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Detecting outliers and/or leverage 
points: a robust two-stage procedure 
with bootstrap cut-off points
Ettore Marubini(1), Annalisa Orenti(1)

Background: Identification and assessment of outliers, have a key role in Ordinary Least Squares 
(OLS) regression analysis. This paper presents a robust two-stage procedure to identify outlying 
observations in regression analysis.
Methods: The exploratory stage identifies leverage points and vertical outliers through a robust 
distance estimator based on Minimum Covariance Determinant (MCD). After deletion of these points, 
the confirmatory stage carries out an OLS analysis on the remaining subset of data and investigates 
the effect of adding back in the previously deleted observations. Cut-off points pertinent to different 
diagnostics are generated by bootstrapping and the cases are definitely labelled as good-leverage, bad-
leverage, vertical outliers and typical cases.
Results: This procedure is applied to four examples taken from the literature and it is effective in 
rightly pinpointing outlying observations, even in the presence of substantial masking.
ConclusionS: This procedure is able to identify and correctly classify vertical outliers, good and bad 
leverage points, through the use of jackknife-after-bootstrap robust cut-off points. Moreover its two-
stage structure makes it interactive and this enables the user to reach a deeper understanding of the 
dataset main features than resorting to an automatic procedure. 
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INTRODUCTION 
 
Identification and assessment of outliers, i.e., observations lying far away from the majority 
of cases in the dataset and probably not following the postulated error model, have a key role 
in Ordinary Least Squares (OLS) regression analysis. To this end, single-case diagnostic 
statistics are of common use and their computation is automatically offered to the users by 
almost all commercial statistical packages. This approach has the advantage of being easy to 
apply and interpret, though it can fail when clusters of outliers are present and the 
phenomenon of masking may occur i.e. when outlying cases cannot be detected due to the 
presence of some extreme outliers in the dataset. The formulae for multiple-case diagnostics 
are likewise well known, but the relevant diagnostic statistics are little adopted because of 
the difficulty to identify the cases to be flagged [1]. Alternatively, as advocated by 
Rousseeuw and Leroy [2], one can resort to robust regression methods, which try to device 
estimators that are not so strongly affected by outliers as the OLS estimator: it is then by 
looking at the results from robust regression that outliers may be pinpointed. 
An extensive literature on robust fitting methods is available. An exhaustive presentation of 
these is given by Maronna et al. [3]. Furthermore over the last two decades there has been a 
great deal of relevant contributions in the important area of outlier identification (see for 
instance [4-6]). 
The two stage procedure, whose main features are going to be presented in this paper, 
contributes to outlier identification topic. The first stage, exploratory, relies on the robust 
Minimum Covariance Determinant (MCD) estimator and the second one, confirmatory, 
relies on the OLS method. The procedure, thus, combines the resistance of the robust 
estimator, when multiple outliers are present, with the efficiency of the OLS method once 
the outliers have been detected and deleted. The idea of a two stage procedure is not new 
(see for instance [7]), nevertheless in our opinion our work qualifies as innovative because of 
the joint presence of the following items: i) robust distance to measure how far a given case 
lies from the centroid of all data points in a multivariate space; ii) reliability in defining 
criteria suitable for labelling cases in more informative terms than outliers; iii) generation of 
bootstrap cut-off points of single-case diagnostics. 
A further important step is needed to decide which cases to delete. The labelled cases should 
be scrutinised for their validity on the ground of the subject-matter knowledge. In fact, we 
think that outlier identification is not only important to avoid possible distortions of the 
statistical model estimates, but it should also be considered as a goal in itself since outliers 
may be of fundamental interest for the message they are conveying. The procedure is simple 
to implement and its results are easy to interpret; this makes our approach particularly 
appealing to practitioners. In this paper methodological aspects of the procedure are outlined 
and its performance is explored through four examples taken from the literature. 
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METHODS 
 
Linear model and validity assumptions for OLS method are reported in Table 1. Consider the 
model [1]: y is the n response vector; X is the (n× p + 1 ) matrix of regressors; β is the 
(p + 1) parameter vector including the intercept, to be estimated, and ε is the n unknown 
vector of random errors. The letter G indicates Gaussian distribution, the letter n the number 
of observations and the letter p the number of explanatory variables (carriers), so that p+1 is 
the number of regressors, 𝐗𝐗∗ indicates the matrix of explanatory variables excluding the 
intercept and I(n) the identity matrix. 
 
 
Table 1. Linear model and validity assumptions for OLS method 
 

Model y=Xβ+ ε       [1] y! = β! + x!"∗ β!

!

!!!

+ ε!        [2] 

Assumptions 

In observational studies (with random carriers): 
𝐱𝐱𝐢𝐢∗~𝐆𝐆𝐩𝐩 𝛍𝛍𝐱𝐱∗, 𝚺𝚺𝐱𝐱∗           [3]  

In experimental and observational studies: 
𝛆𝛆~𝐆𝐆𝐧𝐧 𝟎𝟎, σ!𝐈𝐈 𝐧𝐧       [4]   →   𝐲𝐲~𝐆𝐆𝐧𝐧(𝐗𝐗𝛃𝛃, σ!𝐈𝐈 𝐧𝐧 ) ε!~G 0, σ!       ∀i = 1, 2, … , n 

 
 
Exporatory stage 
 
Coherently with assumptions [3] and [4] two types of outlying observations in regression 
analysis can be identified. First, the i-th case may present a large difference between the 
regressors’ vector 𝐱𝐱𝐢𝐢 and the centroid of the x-data; in other words 𝐱𝐱! may be an outlier in the 
(p+1)-dimensional space spanned by the columns of the X matrix; such a case will be 
referred to as leverage point. Second, the i-th case may present a big difference between the 
response y! and the mean 𝐱𝐱!!𝛃𝛃 predicted by the model. Such a point will be referred to as 
regression outlier. 
Combining these two modalities of being an outlying observation enables labelling the cases 
as in Table 2: 
 
 
Table 2. Outlying observation labelling 
 

  Leverage 
  no yes 

Regression 
outlier 

no typical 
(bulk of data) 

good 
leverage 

yes vertical 
outlier bad leverage 
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The goal of the procedure is to label cases reliably. Note that: “...if (xi, yi) does fit the linear 
relation it will be called a good leverage point, because it improves the precision of the 
regression coefficients” [8]; therefore searching for cases to be deleted concerns identifying 
both vertical outliers and bad leverage points. 
It is known that h!! = x!! 𝐗𝐗!𝐗𝐗 !𝟏𝟏x! is a widely used measure of leverage [2]. Its role in 
measuring the distance of the i-th case from the bulk of the data in the space of regressors is 
made clear by the following equation: h!! =

!
!
+ !!!

!

!!!
, where MD!! is the squared Mahalanobis 

distance: a standardized form of squared distance between 𝐱𝐱!∗ ([2], Table 1) and the centroid 
𝐱𝐱𝐧𝐧∗ . Namely: 

MD! = 𝐱𝐱𝐢𝐢∗ − 𝐱𝐱𝐧𝐧∗ ! Cov! 𝐗𝐗∗
!! 𝐱𝐱𝐢𝐢∗ − 𝐱𝐱𝐧𝐧∗  

where 𝐱𝐱𝐧𝐧∗  is the (p×1) vector of sample means and Cov! 𝐗𝐗∗  is the (p×p) sample 
covariance matrix of the random carriers. 
In observational studies it is assumed that 𝐱𝐱𝐢𝐢∗ is distributed according to a multivariate 
Gaussian distribution with mean 𝛍𝛍!∗ and covariance matrix 𝚺𝚺!∗; accordingly MD!! is 
approximately distributed like a χ! r.v. with p degrees of freedom (d.f.). 
Unfortunately, the two statistics 𝐱𝐱𝐧𝐧∗  and Cov! 𝐗𝐗∗  are not robust; in fact the multivariate 
vector of outlying cases will tend to change 𝐱𝐱𝐧𝐧∗ , to deflate correlations among carriers and 
perhaps to inflate the corresponding variances. These will in general decrease the 
Mahalanobis distance. Moreover, owing to the phenomenon of masking, using hii and 
equivalently MD! as measures of leverage, implies the risk to fall in “... a situation where the 
diagnostics used to identify the high leverage points are undermined by the very points they 
are designed to detect.” [9]. To bypass these shortcomings one should resort to robust 
estimates of mean and scatter as those given, for instance, by the MCD estimator. The reader 
is referred to the original paper of Rousseeuw and Van Driessen [10] for a detailed 
presentation of the algorithm for MCD computation. It suffices to say here: “The MCD 
objective is to find h observations (out of n) whose classical covariance matrix has the 
lowest determinant. The MCD estimate of location is then the average of these h points, and 
the MCD estimate of scatter is their covariance matrix.” [10].  
The robust Mahalanobis distance suggested by Rousseeuw and van Zomeren [8] results to 
be: 

R! D! = 𝐱𝐱𝐢𝐢∗ − 𝐱𝐱𝐌𝐌𝐌𝐌𝐌𝐌∗ ! Cov!"# 𝐗𝐗∗ !! 𝐱𝐱𝐢𝐢∗ − 𝐱𝐱𝐌𝐌𝐌𝐌𝐌𝐌∗  
where 𝐱𝐱𝐌𝐌𝐌𝐌𝐌𝐌∗  and Cov!"# 𝐗𝐗∗  are MCD high breakdown point estimates of 𝛍𝛍!∗ and 𝚺𝚺!∗, the 
multivariate means vector and covariance matrix respectively. Their breakdown point is: 
!!!!!

!
!

, where [w] denotes the integer part of w [11]. The scatter estimate is adjusted for 
consistency and small sample sizes according to Pison et al. [12]. Moreover such a robust 
distance gives the best protection against the masking effect. 
After showing that R! D!! is an appropriate measure of leverage, a critical value is needed so 
that cases with RD!!!  greater than it will be identified as leverage cases. This critical values 
is based on the asymptotic distribution of the Mahalanobis distance in terms of χ!; the 
critical value is then χ!;!!!!  where the number of d.f. equal to p and α is chosen as 0.01 to 
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have a low false positive rate. The number of pinpointed leverage cases is denoted by mx. 
This number includes both good and bad leverage cases. 
So far attention was focused exclusively on leverage points; now we also wish to take into 
account observations outlying in the response. Since in observational studies both response 
and carriers are random, we observe: 𝐳𝐳!! = (y!, 𝐱𝐱!∗)′, 1 ≤ i ≤ n.  
These (p+1)-dimensional vectors 𝐳𝐳!! are assumed to be i.i.d. multivariate Gaussian variables 
with mean µ and covariance matrix Σ. 
Considerations like those regarding the sample matrix 𝐗𝐗∗ apply also to the matrix Z of size 
(n× p + 1 ). Therefore, the MCD estimator can be adopted to identify m outlying 
observations on Z which include bad leverage points, good leverage points and vertical 

outliers. The MCD breakdown point is now 
!!!
!
!

 and the critical value is χ(!!!);(!!!)! .  
The two numbers mx and m, together with the identification number (ID) of flagged cases 
are the basic results of the exploratory stage of our procedure. Moreover m is used to split 
the original dataset in two provisional subsets of m outlying observations and n-m possible 
cases belonging to the bulk of the data. 
Functions covMcd in robustbase package and mahalanobis in stats package of R software 
were used to compute the robust distances. 
 
 
Confirmatory analysis 
 
Checking the results of the exploratory analysis has a twofold aim: looking at possible 
further cases which might be considered outliers and assessing the effect of adding back in 
the individual cases suggested as outlying observations in the exploratory analysis. 
With regard to the first objective an OLS regression analysis is carried out on the subset of 
size (n-m). Following the traditional method, pertinent single-case diagnostics are computed: 
hii (leverage), studentized deletion residual and modified Cook’s distance. The choice of 
these statistics is justified by Atkinson [7] and the pertinent formulae are given in the first 
part of the Appendix. This arm of the procedure hereafter will be referred to as “OLS 
diagnostics”. 
Concerning the second objective, the subset of size m is thought of as an “external” subset; 
for each of these cases, predicted values are computed by the estimate b of β (obtained in the 
OLS regression analysis on n-m cases) and the analogues of the three previously mentioned 
diagnostics are computed. They are derived in the second part of the Appendix. This arm of 
the procedure hereafter will be referred to as “OLS prediction”. 
Since we believe that it is important not to underestimate the size of the data bulk, the cut-off 
points of the single-case diagnostics used in the confirmatory stage were chosen at a 
probability level α=0.05 in the prediction arm and α=0.01 in the diagnostics arm 
respectively. 
Note that cases labelled as good leverage points by the OLS prediction arm should be added 
back in to the provisional bulk of n-m typical data, whereas the cases labelled vertical 
outliers and bad leverage points in the OLS diagnostic arm should be added to the 
provisional subset of m outlying observations. The final labelling of cases is now obtained: 
the vertical outliers and bad leverage points now identified constitute the final subset of mD 
outlying observations to be scrutinised. 
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An ad hoc function in R software was written by one of the authors (A.O.) to process the 
data in the confirmatory analysis of our procedure and it is available on request. 
 
 
Bootstrap cut-off points 
 
As the studentised deletion residual given by (A.2) of the Appendix has a Student’s t-
distribution, the pertinent cut-offs may correspond to the t0.025 and t0.975 percentiles from the 
relevant t-distribution. However the suitability of the critical points depends on the adequacy 
of the Gaussianity assumption for linear model errors. If these fail to be reasonably 
Gaussian, the postulated t-distribution may not properly reflect the true behaviour of the 
studentized residuals. Furthermore, with regard to the measuring influence diagnostics and 
particularly Cook’s distance note that: “based on large sample theory and rough 
approximations, the traditional cut-offs may not adequately allow for small sample sizes, or 
cases where model error distributions exhibit significant skewness or heavy tails.” [6]. The 
alternative resampling method may offer a genuine improvement; hence the confirmatory 
stage relies upon single term diagnostics bootstrapped cut-off points. 
Using a “standard” bootstrap approach to generate sampling distributions of diagnostics 
could be naive, because of the chances that a highly anomalous case has to be included once 
or more in several resamples. Alternatively one can resort to Efron’s [13] jackknife-after-
bootstrap resampling scheme. The underlying idea is “...that within each jackknife-after-
bootstrap subgroup of resamples (groups indexed via the missing case), delete-1 diagnostics 
for each resample can be calculated and the bootstrap distribution of the relevant diagnostic 
approximated using resamples not contaminated by the point under consideration.” [6]. To 
be explicit let’s consider, for instance, the i-th case: it is easy to see that the probability this 
case does not appear in a bootstrap sample of size n is (1-n-1)n. As n increases 1 − n!! ! →
e!! ≅ 0.3679. Thus among, say, B=5000 resamples, 1839 are expected not to include the i-
th case. Each of these bootstrap samples has size n; (n-1) cases of the original (X, y) dataset, 
except the i-th one, can be sorted by sampling with replacement in each resample. 
Refer now to the first of the 1839 bootstrap samples and focus on a particular diagnostic 
measure, for instance the studentized deletion residual (s.d.r.). We define t! the s.d.r. 
computed for the i-th case in the original dataset (X, y) and t!∗ , (k=1, 2, …, n) the s.d.r. 
computed on each unit of the bootstrap sample (X*,y*). Of course all these n t!∗  result in 
being independent of the i-th case. The same computation can be done for the remaining 
1838 bootstrap samples so that a total of n ∙ 1839 (in general n ∙ B ∙ e!!) values of t!∗  are 
obtained. It appears sensible to think that these n ∙ B ∙ e!! t!∗  values generate a “null” 
bootstrap distribution of the s.d.r. t! under the hypothesis that the i-th case is not influential. 
By arranging the t!∗  in increasing order, it is straightforward to get bootstrap 2.5% and 97.5% 
cut-off points for t! as the 2.5-th and 97.5-th percentiles of this distribution respectively. 
These percentiles are indicated C0.025 and C0.975 respectively as column headings of the 
Tables showing the results of the second stage analysis. Similarly the boostrap cut-off points 
can be produced for the s.d.r. of the (n-1) remaining cases of the original dataset. All this 
justifies the use of a jackknife-after-bootstrap approach to generate the cut-off points of the 
dataset.  
By default our procedure generates B=5000 bootstrap samples. 
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With regard to the prediction cut-off computation via jackknife-after-bootstrap, the 
procedure takes advantage of the relationship between diagnostics shown in the Appendix. 
The value of !!!

!!!
> 6 is adopted as a rule of thumb to compute the bootstrap cut-offs in the 

confirmatory analysis; otherwise traditional cut-offs, as shown in the Appendix, are used. 
The complete procedure can be sketched as shown in Table 3. 
 
 
Table 3. Brief description of the procedure. 
 
Exploratory analysis 
Step 1 Fit the postulated model to the complete dataset by OLS method. Estimate 

regression coefficients, error variance (s2) and coefficient of determination (R2). 
Step 2 Matrix Z. What about outlying observations? By MCD robust distance obtain: 

a) m = number of outlying observations; b) list of ID numbers for outlying 
observations. 

Step 3 Matrix X*. What about leverage points? By MCD robust distance obtain: 
a) mx = number of leverage points; b) list of ID numbers for leverage points. 

Step 4 Compare results of Steps 2 b) and 3 b) and provisionally label the cases as vertical 
outliers and good or bad leverage points. 

Confirmatory analysis 
Step 5 Among the m cases, what about good leverage points (g) to be added back in to the 

bulk of data? OLS prediction arm. 
Step 6 Among the (n-m) cases, what about any more bad-leverages and/or vertical 

outliers (v)? OLS diagnostics arm. 
Step 7 Definitely label outlying observations as bad leverage points, good leverage points 

and vertical outliers. 
Step 8 Scrutinize the validity of mD=(m-g+v) cases on the ground of the subject-matter 

knowledge. 
 
 
RESULTS 
 
The performance of our procedure will be illustrated by means of four examples. The first 
one, known as “Belgian phone calls”, is based on a real dataset and as far as we know it is 
one of the few sets for which also the results of the data scrutiny are available in the 
literature. The following three examples are artificial datasets, so that it is immediate to 
assess how our procedure works, since the correct answers are known. Simple linear 
regression models were fitted to the first two datasets and multiple regression models to the 
remaining ones. 
 
 
 
 

e 9 0 9 4 - 7



OR IG INA L  AR T I C L ES

Epidemiology Biostatistics and Public Health - 2014, Volume 11, Number 3

a robust procedure for detecting outlying observations using bootstrap

 9	
  

Belgian phone calls data 
 
This example is taken from Rousseeuw and Yohai [14] and it concerns the time series of the 
total number of international phone calls made in Belgium between 1950 and 1973. The data 
are plotted in Figure 1. 

Exploratory analysis 
Matrix Z:  χ!;  !.!!

! = 9.21; m=8, years ’63, ‘64, ‘65, ‘66, ‘67, ‘68, ‘69, ‘70. 
Matrix X*: χ!;  !.!!

!  = 6.63; mx = 0. 
Provisional labelling: vertical outliers. 

Confirmatory analysis 
The 8 cases previously flagged are deleted.  
OLS prediction arm: the results are reported in Table 4. For all cases the studentized 
prediction residual and modified Cook’s distance exceed the relative cut-offs, whereas h!! do 
not. Therefore these 8 cases can be definitively labelled vertical outliers and cannot be added 
back in to the bulk. 
OLS diagnostic arm (data not shown): no further cases are pinpointed. 
A scrutiny is required to assess whether any gross error contaminated the time series. 
Concerning this, Rousseeuw and Leroy [2], state that: “...it turned out that from 1964 to 
1969 another recording system was used, giving the total number of minutes of these calls. 
The years 1963 and 1970 are also partially affected because the transitions did not happen 
exactly on New Year’s Day, so the number of calls of some months were added to the 
number of minutes registered in the remaining months!”. 
On this ground it appears sensible to delete the 8 cases previously mentioned and to consider 
the remaining ones belonging to the bulk of homogeneous data. This justifies the use of OLS 
method to estimate the regression line on the 16 homogeneous data (OLS-16 in Figure 1). 
 
 
Figure 1. Scatter plot of Belgian phone calls (tens of millions) together with the regression 
lines computed on the whole dataset (OLS-24) and on the subset after deleting outlying 
observations (OLS-16) 
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Table 4. Belgian phone calls data; results of the confirmatory analysis: OLS Prediction arm. 
 
 Studentized prediction residual h!! Modified Cook’s distance 
year C0.025 Estimate C0.975 Estimate C0.95 Estimate C0.95 
63 -1.894 4.478 2.503 0.082 0.416 3.267 1.771 
64 -1.868 99.962 2.502 0.093 0.411 77.313 1.753 
65 -1.880 103.188 2.494 0.107 0.416 84.898 1.751 
66 -1.898 118.928 2.478 0.123 0.415 104.189 1.750 
67 -1.883 133.338 2.505 0.142 0.420 124.286 1.768 
68 -1.897 153.112 2.502 0.163 0.415 151.556 1.747 
69 -1.893 179.001 2.515 0.186 0.420 187.662 1.756 
70 -1.884 17.556 2.510 0.212 0.415 19.436 1.758 
 
 
Simulated dataset 
 
This dataset was created following Rousseeuw [15]. A bulk of 30 “homogeneous” 
observations was generated according to the linear relationship y! = 2 + x! + ε! where: xi is 
uniformly distributed on (1,4) and ε!~G(0, 0.04). A cluster of 20 observations was added, 
having a spherical bivariate Gaussian distribution with mean vector (7; 2)’ and variances 
0.25. This yielded a high level (40%) of contamination in the pooled sample. Figure 2 
reports the simulated dataset together with the line fitted to the whole sample (OLS-50) and 
to the bulk (OLS-30). According to Figure 2 of Rousseeuw and van Zomeren [8] the 20 
contaminating observations are bad leverage points. Table 5 gives the raw data together with 
the robust distances R! D!! and RD!! (see section 2.1); the values exceeding the relative χ! 
threshold (column headings) are highlighted in bold. 
 
 
Figure 2. Simulated dataset; scatter plot together with the regression lines computed on the 
whole dataset (OLS-50) and on the bulk of homogeneous observations (OLS-30). 
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Table 5. Simulated dataset; raw data and robust distances. 
 

ID x y 
R! D!! 

(6.63) 
RD!! 

(9.21) 
1 1.44 3.486 0.38 0.885 
2 1.97 3.998 0.165 0.29 
3 3.965 5.85 0.149 1.007 
4 2.515 4.476 0.036 0.064 
5 2.346 4.31 0.066 0.122 
6 1.047 3.095 0.597 1.552 
7 2.019 3.755 0.149 1.423 
8 2.575 4.688 0.028 0.099 
9 1.621 3.865 0.297 0.957 
10 3.208 5.111 0.007 0.252 
11 1.009 2.935 0.62 1.977 
12 3.376 5.194 0.023 0.589 
13 3.41 5.369 0.027 0.319 
14 2.995 4.921 0 0.123 
15 2.24 4.476 0.089 0.543 
16 2.034 4.382 0.145 1.241 
17 3.062 4.764 0.001 1.096 
18 1.904 4.195 0.187 0.951 
19 3.171 5.547 0.005 1.882 
20 3.635 5.645 0.065 0.56 
21 2.775 4.579 0.007 0.51 
22 3.753 5.916 0.091 1.163 
23 2.647 4.796 0.019 0.196 
24 2.998 5.138 0 0.293 
25 2.927 5.065 0.001 0.248 

ID x y 
R! D!! 

(6.63) 
RD!! 

(9.21) 
26 2.287 4.545 0.078 0.637 
27 2.399 4.118 0.056 1.189 
28 3.952 5.774 0.145 1.125 
29 2.904 4.811 0.001 0.145 
30 3.878 5.803 0.124 0.846 
31 6.901 1.661 2.409 584.478 
32 6.766 2.491 2.245 437.87 
33 7.577 3.286 3.314 438.031 
34 7.273 2.247 2.889 548.664 
35 6.876 2.4 2.378 466.486 
36 8.017 1.552 3.98 796.479 
37 6.788 1.596 2.271 577.152 
38 7.426 2.304 3.099 563.27 
39 8.132 2.148 4.164 707.086 
40 7.99 0.72 3.937 957.616 
41 6.27 1.182 1.694 562.8 
42 7.998 1.48 3.95 806.72 
43 6.782 3.418 2.264 318.897 
44 6.079 1.572 1.502 474.043 
45 6.988 2.8 2.517 425.157 
46 6.752 1.767 2.229 544.121 
47 6.337 1.526 1.764 518.84 
48 7.995 0.893 3.945 922.915 
49 6.716 3.378 2.186 315.888 
50 7.722 2.437 3.526 588.687 

 
 

Exploratory analysis 
Matrix Z:  χ!;  !.!!

! = 9.21; m=20, cases 31-50. 
Matrix X*: χ!;  !.!!

!  = 6.63; mx = 0. 
Provisional labelling: vertical outliers. 

Confirmatory analysis 
The 20 cases previously flagged are deleted.  
OLS prediction arm (data not shown): for all cases the studentized prediction residual, h!! 
and the modified Cook’s distance exceed the relative cut-offs. Therefore these 20 cases can 
be definitively labelled bad leverage points, as expected by construction, and they cannot be 
added back in to the bulk. 
OLS diagnostic arm (data not shown): studentized deletion residual of case 19 slightly 
exceeds the upper cut-off. Coherently with the 99% level of the cut-offs, the case can be 
considered false positive.  
Note that in example Belgian phone call data the x-values were homogeneous on the whole 
dataset, while the y-values were obtained by two different recording systems. Here on the 
contrary the contaminated set differs from the bulk for both x and y values. This justifies the 
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different labelling in the two examples, even though the results of the exploratory stages 
appeared to be similar. 
 
 
Hawkins-Bradu-Kass data 
 
These data are taken from Hawkins et al. [16]. “This is a much referenced artificial dataset 
consisting of 75 cases and 3 carriers; it is known to be troublesome in terms of masking and 
swamping and new methods for detecting outliers have been tested on the dataset” [17]. The 
data were generated so that the first ten cases were bad leverage points, and the next four 
cases were good leverage points; the remaining 61 constitute the bulk of homogeneous data. 

Exploratory analysis 
Matrix Z: χ!;  !.!!! = 13.28; m=14, cases 1-14. 
Matrix X*: χ!;  !.!!! = 11.34; mx=14, cases 1-14. 
Provisional labelling: bad leverage points. 

Confirmatory analysis 
The 14 cases previously flagged are deleted.  
OLS prediction arm: the results are reported in Table 6. All the three diagnostics of case 1-
10 exceed the respective cut-offs. Therefore these cases are labelled bad leverage points and 
cannot be added back in to the bulk of typical cases. As far as cases 11-14 are concerned, the 
studentized prediction residuals result to be within the cut-off intervals, whereas both h!! and 
the modified Cook’s distances are greater than their respective cut-offs, hence these 4 cases 
are labelled good leverage points and may be added back in to the bulk. 
OLS diagnostic arm (data not shown): no further cases are pinpointed. 
Note that  the definite labelling by our procedure matches Hawkins Bradu Kass [16] 
specifications. 
 
 
Table 6. Hawkins-Bradu-Kass data; results of the confirmatory analysis: OLS Prediction 
arm.  
	
  

 Studentized prediction residual h!! Modified Cook’s distance 
ID C0.025 Estimate C0.975 Estimate C0.95 Estimate C0.95 
1 -1.675 5.353 1.811 14.464 0.118 19.541 1.367 
2 -1.669 5.442 1.813 15.223 0.117 19.900 1.370 
3 -1.677 5.319 1.811 16.967 0.118 19.511 1.367 
4 -1.678 4.889 1.815 18.015 0.118 17.965 1.368 
5 -1.675 5.145 1.812 17.381 0.118 18.886 1.370 
6 -1.676 5.314 1.812 15.611 0.117 19.445 1.369 
7 -1.676 5.647 1.815 15.705 0.117 20.667 1.367 
8 -1.680 5.589 1.814 14.817 0.118 20.421 1.370 
9 -1.673 5.040 1.812 17.034 0.117 18.492 1.366 
10 -1.673 5.308 1.813 15.974 0.118 19.438 1.368 
11 -1.669 0.946 1.816 22.389 0.117 3.496 1.370 
12 -1.677 0.902 1.822 24.026 0.117 3.336 1.367 
13 -1.673 1.197 1.815 22.732 0.117 4.422 1.370 
14 -1.680 0.872 1.814 28.158 0.118 3.234 1.370 
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Hawkins two-system data 
 
This dataset is taken from Billor et al. [18]. The authors state: “Doug Hawkins (personal 
communication) has constructed a dataset in which there are 32 observations with 4 
predictor variables x1, x2, x3, x4 and y. The data come from 2 regression systems, a subset of 
the observations (2,6,10,14,18,22,26,30) is related to x2 only, while the remaining 
observations are related to the other 3 variables. The multiple correlation for the two 
regression systems is very high, approximately 0.97.” 

Exploratory analysis 
Matrix Z: χ!;  !.!!! = 15.09; m=8: cases 2, 6, 10, 14, 18, 22, 26, 30. 
Matrix X*: χ!;  !.!!! = 13.28, mx=8: cases 2, 6, 10, 14, 18, 22, 26, 30. 
Provisional labelling: bad leverage points. 

Confirmatory analysis 
The 8 cases previously flagged are deleted.  
OLS prediction arm: the results are reported in Table 7. For all cases the studentized 
prediction residual, h!! and the modified Cook’s distance exceed the relative cut-offs. 
Therefore these 8 cases can be definitively labelled bad leverage points, as expected by 
construction, and they cannot be added back in to the bulk. 
OLS diagnostic arm (data not shown): no further cases are pinpointed. 
The analysis suggests the presence of two different populations, indeed, by construction, 
cases 2, 6, 10, 14, 18, 22, 26, 30 are generated by a regression system different from the one 
generating the bulk of homogeneous data. 
 
 
Table 7. Hawkins two-system data; results of the confirmatory analysis: OLS Prediction 
arm.  
	
  

 Studentized prediction residual h!! Modified Cook’s distance 
ID C0.025 Estimate C0.975 Estimate C0.95 Estimate C0.95 
2 -2.0173 -14.2379 1.8914 1103.07 0.6404 27.7422 1.2996 
6 -2.018 14.2062 1.8742 760.708 0.6445 27.6749 1.2992 
10 -2.0283 -13.9295 1.8704 162.0509 0.641 27.0703 1.2924 
14 -2.0172 -14.2991 1.8809 280.1902 0.6358 27.8246 1.296 
18 -2.0284 14.1681 1.8923 171.48 0.6405 27.5386 1.3016 
22 -2.0163 12.7828 1.8749 4.4487 0.6441 22.5159 1.2983 
26 -2.0375 -13.8631 1.8809 18.0377 0.6389 26.3049 1.2978 
30 -2.0218 14.2915 1.8812 582.7356 0.6363 27.8354 1.2989 
 
 
Performance comparison between our procedure and the lmrob R function 
 
“Leverage plus outliers” automatic labelling is available in the default plot of lmrob function 
for linear robust regression estimator in the robustbase package in R software (2.15.2 
version). This function estimates the robust MM-estimator for linear regression models [19] 
and it also gives a plot of scaled residuals versus robust distances computed through MCD 
estimates of location and scatter. 
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Comparison of the two procedures is made in terms of number and type of outlying 
observations. Namely: 
Belgian phone calls. lmrob function tends to be slightly more conservative, i.e., to pinpoint a 
smaller number of cases (64-70) to be scrutinized than the number of cases our procedure 
pinpoints (63-70). 
Simulated dataset. A different classification emerges: it deserves to be commented upon. Our 
procedure, in the confirmatory stage, compares the couple of coordinates (y, x) of each 
observation from 31 to 50 to the linear regression line estimated on the bulk of 30 data (1-
30) and recognizes that each point is far from such a line in terms of both y and x values; 
hence every observation (31-50) is labelled bad leverage point. On the contrary, lmrob 
function separately assesses the scaled distance of the y-coordinate from the regression line 
and the scaled distance of the x-coordinate from the centre of x-values of the whole dataset. 
This reduces the sensitivity of the x distances, hence lmrob function classifies cases from 31 
to 50 as vertical outliers only. 
Hawkins-Bradu-Kass and Hawkins two-system data: the results of the two procedure are 
overlapping. 
 
 
DISCUSSION 
 
The two stage procedures suggested by Atkinson [7], Rousseeuw and van Zomeren [8] and 
Simpson et al. [1] resorted to Least Median of Squares (LMS) estimator in the first stage. 
Being aware of the shortcomings of LMS [17,9], an affine equivariant estimator of location 
and scatter [11], like MCD was chosen for the first stage of our procedure. 
The regression examples given in the section 3 show the effectiveness of our procedure in 
pinpointing vertical outliers, good and bad leverage points, even in the presence of 
substantial masking. In addition to these four examples, we processed several (> 20) real 
datasets which are reported by Rousseeuw and Leroy [2] and considered difficult in the 
statistical literature [20]. The identification of outlying observations was similar to that given 
by different authors, with a trend of our procedure to be slightly more sensitive and to 
pinpoint a slightly larger number of cases to be scrutinised. Though one might object that 
certain data configurations could imply the risk of failure for any procedure aiming at 
identifying multiple outliers, we are confident in the performance of the one we propose. As 
a matter of fact, in the first stage, i.e., dealing with the original dataset, the high breakdown 
point MCD estimator is required to identify leverage points and regression outliers by 
processing the matrices X* and Z respectively. In the second stage, dealing with the subset of 
cases obtained after eliminating the extreme and possibly masked cases, the BLU Ordinary 
Least Squares Estimator is required to accomplish the two tasks of distinguishing between 
good and bad leverage points [7], as well as indicating the size of the bulk of typical data. 
Our procedure is interactive and this enables the practitioner to reach a deeper understanding 
of the dataset main features than resorting to an automatic procedure; this is helpful also to 
make decisions during the scrutiny of the data. 
Traditional diagnostics of influence measurements (like leverage, DFFITS, DFBETAS, 
Cook’s distance, modified Cook’s distance) do not have obvious theoretical threshold 
values, so that different practical cut-offs have been proposed in the literature. Alternatively 
our procedure uses bootstrap cut-offs. These compare favourably to the traditional ones 
particularly when the original data have heavy tails or skewness in their error distribution as 
shown by Martin and Roberts [6]. 
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Detection of outliers has been carried out under the assumption that the model is correct. 
Model identification and outlier detection are fundamentally interconnected. After 
scrutinizing the dataset validity one could question the appropriateness of the model fitted, 
looking for an alternative one [21], but such a topic is beyond the scope of this note. 
 
 
Appendix  
 
To make the appendix of practical impact, the computation detail are here shown with 
reference to the Hawkins two-system example. 
n (# cases) = 32, p (# explanatory variables) = 4, p+1 (# regressors) = 5; from section 2.1 
X=matrix of regressors of size 32×5 , X* = matrix of explanatory variables (without the 
intercept) of size 32×4 , Z = (y, X*), still of size 32×5 . 
Process matrices X* and Z is processed to obtain MCD estimates of location and scatter and 
compute xRDi

2 and RDi
2 respectively. 

Flag mx = 8 cases (2, 6, 10, 14, 18, 22, 26, 30), as xRDi
2 of each of them is greater than the 

cut-off point: χ2
p+1, 1-α = χ2

4, 0.99 = 13.28. 
Flag m = 8 cases (2, 6, 10, 14, 18, 22, 26, 30), as xRDi

2 of each of them is greater than the 
cut-off point: χ2

p+1, 1-α = χ2
5, 0.99 = 15.09. 

Delete from the X matrix the rows corresponding to the 8 cases flagged in terms of RDi
2 and 

call U the resulting matrix of size (n − m)×(p + 1) = 24×5 . 
 

OLS diagnostics arm 
 

𝐔𝐔 =

𝐮𝐮𝟏𝟏! = 𝐱𝐱𝟏𝟏!

𝐮𝐮𝟐𝟐! = 𝐱𝐱𝟑𝟑!

𝐮𝐮𝟑𝟑! = 𝐱𝐱𝟒𝟒!

𝐮𝐮𝟒𝟒! = 𝐱𝐱𝟓𝟓!

𝐮𝐮𝟓𝟓! = 𝐱𝐱𝟕𝟕!

𝐮𝐮𝟔𝟔! = 𝐱𝐱𝟖𝟖!

𝐮𝐮𝟕𝟕! = 𝐱𝐱𝟗𝟗!

𝐮𝐮𝟖𝟖! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟗𝟗! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟏𝟏𝟏𝟏! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐! = 𝐱𝐱𝟑𝟑𝟑𝟑!

𝐮𝐮𝟐𝟐𝟐𝟐! = 𝐱𝐱𝟑𝟑𝟑𝟑!

     𝐲𝐲𝐔𝐔 =

y!
y!
y!
y!
y!
y!
y!
y!!
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"

 

h! = 𝐮𝐮𝐥𝐥! 𝐔𝐔!𝐔𝐔 !𝟏𝟏𝐮𝐮𝐥𝐥 
𝐛𝐛 = 𝐔𝐔!𝐔𝐔 !𝟏𝟏𝐔𝐔′ 𝐲𝐲𝐔𝐔  
e! = y! − 𝐮𝐮𝐥𝐥!𝐛𝐛,      l=1, 2,…, 24 
RSS = 𝐞𝐞′𝐞𝐞 
d.f.=(n-m) - (p+1) 

s! =
RSS
d. f.

=
RSS

n − m − p − 1
      (A. 1) 

Studentized  residual:  r! =
e!

s! 1 − h!
 

Studentized  deletion  residual:    t! =
e!

s !
! 1 − h!

          (A. 2) 

where s(!)!  is the estimate of σ! when the entire regression 
is run again on the n-m sample without the l-th case. 

Modified  Cook!s  distance:  c! =
n −m − (p + 1)

p + 1
h!

1 − h!
t!! 
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OLS prediction arm 
 
Let us now focus on case 6: 
𝐱𝐱!!  (6th row of X matrix) = (1, x61, x62, x63, x64) = (1, 𝐱𝐱𝟔𝟔∗!) 
h! = 𝐱𝐱𝟔𝟔! 𝐔𝐔!𝐔𝐔 !𝟏𝟏𝐱𝐱𝟔𝟔 
e! = y! − 𝐱𝐱𝟔𝟔! 𝐛𝐛 
It can be shown [22], that the residual e! has E(e!) = 0 and estimated variance var(e!) =
s!(1 + h!), where s! is given by (A.1). Therefore: 

Studentized  prediction  residual:    t! =
e!

s 1 + h!

 

Since e! is independent of s!, t! is distributed according to the Student’s t-distribution with                 
(n-m-p-1)=19 d.f. 
As shown by Atkinson [7], the analogue of the modified Cook’s Distance is: 

c! =
n − m − (p + 1)

p + 1
h!

1 + h!
t!! 

Alternatively one could think of adding the case in question to the reduced subset generating 
an augmented set of size (n-m+1) and computing the pertinent single case diagnostics on the 
latter. 
Add x6 back in the matrix U and call U+ this augmented matrix so that: 

        𝐔𝐔! =

𝐮𝐮𝟏𝟏!! = 𝐱𝐱𝟏𝟏!

𝐮𝐮𝟐𝟐!! = 𝐱𝐱𝟑𝟑!

𝐮𝐮𝟑𝟑!! = 𝐱𝐱𝟒𝟒!

𝐮𝐮𝟒𝟒!! = 𝐱𝐱𝟓𝟓!

𝐮𝐮𝟓𝟓
!! = 𝐱𝐱𝟔𝟔!

𝐮𝐮𝟔𝟔!! = 𝐱𝐱𝟕𝟕!

𝐮𝐮𝟕𝟕!! = 𝐱𝐱𝟖𝟖!

𝐮𝐮𝟖𝟖!! = 𝐱𝐱𝟗𝟗!

𝐮𝐮𝟗𝟗!! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟏𝟏𝟏𝟏!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟏𝟏𝟏𝟏!! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐!! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐!
! = 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐!
!
= 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐!
!
= 𝐱𝐱𝟐𝟐𝟐𝟐!

𝐮𝐮𝟐𝟐𝟐𝟐!
! = 𝐱𝐱𝟑𝟑𝟑𝟑!

𝐮𝐮𝟐𝟐𝟐𝟐!
!
= 𝐱𝐱𝟑𝟑𝟑𝟑!

      𝐲𝐲𝐔𝐔! =

y!
y!
y!
y!
y!
y!
y!
y!!
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"
y!"

 

h!! = 𝐱𝐱𝟔𝟔! 𝐔𝐔!!𝐔𝐔! !𝟏𝟏𝐱𝐱𝟔𝟔 
𝐛𝐛! = 𝐔𝐔!!𝐔𝐔! !𝟏𝟏𝐔𝐔!′ 𝐲𝐲𝐔𝐔!  
e!! = y! − 𝐱𝐱𝟔𝟔! 𝐛𝐛𝐔𝐔!  
RSS! = 𝐞𝐞!!𝐞𝐞! 
d.f.+ = (n-m+1)-(p+1) 

s!! =
RSS!

d. f.!
=

RSS!

n −m − p
 

s !
!! =

RSS
d. f.!− 1

=
RSS

n − m − p − 1
 

Studentized  deletion  residual:  t!!

=
e!!

s !
! 1 − h!!

 

c!! =
n − m + 1 − p + 1

p + 1
h!!

1 − h!!
t!!

!
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The relationship between matrices 𝐔𝐔′𝐔𝐔 !𝟏𝟏 and 𝐔𝐔!!𝐔𝐔!
!𝟏𝟏

 is preliminary used to explore the 
relationships between h! and h!!, t! and t!!, c! and c!!. It can be shown [23], that:  

𝐔𝐔′𝐔𝐔 !𝟏𝟏 = 𝐔𝐔!!𝐔𝐔!
!𝟏𝟏
+

𝐔𝐔!!𝐔𝐔!
!𝟏𝟏
𝐱𝐱𝟔𝟔𝐱𝐱𝟔𝟔! 𝐔𝐔!

!𝐔𝐔!
!𝟏𝟏

1 − h!!
 

By simple algebra the relationships between h! and h!!, t! and t!!, c! and c!! result to be:   

h! = 𝐱𝐱𝟔𝟔! 𝐔𝐔!𝐔𝐔 !𝟏𝟏𝐱𝐱𝟔𝟔 = 𝐱𝐱𝟔𝟔! 𝐔𝐔!
!𝐔𝐔!

!𝟏𝟏
𝐱𝐱𝟔𝟔 +

𝐱𝐱𝟔𝟔! 𝐔𝐔!
!𝐔𝐔!

!𝟏𝟏
𝐱𝐱𝟔𝟔𝐱𝐱𝟔𝟔! 𝐔𝐔!

!𝐔𝐔!
!𝟏𝟏
𝐱𝐱𝟔𝟔

1 − h!!
=

h!!

1 − h!!
          (A. 3) 

t! =
e!

s 1 + h!

=
e!!

s !
! 1 − h!!

= t!! 

c! = c!! 1 − h!!
n − m − p + 1

n − m + 1 − p + 1
          (A. 4) 

The same computations apply to the remaining 7 outliers. 
Provided that the cases are numerically identified as in the original dataset, the relationships 
between the diagnostics for the two mentioned options can be generalized in terms of i-th 
case. 
 
 
Confirmatory stage cut-off points 
 
As a rule of thumb the threshold T for h!! is: h!! T = ! !!!

!!!!!
 [2]. With reference to the 

Hawkins two-system data it is easy to see that h!! T = !∙!
!"
= 0.4. By means of (A.3), this 

translates in the following h! threshold: h! T = !.!
!!!.!

= 0.667. 

With regard to c!! the threshold is: c!! T = 2 (!!!!!)!(!!!)
(!!!!!)

 . See Table 3 in [24]. With 

reference to the Hawkins two-system data c!! T = 2 !"!!
!"

= 1.789. Using (A.4) this 

translates in the following c! threshold:   c! T = 1.789 1 − !∙!
!"

!"!!
!"!!

= 1.351.  

Moreover, traditional thresholds for the OLS diagnostics arm are: h! T = ! !!!
!!!

= !∙!
!"
=

0.625, t! T = t!.!!";  !!!!!!! = t!.!!";  !" = 2.878, c! T = 2 !!!!!!!
!!!

= 2 !"
!"
= 1.78. 
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