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Background: Clinical trials of phase II and III often fail due to poor experimental planning. Here, the 
problem of allocating available resources, in terms of sample size, to phase II and phase III is studied 
with the aim to increase the success rate. The overall success probability (OSP) is accounted for.
Methods: Focus is placed on the amount of resources that should be provided to phase II and III trials 
to attain a good level of OSP, and on how many of these resources should be allocated to phase II to 
optimize OSP. It is assumed that phase II data are not considered for conrmatory purposes and are used 
for planning phase III through sample size estimation. Being r the rate of resources allocated to phase II, 
OSP(r) is a concave function and there is an optimal allocation ropt giving max(OSP). If MI is the sample 
size giving the desired power to phase III, and kMI is the whole sample size that can be allocated to 
the two phases, how large k and r should be is indicated in order to achieve levels of OSP of practical 
interest.
Results: For example, when 5 doses are evaluated in phase II and 2 parallel phase III conrmatory 
trials (one-tail type I error = 2:5%, power = 90%) are considered with 2 groups each, k = 24 is needed 
to obtain OSP ≃ 75%, with ropt ≃ 50%. The choice of k depends mainly on how many phase II treatment 
groups are considered, not on the eect size of the selected dose. When k is large enough, ropt is close 
to 50%. An r ≃ 25%, although not best, might give a good OSP and an invitingly small total sample 
size, provided that k is large enough.
ConclusionS: To improve the success rate of phase II and phase III trials, the drug development 
could be looked at in its entirety. Resources larger than those usually employed should be allocated 
to phase II to increase OSP. Phase II allocation rate may be increased to, at least, 25%, provided that 
a sucient global amount of resources is available.
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1 Introduction

It is common knowledge that the aim of phase II clinical trials is mainly

exploratory, while that of phase III is confirmatory, and that phase II also serves

to enhance planning for the subsequent phase III. Usually, phase II is small with

respect to phase III, and the rate of trial failures, which is around 60% and 40%

for phase II and III respectively suggests that this habit might not be helpful. In

general, low success probabilities are often due to low sample size [1]. Here, we

study sample size problems from the perspective of a drug development project,

which means considering jointly phase II and phase III sample sizes.

To introduce the problem, by way of example, let us suppose that a phase II trial

has been run, with 2 parallel arms each with 60 patients, and that a phase III with

the same design needs to be planned. Assume that the efficacy value (standardized

effect size) of minimum interest that should be observed to then launch phase III is

0.15 and that a value slightly higher than this has been observed in phase II, so

that phase III has to be launched. With one-sided α = 2.5% and power 1− β = 90%,

approximately 940 patients should be recruited for each group, if the observed

effect size is adopted for sample size computation - namely pointwise strategy [2,

3]. This number (940) is quite high, but not beyond the range of those usually

adopted in phase III trials (visit clinicaltrials.gov, a service of the U.S. NIH). So,

assuming that the research team decided to actually launch phase III, the total

number of patients enrolled in about 2,000.

Now, the point is: if the resources for studying 2,000 patients were actually

available, would there be an allocation of sample size better than 60/940? Would,

for example, 400 data allocated to phase II and, at most, 600 to phase III has been

a better choice? It is worth noting that we wrote at most because when 400 data

per group come from phase II and are used for estimating the phase III sample

size, this is not necessarily 600, where it is almost surely lower. Moreover, what

does “better allocation” mean? And, is there an optimal allocation?

Besides dose selection and safety evaluation, the aims of phase II are to correctly

decide go/no-go, to launch phase III (i.e. go) with a high probability if a

meaningful effect really exists, and to estimate well the drug effect size to indicate

a phase III sample size (M) as close as possible to the ideal one (i.e. the one
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providing the desired probability of success of phase III); the aim of phase III is to

prove efficacy with a high probability, once again if a meaningful effect really

exists. Hence, the aim is to succeed with high probability in both phases,

whenever the drug under study actually works well.

In this paper we study sample size resource allocation in terms of overall

probability of success (OSP): we focus on the amount of resources that should be

provided to phase II and III trials so as to attain a good level of OSP, and on how

many of these resources should be allocated to phase II to optimize OSP. Since not

all the resources allocated to phase III are spent, depending on sample size

estimation, we also focus on the actual amount of resources used. It is assumed

that phase II data provide information for phase III planning and are not used for

phase III confirmatory analysis.

Analogous computations on success probability have recently been proposed by

Jiang [4] under the Bayesian framework. Here, the frequentist approach is adopted:

this is due to poor performances of Bayesian sample size estimators (proposed, for

example, by Chuang-Stein [5]) in terms of high variability of their results [3].

2 Theoretical framework

2.1 Drug development model

It is assumed that a certain disease is under study, and that h doses of a new drug

for the disease of interest are evaluated in a phase II trial (h often varies from 3 to

7). Also, a placebo arm is run. A classical parallel design is applied in the

exploratory phase II, with h+ 1 groups. If phase II results are promising, a single

dose D is chosen and 2 phase III trials comparing to placebo are run, once again

under parallel design. It is also assumed that the three trials (1 phase II and 2

phase III) share the same response variable and the same patient population,

meaning that the effect size of the elected dose is the same in both phases. These

assumptions allow simple sample size estimation, with no need for further

adjustments such as those in [6], and are similar to the assumptions in Jiang [4],

4
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where h = 1 and only one phase III trial were considered. Here, all trials are run

under balanced sampling.

A certain limited amount of resources is available to develop phase II and III

trials, and this translates into a total of at most w patients. Let r ∈ (0, 1) be the rate

of w allocated to phase II: if a sample of size n is studied for each treatment in

phase II, then n is, approximately, rw/(h+ 1). Consequently, the whole sample size

available for phase III is w(1− r), which is not used entirely (almost surely).

Indeed, the phase III sample size actually adopted for each group (Mn) is

estimated on the basis of phase II data and is a random variable whose maximum

is w(1− r)/4 (4 are phase III groups).

2.2 Phase II tools

Let δ = (µD − µP )/σ be the generic standardized effect size, µD and µP the means of

response variables of the populations under D and under placebo. Without loss of

generality σ = 1. The true, unknown, effect size is δt. X̄D,n and X̄P,n are the means

of measurements and dn = X̄D,n − X̄P,n is the pointwise estimator of δt.

Call L the random event representing the success of phase II - L stands for phase

III launch. L can be defined in some different ways: for example, on the basis of the

maximum sample size mmax for phase III (i.e. L ⇔ Mn ≤ mmax), or the basis of the

observed effect size overcoming a threshold of clinical relevance (i.e. L ⇔ dn > δ0L).

Kirby et al.[7] evaluated some further launching rules, which, through simple

algebra, can be reduced to L ⇔ dn > δ0L, for some values of δ0L. Note that the first

two launching criteria above can be set to result mathematically equivalent ([1],

Ch.3).

Although the launching rule based on δ0L is the most intuitive, and one of the most

used, let us adopt the one pragmatically based on mmax. In this framework

constrained by w and modeled by r, the actual launching rule becomes

Mn ≤ mmax(r) = min{mmax, w(1− r)/4}. For completeness, Mn ≤ mmax(r) translates into

L ⇔ dn > δ0L(r) = max{δ0L, 2(z1−α + z1−β)
√
2/w(1− r)} (of course, the threshold for dn

must remain of a certain clinical interest - we come back to this point in Section

3.2).
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Phase II success probability is:

SPII(r) = Pδt(L) = Pδt(dn > δ0L(r)) = Pδt(Mn ≤ mmax(r))

2.3 Phase III tools

The Z-test is adopted with one-sided alternatives. Being m the generic sample size,

Tm =
√
m/2(X̄D,m − X̄P,m) is the test statistic and the success probability, according

to [1], Ch.3, is Pδt(Tm > z1−α) = SP (m).

1− β is the desired power to be achieved in each phase III trial (e.g. 90%); then, the

ideal sample size per group for each phase III trial is:

MI = min{m |SP (m) > 1− β} = �2(z1−α + z1−β)
2/δ2t �+ 1 (1)

Once phase II has succeeded, phase III is run with the sample size estimated by

the 2n phase II data. Several sample size estimation strategies can be adopted [1].

Here, MI is estimated by the pointwise estimator based on the observed effect size

dn:

Mn = �2(z1−α + z1−β)
2/d2n�+ 1 (2)

The adoption of the pointwise strategy is made for simplicity and also because its

performances in terms of OSP and MSE are acceptable although not best [3].

Two confirmative phase III trials are run simultaneously and independently, each

group with Mn patients, so that the success probability is the random variable

(SP (Mn))
2. The mean of (SP (Mn))

2, conditional to L, is of main interest and,

although it has been called Average Power by Wang et al.[2], we call it the SP of

phase III:

SPIII(r) =

mmax(r)∑
m=2

(SP (m))2Pδt(Mn = m|L) (3)

2.4 Defining OSP

Let us assume that the quantity to be optimized is the Overall Success Probability

(OSP), that is the joined probability of success of phase II and phase III (in the

recent past, OSP has been called Overall Power [8, 3, 1]). Since the results of the

two phases are independent - it is assumed that phase II data are not included in

6

e 9 9 5 8 - 5



OR IG INA L  AR T I C L ES

Epidemiology Biostatistics and Public Health - 2014, Volume 11, Number 4

Allocating the Sample Size in Phase II and III Trials to Optimize Success Probability

the analysis of phase III data, OSP is given by the product of the success

probabilities of phases II and III:

OSP (r) = SPII(r)× SPIII(r) =

mmax(r)∑
m=2

(SP (m))2Pδt(Mn = m) (4)

We expect OSP (r) to be low for small values of r, due to a low launch probability

(i.e. SPII(r)). Also, OSP (r) is expected to be low for high values of r, due to low

values of SPIII(Mn) since Mn is limited by a low value mmax(r). Then, there is an

intermediate allocation of resources that optimizes OSP (r), that is

ropt = argmax{OSP (r)}.

3 Behavior of OSP

3.1 Settings

It has recently been shown [3, 7], that the threshold of clinical relevance δ0L should

be set not too close to δt, in order not to penalize SPII . A threshold around δt/3 is

therefore set, accordingly. Phase III type I error is 2.5%, where the power is

1− β = 90% (according to [2, 3]). Three effect size values are considered

(δt = 0.2, 0.5, 0.8), providing ideal phase III sample size MIs resulting 526, 85, 33, from

(??). For each δt, the whole sample size w is taken equal to kMI , with

k = 10, 15, 20, 25, 30. Three numbers of doses h are accounted for: 3, 5, 7. For each of

the 45 settings (3 δts × 5 ks × 3 hs), r is considered varying from 5% to 95%.

3.2 Simplifying launching rule

Let us translate the launch threshold based on the effect size into that based on

the maximum sample size, and then simplify OSP formulas. Being δ0L = δt/3, we

have mmax = �2(z1−α + z1−β)
2/(δt/3)

2�+ 1 � 9MI . For all 45 settings, the maximum

sample size introduced by the constraint of available resources, i.e. w(1− r)/4,

results lower than 9MI . Consequently, mmax(r) turns out to be w(1− r)/4. The OSP

in equations (??) is computed by replacing mmax(r) with w(1− r)/4. The actual

launching threshold for the effect size becomes δ0L(r) = 2(z1−α + z1−β)
√
2/w(1− r),

since the latter emerges in all the settings higher than δt/3: the launching rules

7
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Figure 1: Launch thresholds δ0L, obtained with α = 2.5%, 1 − β = 90%, δt = 0.5, and with

k = 10, 15, 20, 25, 30.

based on the constraint on sample size given by the available resources are stricter

than δt/3 (see Figure ??, where δ0L(r) as a function of r is reported - varying δts and

hs the curves result very similar). Hence, if δt/3 is considered a threshold of clinical

relevance, a fortiori 2(z1−α + z1−β)
√
2/w(1− r) is so.

Note that this stricter launching rule penalizing the probability of launching phase

III (i.e. SPII) is imposed by the model we are studying.

3.3 Computing OSP

OSP functions, with h = 5, are reported in Figure ??: OSP (r) under different δts are

very similar - they lie approximately on the same curves.

Differences among OSP (r) from different ks are evident: the values of OSP (r)

increase when k increases. OSP levels that look acceptable are obtained when k is

8
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at least 20 (see Figure ??). When k = 10, 15, we have max{OSP} = OSP (ropt) � 45%,

and max{OSP} � 63%, respectively. With k = 20, max{OSP} � 72% - the optimal

rates ropts under different δs are very close (i.e. ropt � 47%). For k = 25, 30, we have

max{OSP} � 76%, 78%, with ropt � 52%, 60%, respectively.
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Figure 2: OSP (r), obtained with α = 2.5%, 1 − β = 90%, h = 5, δt = 0.2, 0.5, 0.8, and with

k = 10, 15, 20, 25, 30.

For k ≥ 20, OSP (r) shows a quite flat shape around its maximum ropt, meaning that

even if the rate r allocated to phase II is a bit smaller than ropt, OSP (r) still

provides acceptable values. For example, OSP (30%) � 70%, 74%, 76%, with

k = 20, 25, 30, respectively.

Finally, ropt moves from 34% to 60% with k increasing from 10 to 30: when w

increases, the best solution is to allocate more and more sample size to phase II, to

improve both SPII and the precision in estimating MI .

In Figure ??, OSP curves with h = 3, 5, 7 are reported (δt = 0.5): k set around 20

9
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Figure 3: OSP (r), obtained with α = 2.5%, 1 − β = 90%, h = 3, 5, 7, δt = 0.5, and with

k = 10, 20, 30.

(even higher if h = 7) is suggested to reach suitable OSP values.

4 Sizing the whole amount of resources

Since the desired SPIII is (90%)2 = 81%, and a good SPII level may be still around

90% - we remind that the aim is to study how to increase the success rates in

clinical trials, we consider OSP around 72% as acceptable.

In Table 1, the values of k providing a maximum OSP of at least 70%, 75% (viz.

k70%, k75%), are given, together with ropt, with h from 1 to 9. Moreover, when k75%s

are computed, also the smallest r giving an OSP at least 70% is given (viz.

r70% = min{r s.t. OSP (r) ≥ 70%}).
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The total amount of resources needed to reach OSP = 70% is, with h = 3, 5, 7,

w = 16MI , 19MI , 22MI , respectively, with ropt = 40%, 45%, 48%. If smaller rs are

allocated to phase II, OSP falls below 70% (e.g. OSP (20%) � 64%).

When the 75% level is adopted, higher ks are needed: with h = 3, 5, 7, k = 19, 24, 26,

respectively, provide the required OSP with ropt = 45%, 50%, 53%. However, if smaller

rs are adopted, acceptable OSP levels are still provided: rs around 20% give

OSP (r) � 70%.

Table 1 Values of k to join 70% and 75% of OSP

h k70% ropt k75% ropt r70%

1 13 35% 15 40% 15%

2 15 40% 17 42% 19%

3 16 40% 19 45% 20%

4 18 43% 22 49% 21%

5 19 45% 24 50% 21%

6 20 47% 25 51% 24%

7 22 48% 26 53% 24%

8 23 48% 29 56% 24%

9 24 50% 31 57% 24%

Table 1. Minimum values of k to join a max OSP of at least 70%, 75% (viz.

k70%, k75%), with α = 0.025, 1− β = 0.9, h = 1, . . . , 9, and δt = 0.5, together with the

allocations ropt providing max of OSP. Moreover, r70% indicates the smallest

allocation providing OSP at least 70%, when k75% is adopted.

As a rule of thumb, in order to obtain an OSP � 75%, with a number of phase II

groups ranging from 2 to 10 (and 2 phase III confirmatory trials) provide to the

whole development project sufficient resources to recruit a number of patients from

15 to 30 times (increasing linearly with h) the ideal sample size MI , and allocate

about 50% of the sample size to phase II, regardless of the amplitude of δt.

Moreover, if just 20% of resources is allocated to phase II, OSP remains near 70%,

provided that resources to reach OSP = 75% are stored before starting phase II.

We remark that not all the stored resources are used: rw is actually spent in phase

II, where the global phase III sample size 4Mn is at most (1− r)w (see next Section).
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4.1 Assuring the whole amount of resources

The problem that in practice δt is unknown does not influence the allocation choice

based on OSP, since OSP (r) is almost independent of δt. Nevertheless, to allocate

enough resources to obtain a given OSP level, depends on δt. In particular, since

we adopted MI as a unit measure for w, the resources needed depends on δt

through MI .

In practice, the unknown MI should be replaced by

Ma = M(δa) = �2(z1−α + z1−β)
2/δ2a�+ 1, where δa is the assumed effect size. However,

how close Ma is to MI is unknown. To reinforce the assumption on δa and limit the

uncertainty of parameter, assurance can be applied [9]. This consists in defining a

distribution around δa (viz. fδa(t)) so that the assured sample size becomes

MA =
∫
M(t) fδa(t) dt - it can be viewed as Bayesian sample size determination,

where fδa(t) plays the role of the prior distribution.

For example, when the uniform prior fδa(t) = 1/(2δa), t ∈ (δa/2, 3δa/2), is adopted, we

find MA = 4Ma/3.

The linear rule of thumb above, through assurance, suggests providing the whole

development project when h = 5 with sufficient resources to recruit 22.5MA patients,

i.e. 22.5× 4/3 = 30 times the assumed sample size Ma. A lower assurance provides

22.5 ≤ k ≤ 30.

5 Mean and variability of total sample size

An indispensable aspect of this sample size allocation problem is to evaluate the

actual amount of resources spent in phase III, as well as those spent overall,

depending on the behavior of the sample size estimator Mn.

Mn is a random variable that for small rs, i.e. when n is low, might be imprecise:

the average and the MSE (measuring variability) of Mn, conditional to phase III

launch, are:

E[Mn|L] =
mmax(r)∑
m=2

mPδt(Mn = m|L)

MSE[Mn|L] =
mmax(r)∑
m=2

(m−MI)
2 Pδt(Mn = m|L)

12
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Table 2 Mean and MSE of SSE

δt k r = 25% r = 50% r = 75%

E[Mn|L] MSE[Mn|L] E[Mn|L] MSE[Mn|L] E[Mn|L] MSE[Mn|L]

0.2 15 542.3 95643.6 504.6 38078.7 376.5 27581.7

(MI = 526) 20 606.9 145686.2 561.9 58211.7 458.0 15703.9

25 638.1 181566.1 584.4 70551.9 512.4 18439.4

30 647.8 195765.9 587.8 71008.5 541.4 24290.4

0.5 15 87.6 2482.1 81.4 986.8 61.3 703.5

(MI = 85) 20 97.9 3800.9 90.6 1510.3 74.4 410.2

25 102.7 4682.1 94.0 1799.1 82.7 481.8

30 104.1 5006.8 94.5 1809.1 87.3 631.4

0.8 15 34.3 379.9 32.1 149.5 24.5 95.0

(MI = 33) 20 38.4 580.5 35.6 227.5 29.4 59.2

25 40.4 721.4 37.1 283.2 32.4 70.2

30 41.0 775.6 37.2 282.1 34.4 99.4

Table 2. Mean and MSE of Mn, with α = 0.025, 1− β = 0.9, h = 5, δt = 0.2, 0.5, 0.8,

k = 15, 20, 25, 30 and r = 25%, 50%, 75%.

In Table 2, the average and the MSE are shown with k = 15, 20, 25, 30, h = 5, and

with r = 25%, 50%, 75%. When k increases and r is fixed, both mean and MSE of

Mn|L increase. Mainly, the estimation process becomes more reliable when r

increases: the mean of Mn|L tends to MI and MSE decreases.

Moreover, when k = 25 and r = 50% (viz. operating conditions giving high OSP

when h = 5), the mean of Mn is close to MI and the mean error is about MI/2, for

every δt. Indeed, the behavior of Mn is almost independent of δt, in accordance

with that of OSP .

Now, let us consider how these numbers reflect on the whole amount of resources

spent in both phases, viz. on the total sample size MT = MI × k × r + 4Mn. From a

practical standpoint, the settings with k = 20, 25 and r = 25%, 50% are the most

interesting - k = 30 provides OSP higher than requested, and with k = 15 the OSP is

often low; also, OSP is low with r = 75%, due to strict constraints for Mn.

When k = 25 and r = 50%, and with δt = 0.5 giving MI = 85, the average amount of

resources spent is E(MT ) = 85× 25× 50% + 4× 94.0 = 1438.5 � 17MI , with a standard

13
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deviation of σ(MT ) � 2MI - recall, this is almost independent of δt. Percentiles for

Mn, and so for MT , can be obtained through conditional probability calculation:

for example, with δt = 0.5 and under the latter setting (i.e.

n = 25× 85× 50%/(5 + 1) � 177), the 80% and 90% percentiles are m.8
177 = 122 and

m.9
177 = 151. Once again, percentiles present small variations in function of δt.

Mean, standard deviation and percentiles of MT for the four settings considered of

main interest are reported in Table 3. In the light of these further results, even

allocation rs that do not provide optimal OSP may be of practical interest. For

example, when k = 25 is adopted (i.e., w = 25MI is stored) and r = 25% of resources

are allocated to phase II, the average of MT is 11.1MI and MT does not overcome

12.8MI with 80% probability, where OSP (25%) = 72.5%.

Table 3 Standardized measures of total expenses

k r E(MT ) σ(MT ) m.8
n m.9

n m.8
T m.9

T OSP

20 r = 25% 9.6MI 2.8MI 1.6MI 2.2MI 11.5MI 13.8MI 67.7%

r = 50% 14.3MI 1.8MI 1.5MI 1.7MI 16.0MI 16.9MI 71.7%

25 r = 25% 11.1MI 3.1MI 1.6MI 2.2MI 12.8MI 15.2MI 72.5%

r = 50% 16.9MI 2.0MI 1.4MI 1.8MI 18.2MI 19.6MI 76.2%

Table 3. Standardized mean, st.dev. and percentiles of the total expenses in terms

of sample size (viz. MT ), through percentiles of Mn, obtained with α = 0.025,

1− β = 0.9, h = 5, k = 20, 25 and r = 25%, 50%; δt = 0.5 has been adopted.

6 Example

Let’s continue the introductory example, where the sample size of each phase II

group was n = 60. Assume here that h = 7 doses are studied in phase II, and that

two phase III trials are launched if d60 > δ0L = 0.15. Setting α = 2.5% and 1− β = 90%,

if δt = 0.4 then MI = 132; also, mmax = 940. Note that if δt was 0.4, to obtain an

observed value of d60 near 0.15, and so a phase III sample size estimate close to 940,

is not a low probability event, since 0.15 is approximately the 8.5th percentile of

d60 ∼ N(0.4, 2/60).

Considering w = 20 times 132 (i.e. k = 20 times the ideal phase III sample size), the

maximum of OSP is just 67.8% (r = 47%). Now, assume that w is increased up to
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= 25, in accordance with Table 1, so that resources for treating a total of

25× 132 = 3300 patients are available for the allocation into the two phases. Then,

things go better: with r from 29% to 68% the OSP is higher than 70%. In detail,

max{OSP} = 73.5% with r = 51%, where the SP of phase III (also called Average

Power) is 76.4% and the launch probability is 96.2%.

This best r = 51% gives n = 211 (i.e. 1688 patients to be enrolled in phase II) and a

maximum phase III sample size, per group, of 403. Actual values of phase III

sample size result often lower than 403: the average of M211 is 146.85, and its

standard deviation is 69.74. Consequently, the average and the standard deviation

of the total sample size MT are 2276 and 279. This corresponds to, about, 17.2MI

and 2.1MI , respectively, meaning that not all the w = 25MI resources would be

spent.

7 Discussion

Although the development of a drug, and in particular the clinical part regarding

phase II and III trials, might be looked at in its entirety, scientists and trial

managers often tend to focus on each phase separately. In particular, resources to

develop the research project are often funded for each phase separately. It is a fact

that the failure rate of phase II and phase III clinical trials is quite high.

Here, the assumption is that the whole amount of resources to develop phase II

and III trials (in terms of sample size) is stored, and therefore potentially available

before starting phase II. We studied the problem of allocating the resources to the

two phases - to be precise, resources allocated to phase II are all used, where those

used in phase III are at most those left, depending on phase III sample size

estimation based on phase II data.

It was assumed that 2 phase III trials are run with a sample size estimated on the

basis of phase II data. The overall success probability (OSP) has been evaluated as

a tool for planning experiments, in accordance with some recent papers [8, 4, 3],

and the variability of the resources actually spent has been accounted for.

We showed that to obtain a sufficiently high OSP (e.g. 75%) when the number of

doses evaluated in phase II goes from 3 to 9, the whole amount of resources needed

varies (linearly) from 19 to 31 times MI . This is almost regardless of the effect size
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of the dose selected in phase II. Moreover, to obtain the optimal OSP, the rate of

resources to be allocated to phase II is often close to 50%. Even an amount of

resources of 25% might give a good OSP and an invitingly small total sample size

if allocated to phase II, provided that a sufficient amount of resources is stored to

the two phases. If the whole amount of resources available for the two phases is

low, the OSP will be low too, even lower than 50%, even if the best allocation of

resources is made. Since MI depends on the unknown effect size of the selected

dose, wrong assumptions regarding the latter can cause too small investments and

low OSP. To reduce this risk, MI may be computed by applying assurance [9] on

effect size assumptions.

The observed phase II effect size was adopted to compute phase III sample size:

being aware of the variability in effect size estimation, conservative sample size

estimation strategies may be adopted, as in [1]. The OSP can, therefore, result in

a considerable increase (i.e. about 3% when OSP � 75% - unpublished result).

Allocations near 50% providing the optimal OSP are usually not adopted in clinical

practice: phase II often absorbs less resources than phase III. Indeed, the size of

samples adopted in phase II is, on average, 10–15% of the total sample size of the

two phases [1]. To improve the success rate of phase II and phase III trials, the

drug development could be looked at in its entirety, and phase II allocation might

be increased to, at least, 25%, provided that a sufficient global amount of resources

is available. Then, a more accurate phase II would also induce a higher probability

of choosing the best dose among those considered. Nevertheless, larger phase II

trials imply higher costs and longer times for the development project, allowing for

a shorter patent life and so lower potential profits, of course in case of successful

trials. Allocation of resources should also be evaluated from an economic

perspective, as suggested also by Jiang [4]. For this reason, our future works may

focus on the relationship among allocations, OSP, efficacy and safety utility

functions, costs, revenues, and profits, according to [10, 11].

The indications on the amount of resources to be allocated to phase II suggested

by Jiang [4] differ from ours, but in that paper only 2 phase II groups and 1 phase

III trial are taken into account. Differences between our indications and those

provided by Stallard [12] are much more evident, since phase II data are

considered only for detecting a certain effect with low power, not for adequately

16

planning phase III.

17

e 9 9 5 8 - 1 5



OR IG INA L  AR T I C L ES

Epidemiology Biostatistics and Public Health - 2014, Volume 11, Number 4

Allocating the Sample Size in Phase II and III Trials to Optimize Success Probability

References
[1]	 De Martini D. Success Probability Estimation with 

Applications to Clinical Trials. John Wiley & Sons: 

Hoboken, NJ, 2013.

[2]	 Wang SJ, Hung HMJ, O'Neill RT. Adapting the sample 

size planning of a phase III trial based on phase II 

data. Pharmaceutical Statistics 2006; 5: 85-97.

[3]	 De Martini D. Adapting by calibration the sample 

size of a phase III trial on the basis of phase II data. 

Pharmaceutical Statistics 2011; 10 (2): 89-95.

[4]	 Jiang K. Optimal Sample Sizes and Go/No-Go 

Decisions for Phase II/III Development Programs 

Based on Probability of Success. Statistics in 

Biopharmaceutical Rerearch 2011; 3: 463-475.

[5]	 Chuang-Stein C. Sample Size and the Probability of 

a Successful Trial. Pharmaceutical Statistics 2006; 5: 

305-309.

[6]	 De Martini D. Robustness and corrections for sample 

size adaptation strategies based on eect size estima-

tion. Communications in Statistics - Simulation and 

Computation 2011; 40 (9): 1263-1277.

[7]	 Kirby S, Burke J, Chuang-Stein C, Sin C. Discounting 

	

	 phase 2 results when planning phase 3 clinical trials. 

Pharmaceutical Statistics 2012; 11, 5: 373-385.

[8]	 Fay MP, Halloran ME, Follmann DA. Accounting 

for Variability in Sample Size Estimation with 

Applications to Nonhaderence and Estimation of 

Variance and Eect Size. Biometrics 2007; 63: 465-474.

[9]	 O'Hagan A, Stevens JW, Campbell MJ. Assurance in 

clinical trial design. Pharmaceutical Statistics 2005; 4: 

187-201.

[10]	 Patel N., Bolognese J., Chuang-Stein C., Hewitt D., 

Gammaitoni A., Pinheiro J. Designing Phase 2 Trials 

Based on Program-Level Considerations: A Case 

Study for Neuropathic Pain. Drug Information Journal 

2012; 46, 4: 439-454.

[11]	 Chen MH., Willian AR. Determining optimal sample 

size for multistage adaptive randomized clinical trials 

from an industry perspective using value of informa-

tion methods. Clinical Trails 2013; 10: 54-62

[12]	 Stallard N. Optimal sample sizes for phase II clinical 

trials and pilot studies. Statistics in Medicine 2012; 

31: 1031-1042

e 9 9 5 8 - 1 6


