infectious disease model	probabilistic Sas and scenario analyses	Using a threshold of £30,000 per QALY gained, introducing PCV-13 is cost- effective in 100% of parameter combinations sampled if non-invesive disease outcomes are included, but only 53% if fhey are not.	vaccine price and discount rate were influential inputs
Antens, 2000	Spain Sweden Belgium France UK	pretimesoccal vaccination in people aged 65 years or over to prevent bold preumonoecoccal invasive preumonoeceal listense	tio vaccination	people aged 65 years or ower	a published case-control study	Lafetime	sociëty	probably 100%	3%	Belginin: 619; France: 613.8; Scotland: 614.3; Spain: 611.5; Sweden: 610.2	nos specificid	one- and two-way SAs	to prevent invasive pneumo-cocid disease, the ICUR was 62,907 for Beignm, 619,182 for France, 614,882 for Sociatina, e10,511 for Sinata, and 623,675 for Sweden. To prevent prelamonoccial pneumoing, the ICUR was 62,126 for France, 6242 for Scotland, and dordmant for Bielglum, Spain a Sweden.	kay drivers of the model were vaccine administration costs, incidence of thospase, mid mortality rate of investor disease
Evers, 2007	Italy Spain Sweden Germany Beigium France NED, UK	pneumscoccal vaccination with 14- and 23-valent polysaccharide vaccine in the clderly	no vaccination	people older than 65 years of age	a published case-contro! study	liferime	not explicitly stated but appears third-party payer	probably 100%	3%	Bol: €17.9; UK, SPA. €14.4; Fa: €13.6; GER: €27.1; ITA: €25.8; NED €17.5; SCO: €14.4; SWE: €7.5	cahort modei	one- and two-way SAs	In the colors of 65 year- olds, the ICUR of vacchatol on 8 (22, 84) vacchatol on 8 (22, 22) in 100 m vac 7 (22) Equation was 7 (22) Equation of 100 m Equation 100 m (1), 444 in France, (1), 544 in France, (1), 544 in France, (1), 544 in France, (1), 540 in the Notherlands, (1), 920 in Scotland, (1), 200 in Scotland, (1), 200 in Scotland, (23, 657 in Spain, and (22, 657 in	results were sensitive to variation in the incidence and nortality of invasive pneumococcal disease, administration costs of the vaccine and vaccine effectiveness
Strutton, 2012	Netherlan ds Germany	13-walent pnoumocoocal conjugate vaccine (PCV-13) in the pachatric national immunisation programme	7-valent and 10-valent PCVs (PCV-7 and PCV-10)	infanis and young children	RCTs and assumptions	Lifetime	third-party payer	80%. Germany; 95% Notherian ds	5% Germany: 4% costs, 1,5% outcomes NED	GER: 649 for PCV-7 and PCV-13 EUR39.90 for PCV-10 NED 657.13 for PCV-70 and 668.56 for PCV-13	decision tree model	scepario analyses	Compared to PCV-7, PCV-13 was dominant in Germany and had an ICUR of 628 in the Netherlands. Compared to PCV-10, PCV-13 was dominant both in Germany and in the Netherlands.	The scenario analysis thowed that PCV-13 remained the preferred scatage (dominant or cost-effective at a timeshold of 50,000 per QALY) over PCV- 10 in all scenarios except when PCV-10 direct efforts were adjusted for immunogenic response and neither the 13- valent nor the 10-valent vaccine incurred fudient effects.

1. immunization of 65 yold subjects (single-cohort strategy), simultaneous vaccination of people aged 65 and 70 y (double-cohort strategy) and, lastly, simultaneous immunization of subjects aged 65, 70 and 75 y (triple-cohort strategy). The additional impact of administration of a PPV23 dose, one year after PCV13, was evaluated

3. ROTAVIRUS VACCINATION

First author, Year	Countries	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Hücke, 2009	Belgium	universal (fally reimbursed) childboot rouxinus vaccinarion with either two-dose Rotatix or hireo- dose RotaTeg.	BO vaccination and the current pattern of Care in Belgium (partial reimburses, of the two- dose Rotaris or the time- dose RotaTeg)	infants	RCTS	7 years.	beatth care payer and society	98%	3.0% costs 1.5% benefits	Rútariz E ⁵ 0: Roist eg E37	deterministic state model	determiniétic md probabilitic SAs	Compared with an sections, fully funded universal remembers worksholm, ment would cont 651,000 per QALY gained with Ream and 685,707 with Real Tore (for with Real Tore (for section, 67,572 Mer), respectively. Fully funded universal partially funded private and former as theoper per vacchaida because the former as officiate as for later as officiate as fast as a filterite as for an an en-	ICURs are most influenced by the unicertainty regarding the annual probability to die due to rotavirus and warung of efficacy against romeirus episodes of any sectority (headh care payer perspective) and the number of days of work absence for con-hospitalised rotavirus cases, (societal perspective)
Melliez, 2008	France	routine childbood vaccination against rotavirus (with Rotarix and RotaTeq that were not considered separately)	BO vaccination	infants	RCTs	three years	society	75%	3%	€150 per course	Markov model	one- and two-way SAs	The ICUR with vaccination over no vaccination was €138,693 (€98,000 using Rotarix at €114 per course and €11,000 using RotaTeq at €161 per course)	the most influential model inputs were disease incidence, mortality rates, and vaccine price
Standaert, 2008	France	two-dose vaccine against rotavitus mfrection	no vaccination	iofants	RCT	lifetime	limited social perspective (no inducet costs)	85%	3.0% C 1.5% B	E57	Markov modeł	umvariate and multivariate SAs	The ICUR of routine vaccination was \$44,383	influencial inputs were the probabilities of moving from illurrhoea to sware aliarthoea, of sacking medical advice and of going to an emergency elimic; the utility sectors for diarchoea events in children and infanis; the rate of non-provident sectors for applied to the effect massive; and the hospitalizations the discoute par- depiled to the effect massive; and the hospitalization cost. Overall, 34% of the LCRs were under an informal threshold of 550,000 per Cost 9.
Panatto, 2009	Italy	a programme of universal vaccination (Rotarix) against rotavirus for newborns	no vaccination	newborns	RCTs	five years	health care payer and society	90%	4.0% C 1,5% B	€40	a published state- transition Markov model	not reported	In comparison with no vaccination, the ICUR with vaccination was 69,186 from the perspective of the health care payer. Vaccination was dominant from the viewpoint of the society	not reported
Gaasseas, 2008	NED	mass vaccination strategy with the human live- attenuated oral vaccine Rotarix (RIX4414) for the active immunisation of infants from the out of it works	no vaccination	children from birth to 4 years of age	the European 036 study which included 3,994 patients	lifetime	society	100%	4.0% C 1.5% B	£100	Markov mode!	deterministic and probabilistic SAs	The ICUR with vaccination over no vaccination was E28.488 (E21,900 at a vaccine price of £90 and £35,076 at a vaccine price of £110)	The probability of being hospitalised was the main driver of the model, at a willingness to pay of \$50,000 per QALY, the probability of being east effective for mass vaccination was around \$3%.
Mangen, 2010	NED	rwo rotaviros vaccines, namely RotaTeq and Rotarix, atided to the national immunisation programme for infants	no vaccination	infants (under one year of age)	recently published European cost- effectiveness analyses (no clear details were reported)	20 years	health care payer and society	97%	4.0% C 1.5% B	Rotarix 645; RotaTeg 628	discrete- ovent model	ono-way SAs	ICURs were reported only in a graph, which showed lower (i.e. more favourable) ratios for Rotarix than RotaTeq but either vaccines were around or above the figure of \$50,000 per QALY.	Vaccine-related costs, annual epidemic-size, and indirect protection are the major factors that determine cost-effectiveness of rotavirus vaccination
Rozenbaum , 2011	NED	Routine rotavirus vaccituation of inflants (Rotarix and RotaTosi were assumed to be interchangeable)	na vaccination	infants	RCTs	five years	society	.95%	4.0% C 1.5% B	E75 (miging from E50 to E100)	decision-tree model	détarministic and probabilistic SAs	The ICUR of vaccination was 646,717 is a vaccine price of 675 per child and 685,468 at a vaccine price of 6100 per child.	ara dosa of 675 per child vaccimeda influenziai inputs were cross of inspiralisations, potential bed instrumity protoction: effects and marrality in thospitalised cases. The prombility of tratavinas vaccination being costs-effective was 749 at unreshold of 650,000 per QALY and 1456 at a horsehold of 250,000 per QALY.
Bruijning- Verhagen, 2013	NED	targeted rotavirus vaccination of high-risk infants and universal vaccination	no vaccination	infants	vaccine trials	20 years	health care payer and society	88%	3%	universal vacine: €75: targeted vacine: €100	age- structured stochastic multi-cohort model	univariate and multivariate SAs	compared to no vaccination, from a health care payer perspective, the ICUR was £2,600 with rargeed vaccination and £60,200 with universal vaccination (£152,000 with universal versus targeed vaccination)	at a threshold of €35,000 per QALY, the probability of being cost-offective from the perspective of the health care payer was 6% with universal vaccination and 100% with ungreut ovacination (71% and 100%, respectively from the societal perspective), the key model driver was the mortality rule.
Tu, 2013	NED	Routine rotavirus vaccination of infants	nd visconation	infants	RCTs	tīve years.	society	95%	4.0% C 1.5% B	€75 (ranging from €50 to €100)	decision-trec model	deterministic and probabilistic 5As	The ICUR of routine vaccination was €15,600 (no berd intrustisation) and €3,800 with herd protection in children up to 5 weres	not reported
Perez- Rubio, 2011	Spain	vaccination for rotavaus with RotaTeq or Rotarix	70 vaccination	infants	RCTs	five years	health care payer and society	100%	5%	669.50 (RotaTeq) and 693.66 (Rotarix)	decision tree mödel	one-way SAs of vaccine price	With Rom Fee, the ICUR of vaccination compared with no vaccination was 674,595 aver perspective and sever perspective and social perspective. With Romth, the ICUR of vaccination compared with no vaccination was 652,035 from the beathcare payer perspective and 622,3435 from the socienal perspective.	reductions in vaccine price were required for the vaccination strategies being cost-effective

First author, Year	Countries	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time borizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Jit, 2007	UK	three-dose RotaTog and two- dose Rotarix	DO. Vaccination	infants	RCTs	5 years	health care payer	95%	3.5%	Rotaria £35, RotaTeq £25	cohori model	deterministic and probabilistic SAs	Compared with no vacination, the ICUR was 179,905 with Roas Teg and 560,928 with Rotenx.	When including the economic subte of work loss? by caregivers, the ICURs improved to L74000 for RomTrey and E84300 for RomTre, At the base case viacing phoes, actified y accounting amange was coase-fifteerive influential inputs were the OALY's loss to caregivers per- casode, the coast of the vaccine and, for RomTrey andy, and vaccine efficacy against neer- brospitalised cases.
Martin, 2009	UK	universal infant rotavirus vaccination	no vaccination	infants	RCT	lifetime	health care payer and society	88%	3,5%	£41,38	Markov model	deterministic and probabilistic SAs	The ICUR of vaccination compared with no vaccination was £23,298 from the NHS perspective, and £11,459 from the societal perspective	the cost of hospitalisation and the number of GP visits were the most influential variables. Vaccination, compared with no vaccination, had over 90% probability of an ICUR below £30,000 per QALY.
Jit, 2009	Belgtum, UK, France, the NED	Rotaria (and RotaTea)	DO vaccination	infents	RCTs	lifetime	health care provider (and society)	70%	3%	Rotarix: 656 for Bel. 654 for UK 662 for Fra and 645 for NED. RotaTeq. 637 for Bel. 644 for UK, 648 for Fra and 628 for NED.	age structured cohort model	deterministic SAs and scenario analyses	At a threshold of E30,000 per QALY, rotavitus vaccination- was not cost-effective in the four sountries from the perspective of the beath care payer and not inoluding indirect effects. Ratios were only displayed in graphs.	A key input was the discount rate: Vaccination became con- effective when considering indirect protection and societal costs. Rotavirus vaccination is unitkely to be cost effective in any of the free- countries studied if the vaccines are supplied at their market price.

4. INFLUENZA

First author, Year	Countries	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Livartowski , 1996	France	Vaccine agamst Haemophikas influenze type b (Hib)	no vaccination	children aged under five years	published sources of unclear design	10 years	health care payer (national health insufance system) and families (co- payments)	100%	6%	about FF 108.50 pcr. injection (difference between the pentavalent and the quadrivalent vaccines)	not specified	ono-way SAs	The ICUR of vaccination compared with no vaccination was FE 34,050 from the perspective of the French national health naturance system and FF 64,688 when considering the patients' families financia' builden	The most influential inputs in turns of cast per life-year gained were incidence of meningitis, meningitis mortality rate number of yeacine dose needed to assure officiency, and discount rate
Marchetti, 2007	Italy	two strategies for childhood influenza vaccination: vaccination of all children aged 6 to 60 months versus vaccination of all children aged 6 to 24 months	the current strategy of vaccination of children at high-risk	healthy children aged 6 to 60 months	meta- analysis of RCTs plus two Italian RCTs	5 years	bealth care payer and society	30%	3%	65.50	decision tree model plus Markov model	deterministic and probabilistic SAs	From the perspective of the third-party payer and in comparison with the current strategy, the ICUR was 613,333 with the vaccination of 6 + to 60- month-old children and 610,000 with the vaccination of 6 + to 60- month-old children. From the perspective of society, both vaccination strategies ware dominant.	ICURs were generally robust. From the perspective of the health care system, influenze vacination of children aged 6 to 60 months and of children aged 6 to 24 months had probabilities of 86% and 74%, respectively, of costing less than 650,000 per QAUY gained over current vaccination. From the perspective of society, the two vaccination strategies had 89% and 80% probability, respectively, of being vote-reflective.
Aballes, 2007	Spain-	rousing influenza vaccination for all aduits aged 50–64 years	current policy of vaccinating only those aged 50-64 years who are at high risk of complication from influenza and healthcare so cial workers	pcopie over 30 years of- age	a systematic Cophrane review of 10 RCTs and a metal analysis of 20 colocr studies in elderly persons	lifetime	third-party payer and society	51.31% higb risk/eligib le 21.04% iow- risk/pop- eligible	3%.	63.42	probabilistic decision analytic modei	deterministic and probabilistic SAs	The ICUR of vaccination was £14,919 from the perspective of the fund-party payer and £4,149 from a societal perspective-	The most influential variable was the attack fate. (The ICURS) never exceeded 650,000 and in few cases wire higher than 820,000 At a threshold of 650,000 per QALTY gains, the probability or the new policy being cost- efficiency way 594/from the third- party payer perspective, and 37% from the societal perspective.
Navas, 2007	Spain	universal influenza vaccination of children.	no vaccination	preschool and schooi aged children (Le. 3 to 14 years)	n prospective cohort study in healthy children aged 3 to 14 years attending private peciatoric clinics in Barcelona, Spain, during 2004/0075	6 months	health care payer and society	probably 100%	not necessary	64.35	decision tree analytic model	One-way SAs	Vaccination had an ICUR of E18.26 from the perspective of the health care payer and was dominant from a societal viewpoint.	vaccine price and cost of work absentism were model drivers
Allsup, 2004	UK	Influenza vaccination for healthy people aged 65 to 74 years	no vaccination (placebo)	community dwelling neople between the ages of 65 and 74 years, without any of chronic illnesses for influenza yaccine	RET	one year	third-party payer (NRS)	60%	not teccessary	£3.30	modelling was used to extrapolate the clinical and economic outcomes of the trial to the population of 65- to 74- year-olds in England	obe-way SAs	The ICUR from the perspective of the NHS was ±304,000 (approximately)	only in the best scenario, the ICUR approached \$50.000 per QALV, but in many scenarios was higher than \$300.000 per QALY
Turner, 2006	UK	adult influenza vaccination	no vaccination	healthy adults aged between 50 and 64 years	Cochrane review	unclear	health care payer and society	not reported	not applied	£5.40	decision tree model	deterministic and probabilistic SAs	The ICUR with vaccination was £6,174 from the perspective of the NHS and £10,766 from the perspective of the society	The cost per QALY remained below £30,000 in all sensitivity analyses
Baguciin, 2010	UK	various H1N1v influenza vaccination strategies were considered	no vaccination	depending on the vaccuanon- strategy	RCTs of seasonal influenza vactues pius authors' assumptions	lifetime	health care payer	70% high-risk 40% low- risk	3.5%	£10 (not included in the base case analysis)	deterministic transmission dynatalc model	Probabilistic SAs and regression ahalysis	ICURs of the vacunation strategies were not reported. If the best of vaccine purchase itself is treated as a sunk cost, vaccinating risk groups very likely to be cost-effective, since most ICURs lie below the £20,000 per QALY sensed threshold	The most influential parameter is the overall size of the epidemic without sectorization, followed by QALY loss per case, loophalausion rates and costs, and case-fatality ratios
Jir, 2010	UK	Seasonal influenza vaccination for women in their second or third trimester of prognancy	no vaccination	pregnant women	a 2007 Cochrane review that pooled the results of several RCTs	two years	third-party payer (NHS)	45%	3.5%	£6.04	decision tree mode!	deterministic and probabilistic SAs	In the base case (infinits partially protected and no vaccine efficacy after the first season), the ICUR was \$22,000 (95% CI: 410,000 to E140,000, The ICUR was £28,000 assuming no infant protection and £15,000 when infants and mothers were protected for the second season.	The most influential inputs were the quality of life lost with clinically apparent influenza and mic cost of vaccime administration. The probability of vaccimation being cost-affective was 69% at a threshold of 150,000 per QALY (54% in the scenario without inflam protection and 87% in the scenario with second aeason protection).
Baguelin, 2012	UK	the correct infinenza vaccination programme fire clinical risk groups and for those aged 65 years or older	no viscolimitori	people aged 65 years or over and clinical risk groups tpeople of all ages with chronic respiratory, heart and idabetes, and intuntosupp ression due to disease or	a published study of non- specified design	lifetime	nor expitcitly stated but appears duite party payor	20%	3,5%	£6,84	a published age structured dynamic model or influenza transmission	deterministic and probabilistic SAs	At the accepted willinguese se pay threshold or forward 200000 to 50,000 per QAAY gathed accounts we likely on the converticities in all accounts, accept when his infrared sensitives in all and the vaccute was poorly matched to that strong	influential inputs were strain, severity and match to vacure, QALV loss for case, proportion of febric cases, and vacure administration costs.

ebbh

First author, Year	Countries	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Pitman, 2013	UK	paediatric influenza vaccination using two vaccines (either live attemated influenza vaccine LAIV or trivalent inactivated influenza vaccine TTV) and different age groups ²	no vaccination	children	RCTs	lifetime	third-party payer (NHS)	50%	3.5%	£5.81 for both vaccines	dynamic transmission mode!	deterministic and probabilistic SAs	the current vaccination policy was cost-saving over no vaccination. After excluding dominated strategies, the ICUR was £506 with current policy plus LATV in 2-10 year olds and £298 with current policy plus LATV in 2- 18 year olds	vaccinating 2-18 year olds with LATV was invariably the policy with the highest probability of being cost-affective. Influential inputs were vaccine upake and changes in the basic reproductive number of the virus.
Abalica, 2007	Baly Germany France	vaccination for all individuals aged 50 to 64 years	(current) vaccitanica mity for people aged 50 to 64 years at high-risk of complication 3	people aged 30 to 64 years	systematic review of 10 RCTs	one year	third-party payer and society	76%	3%	Beazil; R§4.74; France: 66.38; Germany: 67 erigible patients and 617.28 non- eligible patients; Italy; 612.77 pharmacy and 64.98 mider connect	mohabililistic analytic decision model	deterministic and probabilistic SAs	The ICUR, Forse the perspective of third, perspective of third, perspective are 13, 156 in France, 53, 1367 in Germany, and 15, 562, and 143, perspective, and/rend vaccination was dominant in Germany and thai, while the ICUR was £7,989 in France.	The ensist influencial parameters were attack rate, size of high-rink population, and death rates after consultation for 14, 7 Ho CEAC showed hat the probability of the ICUR being below the intershold of e50,000 (AL1 > was 945 in France, 89% in 1laty, and 22% en Germany from a shortd-party payer perspective (95%, 99%, and 100% from a shortd-party perspective)
Lugner, 2012	Germany UK NED	three strategies for yaccination agains: influenza, in a pandernic: vaccination for the whole population, vaccination of people Syears old or oider, and vaccination of people with a high transmission rate (those aged five to 19 years)	no vaccination	whole population, elderly, or those aged 5 to 19 years (depending on the immunisatio n strategy)	published sources of unclear design	fifetime	bot explicitly stated but appears third-party payer	90%	Benefits: Germany 5%, the NED 1.5%, UK 3.5%, Costs: not dicounted (short- term analysis)	610	age- structured model of influenza transmission	deterministic SAs	All vaccination strategies were cost- effective compared in no vaccination. In sectarios where the vaccine became available at the peak of the paudentic and there was pre-existing immanity among elderly people, the ICUR for vaccinating high transmitters was e7,323 in Germany, e10,216 in the Vetherlands, and e7,280 in the UX	When including productivity losses, all vaccination strategies were dominant of highly coat- effective in all coeutries and in most scenarios

1. only highrisk groups (those with chronic respiratory, heart, kidney, liver neurological disease, diabetes, and immunosuppression, pregnant women and household contacts of immunocompromised individuals); risk groups and the following age groups: 0-4 years, 5-14 years, over 65 years, 0-14 years plus over 65 years. 2. [pre-school 2-4 years of age, pre and primary school children 2-10 years of age, or all children 2-18 years of age) or current practice of vaccinating those at increased risk of influenza associated morbidity, including everyone of 65 years of age and over, with TIV

5. VARICELLA/HERPES ZOSTER

First author, Year	Countries	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Annemans, 2010	Belgium	vaccination against herpes zoster (H2) and post-herpetic neuralgia (PMN) in individuals aged 40 years and older	no vacétnation	individuals agod 60 years and older	RCT (the Stingles Prosention Study)	lifeiame	third-party payer (only direct healthcare costs covered by the Beigtan National Institute for Health and Disability Instrumce), health core payer (plus patient co- payments), and sociery	20%	3.0% C 1.5% B	6141,18	Markov madel	deterministor and probabilistic SAs	The ICURs of vaccination were eff. 999, 671, 664, and 57, 137 from the party payser, the health care payer, and the society, respectively	In the univariate SAs, the ICUR ranged from 64.959 to E19,052. The most influential input was the duration of vaccine efficacy As a fittehaid of E30,000 per QALY: the probability of vaccination being cost-effective mas 94%.
Bilcke, 2012	Belgium	vaccination of all or subgroups of adults aged 60 to 85 years against berpes zoster	DO Vaccination	adults aged over 60 years	RCT	lifetime	bealth care payer	30%	3.0% costs 1.5% benefits	£90	static cohort model	one- and routi-ways SAs. Worst and best case scenarios were presented depending on the assumptions most and least in fuvour of vaccination	For the scenario most in favoar of vaccination, the ICUR ranged from ICL251 ger OALY at 60 years to 65,949 per OALY at 85 years. For the secandro least in favoar of vaccination, the ICUR's ranged from 648,979 per QALY at 60 years to 6303,703 per QALY at 85 years.	the most influential inputs were age at vaccination; assumptions about vaccine efficacy, and vaccine price
Bitcké, 2013	Belgium	universal childisod varicella-coster vaccimation programme'	p6 aniversal vaccination	infaots. children	sot reported (referend to a previous publication)	lifetime	bealth care payer	95%=30%	3.0% C 1.5% B	643.46 (690 boseer vacune)	age- structured unnantssion «dynamic model	daterministic and probabilistic SAs	Ihr values of ICUEs were not reperied. Assuming ito exceptions boosting, all endabland VZV vacelination programmes cost less than 635.000 per (ALTV gained for party time bertzen apt to 100 ywhen only the impact on ethickreptor, disease is included. LCUE to f vacelination at ang 4 years were very similar e5,564–422,880 scomparty vitile 55,781– 63,240	various scenarios were considered in the base case analyses
Bresse, 2013	France	herpes zoster (HZ) and post-herpetic neuralgia (PHN) vaccination in elderly patients	bū vaccination	people aged over 65 years and people aged between 70 and 79 years	RCT (Shingles Prevention Study, SPS)	lifetime	third-party payer and health care payer (including also private insurances and patient copayments)	20%	4%	€125	Markov model	deterministic and probabilistic SAs	from the perspective of the third party paper, the ICUR was £9,513 with vaccination of people aged 70-79 years and £1,304 when vaccinating people aged over 65 years. From the perspective of the health care payer, the corresponding ICURs were £14,198 and €18,385, respectively.	The most influential inputs were the pain classification used and the vaccine price, as well as utilities and values of discount rates used, (multivariate) sensitivity analysis confirmed that HZ vaccination is cost effective when considering both the 70-79-year-old people and all people over the age of 65 years.
van Lier, 2010	NED	herpos zoster vaccination	no veccloation	cidenty people	RCT	lifetime	society	75%	4.0% costs 1.5% benefits	£77	Markov cohort model	univartate and multivariate SAs	ICURs were €38,519 in 60-year-olds, 631,228 in 65-year-olds, €21,716 in 70-year-olds, €24,336 in 75-year-olds, and €34,449 in 80-year-olds	discounting rate, vaccine proce and duration of protection of the vaccine have the greatest impact on the ICURs.
de Boer, 2013	NED	Routine VZV vaccine in the etderly	b0 vaccination	elderly people	RCT (the Shingles Prevention Study) plus other studies	lifetime.	health care payer and society	25%,	4.0% C 1.5% B	€87	cobort model	one-way SAs and scenario analyses	From a societal pespective, the ICUR of vaccination at age 60 years was 633,555 (e22),664 at age 70 years). From a health care payer pespective, the ICUR of vaccination at age 60 years was 642,004 (e22),881 at age 70 years).	The most influential parameters were vaccine price, incidence ratios of herps zoster, vaccine efficacy at the vaccine uptake, the duration of protection and the QALY weight of mild pain
Edmunds, 2001	UK.	ານສຣຣ ສຸດັນນີ້ ຈັດເປັນການເປັດກາ ຜູ້ສູລີແກເຮີ 2050ຄາ	po veccinátion:	individuals aged 45 years of older	assumption	lifesime	health core payer	:60%.	3%	£20	decision analysis model	one-way SAS	In the column of Sci-year- olds, the ICUR was E11, (109 with Hirs-long vaccine, £22,845 with 10 years of protection, and £65,961 with 2.5 years of protection and low vaccine efficacy. The corresponding figures with high vaccine efficacy were £27,252 (Hirs-long), 28,864 (10 years) and £3,560 (2.5 years).	ICURs were particularly sensitive to the cost of the vacoica aid to the parameters related to mortulify the to posi- herpetic neuralitis
Brisson, 2003	UK	three vaccination strategies: infant strategy froutine mass infant vaccination at 90% coverage), enteh-up strategy (infant strategy (infant strategy) with catch-up targeted at susceptible 2. to 1,-year-olds in the strategy (routine vaccination of 1) year-olds who are susceptible)	no vaccination.	infuots and children up to 11 years	RCTs	lifetime	health care payer and society	90%-80%	3%	£240 (per- vial)	transmission dynamic model	deterministic and probabilistic SAs	Infant vaccination and eath-bug vaccination produced an overall loss of 5.4001 and 68,000 discounted QALYS over 80 years and resulted in a net cost from both the headh provider and the societal pergetives. The adolescent serangey had an CUR of approximately £ 18,000 from the perspective of the headh cost of the societal perspective.	vaccine efficacy and the duration of immunity to zoster after exposure to varicell azoster virus were key inpusi for the infant and catch-up strategies. Many parameters afficied the ICUR of the adolescent strategy but most values remained below £25,000/QALY. These results were confirmed in the probabilistic SAs.

ebbh

First author, Year	Countries	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
van Hoek, 2009	UK	routine vactination with a herpes zoster (HZ) vaccine for the elderly	no vaccination	people agod 63 years or over	RCT and other publications and assumptions	lifetime	bealth care payer (NHS)	pot reported	3,3%	£35	- Markov colori model	Deterministi C and probabilistic SAs	In the 65-year-old cohort, compared to no vectifiation, the ICUR- of vectoriation was £20,412.	the LCER was most sumative to vaccine cost and efficacy parameters, as well as the estimated indence of zoster and parameters that described the QALYs lost from HZ. At a maximum withingness-so-pay for a QALY gained of \$30,000, the probability of vaccination being cost-effective was 37% at 65 years and 98% at 70 years (assuming that the vaccinate provided additioned processing quartue path helpsitic neurality).
Moore, 2010	UĶ	vaccination programme against herpes zoster (shingles) and post-herpetic neuralgia (PHN)	bo vaccination	people aged 30-year-old of over	RCT	lifetime	health care payer and society	40%	3.5%	295	Markov state- transition	deterministic and probabilistic SAs	The ICUR with vaccination was £13,077 from the perspective of the health care payer and £11,417 from the societal perspective	results were sensitive to the duration of vaccine efficacy, the discount rate, the utility estimates, and the pain severity level distribution at diagnosis. The ICUR from the perspective of the basilth care payer was below £30,000 m 92,7% of simulations
van Hock, 2012	UK.	childhood Varicella vaccination alore saciolation an children and lennes zosta vaccination of pre- same vaccination of the cidenty alore:	no vaccination	children and elderly populations	RCT (the Shingley Prevention Study)	ilferme	neanth care payor (NHS)	90% first dose 80% second dose-	3.5%	231	ágo- structured transmissio dynamia, model	ptobabilitic SA and selected one- way SAs	The synthesis of coas and QALYS was presented using coas- effectiveness acceptability surves CEACS. When compared with nor- vaccination the probability than childhood varicella was constrained and was cost-effective as a biology are QA. for a ghose was 96% and 56° varicella vaccination of the charty atoms was 96% and 56° varicella vaccination of the clarity atoms was 70%	The feasies were found to be very sensitive to the time-found of nadysis. Childhood variefila vaccination was sufficient as cone-efficient it available 39 to 20 years post vaccination

1. Two additional scenarios were as follows: combining a primary varicella zoster virus (VZV) vaccination in children with VZV booster vccine to prevent herpes zoster in adults; using a second dose of primary VZV vaccine at age 6 or 11.

6. OTHER VACCINATIONS

First author, Year	Countr ics	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Luyten, 2012	BEL	Hepatilis A vacine (Hávrix) in aduts	two comparators: no vaccination and screen- and-vaccine)	aduits in general as well as specific risk groups (health care workers, teachers, soldiers or fréquent travellers)	not clear but presunably based on RCTs	long-term	health care payer and society	95%	3.0% C 1.5% B	£45,66	Markov cobort model	Deterministi e and probabilistic SAs	From the perspective of the health cnce payer, the median ICUR of vaccination was e185,000 versus no vaccination and e223,000 over svercen- nd-vaccine, From the societal perspective, the ICURE ware approximately £10,000 Jower.	The model was most sensitive to the 'probability to die from HAV in the age group above 30° Overali, ICCRs did not change substantially.
Mangtani, 1995	UK	three hepatitis B vaccination strategies: universal pre- adolescent vaccination, and selective vaccination of high-risk groups	Dio vaccination	infants: pre- adolescents: or high risk groups (depending on the vaccination strategy)	nøt elearly reported	long-term	not explicitly stated but appears third-pary payer	92%4.	19%.	adalt dose: £9,82; infant and pro- ndolescent dose: £7.36	nor specified	deterministic SAs	Compared to no vaccination, the ICURs vere 43,388 with selective vaccination, 82,515 with universal human vaccination and £2,776 with pre- adolescent vaccination	In the cost-offectiveness analysis, (cost per I/s paintoft, use of disconting was the most influential parameter, adding vaccination in inflancy or at pre- national state of the solution of pre- national state of the solution of the solution of the solution of the solution of the future at 50k per anaum, however, made pre- ationetseen watorination more cost effective than inflatt or solution vaccination.
Siddiquī, 2011	UK	three universal or selective infant or adolescent hepatitis B virus (HBV) vaccination programmes ¹	no veccination	infants and adolescents	published studies of unclear design, including a Cochrane review	lifetime	health care payer (NHS)	90%	3.5%	£9 for infants and £32 for adolescents	Markov mode!	deterministic atd probabilistic SAs	Compared to no vaccination, the ICUR wass £255,000 (£172,000 for male infants and £353,000 for female infants) with universal unfant vaccination, £493,000 (£352,000 for females and \$289,000 for females and \$289,000 for females) with the adolescent immunisation programme, and £90,000 with selective infant vaccination	vaccine price, duration of vaccine-induced immunity, and discout rate were influential inputs
Bos, 2001.	NED	universal vaccination with hexavalout meningococcal B outer-membrane vesicle (OMV) vaccine administered in four doses at the age of 2, 3, 4 and 11 months	no vecimin	newborns	RCTs	lifetime	society	759%	4%	E10 (conservat. assumption)	decision tree modei	one-way SAs	The ICUR of vectination version no vectination was Date 15,721	vaccine price, the coverage rate and the quality of life were the most influential inputs
Oostenbrink, 2002	NED	S. pneumoniae (SP) or Neisseria meningitadis(NM) vaccination	no vaccination	children	unclear	long-term	society	not reported	4%ı.	not reported	decision tree model	deterministic SAs	Compared to no vaccination, the ICUR was 6401,965 with routine SP vaccination (three doses) and 622,635 with routine NM vaccination (four deserv)	not reported for the vaccination strategies
Bos, 2006	NED	a combined 9- valem meningococcal B and pnaumococcal vacante	no vaccination	newborns	RCTs and other clinical studies	lifetime	society	ħ₹%.	4%	€40 (EUE 20 to €60)	Markov model	univariate and multivariate SAs	The ICUR of combined vaccination was €17,700 at vaccine price of €40 (€3,160 at vaccine price of €20 and €32,170 at	Influential inputs were disease incidence, vacche proce and duration of protective efficacy
Pouwels, 2013	NED	routine infant vaccination (following a 2, 3, 4-11 mo schedule) against serogroup B menincococcal (MenB) disease	no vaccination	infants	published studies of unclear design plus assumptions.	lifetime	society	95%	4.0% C 1.5% B	€40	Markov model	one-way and scenario analyses	The ICUR of vaccination was £243,778	The vaccine price per dose including administration costs would need to be as low as 64.70 to remain below the threshold of £20,000 per QALY. For a threshold of £50,000 per QALY this would be £10.33. When alternative vaccine schedul were adhieved. Only ward intoms in incidence levels reduced the ratios
Trotter, 2006	UK	Six alternative meningcocord serrogroup vaceimation vaceimation "introductory" vaceimation at dillerent ages and there future MCC vaceination strategies	RG vaccination	children (depending on the valoination strategy)	a published study of non- specified design	lifetime	bealthysare payer (NBIS)	bot reported	3%	εlż	age structured transmission model	detarministic SAs	Compared to no vincinitation, the main attractive "randonleary" which children are rominally watch and there is a rominally watch there is a condi-up campian for all under 18 years and which and LTM or 62,2900 over no vascitation. As concerns future strategies, vascimition echeditis that radiage the number of dones are generally more cost- effective than current vascitation.	When excluding need inneunity, vaccination of 1.2 months and no eatch of memoissance was the most cost-effective starting (ICUR of 123,223 over no vaccination). Discourt true and vaccing price were arthuential inputs.
Hepkema, 2013	NED	quadrivalent coojugate vaccine againts sengroup A.C, W135 and Y disease (MenACWY) in 14-thonti-old children and MenACWY-Men ACWY for vaccinating at 12 months and 12 years	routine vaccination with meningoc- serogroup C conjugate (MenC) vaccine	14-month- old children and 12-year- old children	studies of unclear methodology and assumptions	lifetime	society	95.9% (14 months); 94% (12 years)	4.0% C 1.5% B	642.72 for MenACWY; 655.11 for MenC	decision tree analytic model	one- and two-way SAs plus probabilistic SAs	Vaccinating with MenACWY at 14 months was dominant. over MenC. The ICUR of implementing an additional vaccination with MenACWY at 12 years of age was 6653.334 compared to MenC. Comparing fits booster-dose strategy with MenACWY at 14 months produced an ICUR of £988,490.	Assuming lifelong protection after vaccination at 12 years of using the most recent disease incidence figures resulted in lower entition at 12 years of the were still too high to be considered coart-effective. The incidence of serogeoup AC, W135 Y disease had a high impact on the ICUR. Nevertheless, in the scenario showing the prevention of a decline in bed immunity, 95% of simulations comparing MenACWY at 14 months were found below 61,750 pc QALY and 100% below 61,580 pc QALY.
de Vries, 2010	NED	universal adolescent pertussis vaccination	no vaccination	12-year-olds	RCTs and observationa data	long-term	society -	96%	4.0% costs 1.5% benefits	£18:30	discrete event simulation model	odo-way SAs	The ICURs of Vaccination were 64.418 and 66.371 respectively, for the 8- and 15-year protection	influential inputs were quality of life weights used for pertussis disease

eboh

First author, Year	Countr ies	Vaccine	Comparator	Patient population	Source of vaccine efficacy data	Time horizon	Perspective	Vaccine coverage	Discount rates	Vaccine price (per dose)	Model description	Sensitivity analyses (SAs)	Main cost-effectiveness results (ICUR)	Results of the SAs
Westra, 2010	Netheri ands	3 new pernusiss immunization strategies for possible addition to the current national immunization program ²	standard national perussis immunisatio programme	infants, their parents, or pregnant women	Dutch incidence data and other studies of unclear design	8 years	bealth care payer and society	96%	4.0% costs 1.5% benefits	€18.30	decision tree model	deterministic and probabilistic SAs	From the health care payer perspective, the ICUR were (\$239,900 with a-sheath immunisation, \$4,600 with cocooning, and \$5,500 with maternal immunisation, the ICUR Compared to anternal immunisation, the ICUR of cocooning was \$6,500. From the societal perspective, the ICUR of at-birth immunisation was 330,100, while coccorning and maternal immunisation was asving	Base case results were generally robest
Rozenbaum, De Cao, 2012	NED	three extended pertussis booster vaccinations ¹	the current pertussis vaccination programme (with doses provided at 2, 3, 4 and 11 months and 4 years)	children and adults	previous studies, taiready included in this review)	25 years	society	not reported (but little impact)	4.0% C 1.5% B	€21.(8	transmission dynamic model	deternumistic SAs	The ICUR of the adolescent booster programme was 64,200. The ICUR with the combination strategy was below 610,000. The ICUR of the svery-10- year-booster strategy was 616,872.	influential inputs were vaccine efficacy, QALY losses associated with un-notified pertustic cases and the vaccine price
Lee, 2008	GER	one-time vaccination with a single dose of accllular pertussis vaccine (Tdap); vaccination with Tdap boosters every ten years	no vaccination	adults aged between 20 and 64 years	published sources of unclear design	lifetime	society	not reported	3%	€12 (incremental Tdap vaccine vs conventional Td vaccine)	Markov model	one-way SAs	In comparison with no vaccination, the ICUR was 65,800 with one- time vaccination and 67,200 with vaccination every 10 years	influential inputs were disease incidence, vaccine cost, and initial vaccine efficacy
Stevenson. 2002	UK	pre-school booster pertussis vaccination	no- vaccination	children aged 4 to 5 years	authors' assumptions based on published studies	five years	not explicitly stated but appears third-party payer	94%	6%	£6 (marginal cost above that of DT)	Markov modeł	one-way SAs	The ICUR with vaccination was £35,000 or £14,500 depending on the assumption on vaccine officacy	Beside vacche efficacy assumptions, influential inputs were the percentage of natural acquired protected individuals and the level of prior protection within the community

1. a three-dose infant vaccination programme that was administered with other routine vaccinations before the age of six months; a two-dose programme for all adolescents at age 12 years; and a selective vaccination programme for infants of intermediate or high-risk ethnic origin or living in high-incidence locations. 2. immunization of the infant at birth, immunization of the parents immediately after birth of the child (cocooning), and maternal immunization during the third trimester of pregnancy. 3. single adolescent booster administered at the age of 12 years; combining an adolescent booster dose at the age of 10 with an adult (18–30 years) booster dose; every 10 year booster dose