
OR IG INA L  AR T I C L ES

Epidemiology Biostatistics and Public Health - 2015, Volume 12, Number 3

BAYESIAN AGE-PERIOD-COHORT MODEL OF LUNG CANCER MORTALITY

Bayesian Age-Period-Cohort Model of 
Lung Cancer Mortality
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OBJECTIVES: Cancer is the second most common cause of death in the US. Lung cancer is the leading cause 
of cancer deaths.  An analysis of the epidemiological situation, as a support tool for planning of public health, 
requires an understanding of lung cancer mortality rates. Mortality rate temporal trends may be assessed by 
using data derived from age (time between birth and death), period (Time of death) and birth – cohorts (time 
of birth) of patients with lung cancer.
METHODS: Data regarding lung cancer mortality and incidence rates in the US from 1971 to 2010 were 
used in the study and obtained from the National Cancer Institute. Age-period-cohort (APC) models are 
widely used for studying time trends of disease incidence or mortality. Model identifiability is less of a 
problem with the Bayesian APC models. Our study applied the Bayesian APC model fitted with histogram 
smoothing prior decomposing mortality rates into age, period, and birth-cohort.
RESULTS: Based on the data from the National Cancer Institute it was determined that as age increased, 
mortality rates from lung cancer increased more rapidly for individuals over the age of 52. The average 
annual lung cancer deaths for individuals over the age of 52 appear to be 28 deaths and, there were 47 
deaths for individuals who were over 57 years old. There was a total of 157 deaths annually for individuals 
who were over 82 years old. The mortality of younger cohorts was lower than older cohorts. The relative 
risk of lung cancer lowered from period 1993 to recent periods.
CONCLUSION: The fitted Bayesian Age-Period-Cohort model, with histogram smoothing prior, is 
capable of explaining the mortality rate of lung cancer. The reduction in carcinogens in cigarettes and 
the increase in smoking cessation from around 1960 may have led to the decreasing trend of lung 
cancer mortality that has taken place, since period 1993.
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INTRODUCTION

Lung cancer (LC) is the leading cause of 
cancer deaths in the US, where cancer remains 
the second most common cause of deaths [1]. 
In 2011, 14% of all cancer diagnoses and 27% of 

all cancer deaths were due to LC. More people 
in the United States die from LC than any other 
type of cancers which is true for both men and 
women. After increasing for decades, LC death 
rates are decreasing nationally as fewer people 
smoke cigarettes [2]. However, it is still one of 
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the largest threats for public health to address. 
About 221,200 new cases and an estimated 
158,040 deaths were reported in the American 
Cancer Society`s estimates for LC in the United 
States for 2015. It is of strong public interest to 
predict the trend, number of LC deaths, and the 
corresponding mortality rates for planning by 
public health and for demographical reasons.

The analysis of trends in epidemiology is an 
important method of monitoring the behaviour 
of diseases. The analysis can be used to monitor 
etiology of disease and assess the effect of public 
health policies in the form of prevention, improve 
treatment, and cost assessment. Age-period-
cohort (APC) modelling has been a well-known 
issue in epidemiology [3-9]. The unidentifiability 
problem for parameters estimation has been 
drawing the attention of many researchers. It 
exists because of the relationship among age, 
period, and cohort. To resolve this problem, 
several approaches have been suggested by 
researchers to analyze the trend and make 
predictions in cancer epidemiology [7,10-12]. 
This study applied Holford approach[7] to 
analyze the effects.

In our study, we analyze LC mortality of 
individuals residing in the USA based on age 
at death, period at death, and birth-cohort 
through Bayesian APC model with histogram 
smoothing priors. The Bayesian method extracts 
the necessary information from the data to 
describe the trend observed by exploring 
the uncertainty associated with functions of 
parameters. Various studies have been carried 
out through Bayesian APC analysis [13-15] 
with different smoothing priors. But, to the 
best of our knowledge, histogram smoothing 
prior has not been considered in Bayesian 
statistical modelling. We have assumed that 
the densities of APC possess similar property 
of smoothness to adapt histogram smoothing 
prior. The analysis has been executed with the 
statistical package R and WinBUGS. 

METHODS

Data and Population

The data for this study was from the 
Surveillance, Epidemiology, and End Results 
(SEER) Program of National Cancer Institute 
(NCI), USA. The data contained incidence and 
mortality due to LC in the USA from 1971 to 

2010. We have grouped incidence and mortality 
into thirteen 5-year age groups (20-24 years 
old through 80-84 years old) and eight 5-year 
periods (1971-1975 years through 2006-2010 
years). These age groups and calendar periods 
involved 20 (13 age groups+8 periods -1) 
possibly overlapping 5-year cohorts [5]. We 
have considered those age groups in our study 
because SEERStat does not give the counts for 
less than 10 numbers of observations and the 
study had many such cases especially below 
the age of 20 years old for mortality counts. The 
same was true for age groups above 84 years 
old. Also, a further factor which was taken into 
account which was that cigarette smoking is 
the most common cause of lung cancer and this 
habit is likely to develop in adult ages. Ages, 
periods, and cohorts were represented by their 
medians during our study. 

Age specific LC mortality rates seem stable 
for age groups 40 years and lower. Within 
every period, it can be noticed that mortality 
rate is increasing until age groups 77 years 
and decreasing afterwards (Fig. 1). Age specific 
mortality rates are lower for lower age in all birth 
cohorts. Similarly, it is significantly high for older 
birth cohorts. Older people of all birth-cohorts 
might be at high risk of ending up as lung cancer 
patients (Fig. 2). Period specific mortality rates 
for lung cancer are lower for lower age groups 
for every period. The greater the age, the more 
mortality rates seem to be for each period. The 
mortality rate for age group 82 years was lower 
than age groups 67, 72, and 77 in early periods. 
However, it seems to be greater in 1993 and 
recent periods (Fig. 3). Cohort specific mortality 
rates due to lung cancer are higher for age groups 
in early birth-cohorts. However, it seems to be 
decreasing for lower age groups for recent birth-
cohorts. We have noticed that older people are 
at more risk of dying due to lung cancer than 
younger people throughout the birth-cohorts. 
Within the same age group, the mortality rate 
of younger birth-cohort is relatively lower than 
older birth-cohort (Fig. 4).

We have plotted mortality rates as an initial 
exploration whether rates are proportional 
between periods or cohorts. These plots might 
help to have preliminary idea that model 
possibly includes as contributing factors. Log 
scale rate plots of Fig. 1 and Fig. 3 will 
exhibit almost parallel lines if age specific 
rates are proportional between periods which 
might indicate age-period model. Similarly, 
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log scale rate plots of Fig. 2 and Fig. 4 will 
exhibit parallel lines if age specific rates are 

proportional between cohorts which possibly 
indicates age-cohort model [16].

FIGURE 1

AGE-SPECIFIC LUNG CANCER MORTALITY RATES PER 100,000 IN THE USA BY 5-YEAR PERIOD

FIGURE 2

AGE-SPECIFIC LUNG CANCER MORTALITY RATES PER 100,000 IN THE USA BY 5-YEAR BIRTH-COHORT
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FIGURE 3

PERIOD-SPECIFIC LUNG CANCER MORTALITY RATES PER 100,000 IN THE USA BY 5-YEAR AGE GROUP

FIGURE 4

COHORT-SPECIFIC LUNG CANCER MORTALITY RATES PER 100,000 IN THE USA BY 5-YEAR AGE GROUP
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Modeling

Let d
ij
 be the observed deaths for age 

group i in time period j. We have assumed 
that these followed a Poisson distribution with 
mean d

ij
 ~ Poisson(λ

ij
) i.e.

The mean of age-specific and period-
specific death counts λ

ij
 is regressed on the 

effects of age, period, and birth-cohort using 
the corresponding person-years at risk n

ij 
as 

the offset. More specifically, let α1 is age effect 
(i=1,2, ..., I), β

j
 is period effect (j=1,2, ..., J), and 

Υ
k
 is cohort effect (k=1,2, ..., K) with relations 

K=I+J-1 and K=I+j-i. The mortality rate may be 
described through: log(λ

ij
 )=log(n

ij
 )+α

i
+β

j
+Υ

k

The choice of prior is always an important 
issue in Bayesian Statistical Analysis. Normality 
is common assumption for time effect-
specific (age, period, and cohort) smoothing 
prior formulations in most of the smoothing 
approaches including power link model[17]. Our 
assumptions regarding APC are not restricted to 
any particular family of distributions. Histogram 
smoothing is a technique for the analysis of 
independent and identically distributed (iid) 
observations with unknown density which is 
concentrated on a finite interval of the real line 
[18]. A histogram helps to visualize the data 
since it adapts and replaces a large point set 
with a compact approximation of the underlying 
distribution. It eliminates the random fluctuation 
that usually occurs with the estimate of 
parameters and prevents instability in a situation 
where there are very few counts of deaths, 
as is the case in the younger age groups. The 
variance parameters (APC variances) provide 
information about the degree of smoothness. 
The larger the values, the greater the degree 
of smoothing [19]. The trends corresponding to 
age, period, and cohort were smoothed using 
the histogram smoothing prior. The prior issues 
having been addressed, it remains crucial to 
take into account the fact that the model did not 
appear to be sensitive to the prior of variance 
(roughness) parameters. 

The relation cohort=period-age, leads to a 
non-identifiability problem for which a constraint 
should be introduced [20,21]. We have adopted 
the Holford approach to represent the effects [6,7]. 
It offers to use models that incorporate effects 
due to the risk factors by introducing a constraint. 
To consider slope of an effect zero is one of the 
suggested approaches. It has been observed that 
the age-cohort model with an unstructured error 

term is enough to describe the extra Poisson 
variation [22]. Therefore, we estimated age and 
cohort effects while assuming that the slope 
of period was zero and considering 1941 as a 
reference cohort. Thereafter, the fitted values 
were introduced to the model which included 
only period effects, while considering 1998 as a 
reference period. In this way, we obtained the 
independent effects of age, period, and cohort. A 
similar approach with respect to choice of effect 
has been previously adopted [14,15].

The parameter estimates for the model are 
obtained from posterior distribution. Median is 
the point estimate. The model goodness-of-fit 
was measured by the posterior mean deviance  
[23]. The deviance information criterion (DIC) 
has been considered to compare the models 
which adjusts the posterior mean deviance for 
the number of parameters in the model [23]. A 
smaller DIC indicates the better fit. 95% credible 
intervals were obtained using 2.5th and 97.5th 
percentiles of the Monte Carlo Markov Chain run. 

Results

We fitted partial as well as full models and 
compared the different models based on the 
DICs that were obtained. The full model, which 
contained the age at death, period at death, 
and birth-cohort, displayed the best fit with 
the lowest DIC in comparison with the partial 
models (Table 1). We further investigated age, 
period, and birth-cohort models with their 
different possible interactions. Having done 
so, we observed no evidence of significant 
interactions as indicated by DICs. The estimated 
parameter values of age, relative risks of period, 
and cohort components with their 95% credible 
intervals are presented in Table 2.

FIGURE 5

ESTIMATED AGE-SPECIFIC ANNUAL MORTALITY 
RATES (AGE EFFECTS) IN 5-YEAR AGE GROUPS
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We observed that the mortality rate is stable 
at around 1 or 2 deaths per 100,000 for age 
groups who are 32 years old and under, and 
approximately 5 deaths for individuals who are 
37 (Fig. 5; Table 2). However, the mortality rate 
by age had an upward inflection with individuals 
who were age 42 and above. The upward 
inflection of mortality rate is consistent with older 
ages. We have observed that it reaches the peak 
of 325 (95% CI: 323-326) deaths per 100,000 
person-year for the age group of individuals who 
were 82 years old. The 95% point wise credible 
intervals are the intervals of the mean function 
which appears narrower in our model. This 
might be due to the scale of model which has 
substantially broader and greater variability.

It should be noted that the risk of birth-
cohort increased sharply among cohorts from the 
late 1800s into the early 1900s before reaching a 
plateau and then declining (Fig. 6). The curvature 
of cohort effect depicts an increase in peak risk at 
birth cohort 1926 and declines continuously until 
1950 as it was observed in Fig. 4. The risk of LC 
mortality peaked in birth-cohort 1926-1931and 
that is supported by similar research [24-26]. We 
have observed an increase in birth-cohort slope 
in 1950, indicating a deterioration of birth-cohort 
trend in LC mortality after 1950. These results 
have strongly agreed with a similar research 
[26]. Cohort effect can be seen in a slowing of 
decline in risk after cohort 1950 in almost all 
age intervals, which indicates that the worsening 
birth-cohort risk is not an artefact of the model 
fitting (Fig. 4). We have noticed declining birth-
cohort risk after 1960. The relative risk due to 
LC mortality by birth-cohort reflects upward 

inflection for people born around 1975 which is 
consistent with mortality rates by cohort. A wider 
95% credible interval was observed in the latest 
cohorts because of fewer LC death points leading 
to greater uncertainty.

We have witnessed a continuous increase in 
the relative risk in period effects peaking in period 
1991through 1995. Thereafter there has been a 
downward inflection (Fig. 7) consistent with Fig. 3. 
This observation would indicate that the risk of LC 
mortality rate has been decreasing after the 1991 
- 1995 calendar period. The result has been well 
underlined by research [26]. We have observed 
that the risk of mortality rate decreased most 
rapidly during the 2003-2008 time periods, which 
has been reinforced in similar research [26,27].

DISCUSSION

The data supports strong evidence of significant 
changes in risk from LC by birth cohorts. An initial 
increase of risk of mortality trend is observed 
in the early 19th century. There could be many 
possible etiologic factors, such factors include but 
are not limited to increased air pollution by gases 
and dust caused by industries, the asphalting of 
roads, the increase in automobile traffic, exposure 
to gas in World War I, the influenza pandemic of 
1918, working with benzene or gasoline [28,29]. 
LC can be caused by environmental exposures as 
well. However, 80-90% of LCs are attributed to 
cigarette smoking and second-hand smoke [27]. 
Tobacco use has been identified as the greatest 
contributing risk factor for LC in developed 
countries and is approaching the same status in 
developing countries [30]. The peak of birth-cohort 
risk occurred in 1926, which may have been 

FIGURE 6

ESTIMATED RELATIVE RISKS FOR 5-YEAR BIRTH 
COHORTS (COHORT EFFECTS)

WITH 95% CREDIBLE INTERVAL WITH 
RESPECT TO REFERENCE COHORT 1941

FIGURE 7

ESTIMATED RELATIVE RISKS FOR 5-YEAR 
CALENDAR PERIODS (PERIOD EFFECTS)
WITH 95% CREDIBLE INTERVAL WITH 

RESPECT TO REFERENCE PERIOD 1998
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caused by the earlier use of cigarettes [25,31,32]. 
These cohorts had the highest prevalence of 
cigarette smoking during World War II [32], when 
half of the young population smoked cigarettes. 
Mortality rate is observed to be higher for age 
groups 60 years old and above. People, who were 
born around 1926, reached the age of 60 and 
above after 1980, that is where the higher risk has 
been observed in the period effect. The fact that 
the risk of LC increased with increasing age might 
be due to the number of cigarettes consumed 
in a lifetime. An increase in age as a risk can be 
interpreted as a reflection of past smoking [33-35].

There has been no significant breakthrough 
in lung cancer treatment that explains the decrease 
in mortality rates after the calendar period of 1993 
[36]. However, we have witnessed a decrease in 
slopes of incidence rate curves after 1993. The lack 
of a breakthrough in treatment, while a decrease 
in mortality rate, might suggest that the decrease 
in mortality rates is caused by a decrease in risk 
of LC instead of an improvement in survival. The 
impact on the initiation of a decrease in tobacco 
carcinogen exposure by cigarette manufacturers 
and an increase in smoking cessation, which 
began around 1960, might have caused the 
substantial decline in the calendar-period risk that 
took place after 1993. Because of the lower risk in 
mortality from period 1993, as can be observed in 
fig 3 and similarly, a lower risk in mortality from 
period 1961 as observed in fig 2, the decreasing 
slope of risk to birth-cohort 1961-1971 might have 
been observed. A reduction in risk of death in the 
USA due to LC is observed through the periods 
1991-2010 from period-specific trend depicted in 
Fig. 3. Older people are relatively more at risk than 

younger people. A similar conclusion has been 
discussed in the study [1]. 

A decreasing mortality trend was observed 
during cohorts 1926-1951 which was attributed 
to the prevalence of smoking filter cigarettes and 
manufacture of low-tar cigarettes [25]. The overall 
risk of death due to LC slightly increased in 1951-
1961, possibly because of the promotion of deeper 
inhalation of smoke [29]. The decrease may also 
reflect a failure of widespread tobacco control 
efforts by private and public health agencies in 
the 1960s [31] to break through social and cultural 
aspects which influenced teenage-smoking [37,38]. 
Marijuana contains the same carcinogen as is 
found in cigarettes [39]. It is possible that the 
increased smoking of marijuana by teenagers and 
young adults in the 1960s and 1970s contributed 
to the increase in risk of birth-cohort around 1950.

Since 1964 when the first Surgeon General’s 
report on the health consequences of smoking 
was published, cigarette smoking cessation rates 
increased and cigarette smoking initiation rates 
decreased more rapidly among men than women 
[29]. The increase of use of cigarettes and marijuana 
among teenagers since 1991 most likely is reflected 
by an increase in birth-cohort risk for people born 
around 1975. Increased smoking from 1971 may 
have increased the relative risk of death from LC 
in birth-cohort around the 1980 and contemporary 
cohorts [29]. People born during 1880-90 had a 
relatively high prevalence of cigarette smoking 
with mixed tobacco and tar that could have led 
to an increase in risk. However, insufficient data 
earlier than the 1971 period prevented precise 
estimation of the risk trend among older periods.

The proposed model fits mortality data 

COMPONENTS IN MODELS DIC

Age 165,722

Period 1,923,440,000

Cohort 1,041,650,000

Age, period 116,025

Period, cohort 233,250,000

Period, cohort, period*cohort  850,328,000

Age, period, age*period 120,595

Age, period, cohort, age*period 11,924

Age, cohort, age*cohort 8,021.3

Age, cohort 7,171.17

Age, period, cohort 2,119.65

TABLE 1

DIC VALUES FOR DIFFERENT COMBINATIONS FOR AGE, PERIOD, 
AND COHORT MODELS FOR DEATHS DUE TO LC IN THE USA
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well in general. Therefore, it is reasonable to 
argue that our approach extracts the necessary 
information from the data which was used to 
explain a possible trend. In a summary, the 
previously described Bayesian approach resulted 
in one flexible model that can be adapted to 
incidence and mortality data.

ACKNOWLEDGEMENTS: The authors would like 

to thank the Surveillance, Epidemiology, and End Results 

(SEER) Program of National Cancer Institute (NCI), USA for 

facilitating data access for this study.

COMPONENTS OF MODEL ESTIMATOR 95% CI

AGE
20-24 0.164 0.155, 0.173
25-29 0.429 0.412, 0.442
30-34 1.481 1.452, 1.496
35-39 4.918 4.869, 4.963
40-44 13.342 13.262, 13.436
45-49 29.962 29.812, 30.112
50-54 56.936 56.709, 57.107
55-59 96.248 95.864, 96.537
60-64 148.254 147.662, 148.699
65-69 206.629 206.010, 207.250
70-74 264.522 263.730, 265.317
75-79 305.187 303.969, 306.410
80-84 324.059 322.765, 325.358

PERIOD
1971-1975 0.940 0.937, 0.944
1976-1980 0.977 0.973, 0.980
1981-1985 1.010 1.007, 1.012
1986-1990 1.042 1.039, 1.045
1991-1995 1.044 1.041, 1.046
1996-2000 1 Reference
2001-2005 0.990 0.988, 0.993
2006-2010 0.961 0.958, 0.964

COHORT
1889-1893 0.529 0.524, 0.536
1894-1898 0.646 0.641, 0.650
1899-1903 0.761 0.757, 0.765
1904-1908 0.884 0.881, 0.889
1909-1913 1.013 1.010, 1.018
1914-1918 1.115 1.111, 1.120
1919-1923 1.178 1.174, 1.182
1924-1928 1.238 1.234, 1.243
1929-1933 1.209 1.206, 1.214
1934-1938 1.117 1.114, 1.121
1939-1943 1 Reference
1944-1948 0.835 0.832, 0.839
1949-1953 0.708 0.705, 0.712
1954-1958 0.688 0.684, 0.692
1959-1963 0.637 0.631, 0.642
1964-1968 0.483 0.476, 0.490
1969-1973 0.376 0.366, 0.387
1974-1978 0.402 0.381, 0.423
1979-1983 0.473 0.432, 0.515
1984-1988 0.545 0.467, 0.633

TABLE 2

RESULTS OF THE AGE-PERIOD-COHORT MODEL
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