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Abstract

Questions of mediation are often of interest in reasoning about mechanisms, and methods
have been developed to address these questions. However, these methods make strong
assumptions about the absence of confounding. Even if exposure is randomized, there may
be mediator-outcome confounding variables. Inference about direct and indirect effects is
particularly challenging if these mediator-outcome confounders are affected by the exposure
because in this case these effects are not identified irrespective of whether data is available
on these exposure-induced mediator-outcome confounders. In this paper, we provide a
sensitivity analysis technique for natural direct and indirect effects that is applicable even
if there are mediator-outcome confounders affected by the exposure. We give techniques
for both the difference and risk ratio scales and compare the technique to other possible
approaches.
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1 INTRODUCTION

It is often of interest to investigators in the health sciences to examine the extent to which the
effect of an exposure on some outcome is mediated by an intermediate variable. The causal
inference literature on mediation has been important in extending traditional mediation analysis
approaches in the social sciences to settings with interactions and non-linearities and in clarifying
the no-unmeasured-confounding assumptions underlying such mediation analyses. Progress was
made by relying on counterfactual-based definitions of direct and indirect effects referred to as
"natural direct and indirect effects". However, Avin et al. [1] (cf. Pearl [2]) have shown that if the
exposure affects a variable that in turn confounds the relationship between the mediator and the
outcome, then natural direct and indirect effects are not identified from the data, irrespective
of whether data was collected on the post-exposure confounder or not. Natural direct and
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indirect effects are still theoretically appealing but they cannot be estimated. This essentially
has restricted the contemporary methods for causal mediation analysis to settings in which the
mediator occurs shortly after the exposure in order to minimize the possibility of such exposure-
induced mediator-outcome confounding [3]. This is a severe limitation. It is not one that is
possible to address directly. However, one might still hope to use sensitivity analysis to examine
a range of plausible estimates for natural direct and indirect effects even though these effects are
not identified. Here, we develop such a sensitivity analysis technique.

Existing work on this problem includes the derivation of bounds for natural direct and in-
direct effects [4–6]. Bounds, however, are often too wide to be very informative and effectively
consider extreme scenarios. Some concurrent work by other authors [7–9] likewise develop a sen-
sitivity analysis technique for direct and indirect effects that is applicable in the presence of an
exposure-induced mediator-outcome confounder. Different techniques will likely be advantageous
in different settings and later in the paper we will compare the techniques developed here with
other techniques that have been proposed. In a number of settings, our technique provides pa-
rameters that are easier to specify in practice and are applicable to more general settings. Prior
work has shown that sensitivity analysis techniques for natural direct and indirect effects can be
very informative in settings without exposure-induced mediator-outcome confounding [10–12].
We believe the extension of such techniques to the exposure-induced confounding setting will
likely shed further insight on an even wider range of settings.

2 DIRECT AND INDIRECT EFFECTS: NOTATION, DEFINITIONS AND FRAME-
WORK

In this section, we introduce the notation, definitions and typical assumptions employed in
the causal mediation analysis literature and we provide a brief overview of a regression-based
approach that can be used to estimate direct and indirect effects when they are identified.

2.1 NOTATION AND DEFINITIONS

Let A denote the exposure received by an individual, let Y denote some post-exposure outcome,
and let M denote some post-exposure intermediate variable that may serve as a mediator for
the exposure-outcome relationship. For example, in an application we will consider later, for
the treatment of depression, the exposure A might be extensive collaborated care management
for depression, the outcome Y might be depression scores during follow-up, and the mediator
M might be adherance to the use of an anti-depressant. Let C denote some set of confounding
variables that may affect the exposure, mediator and/or outcome. We will assume that the
subjects are sampled from a population and thus treat A, M , Y and C as random variables. The
relationships between A, M , Y and C are given in Figure 1.

Figure 1. Exposure A, mediator M, outcome Y, baseline covariates C
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We now consider counterfactuals or potential outcomes under possible interventions on the
variables [13,14]. Let Ya denote a subject’s outcome if exposure A were set, possibly contrary to
fact, to a. In the context of mediation, there will also be potential outcomes for the intermediate
variable. Let Ma denote a subject’s counterfactual value of the intermediate M if exposure A
were set to the value a. Finally, let Yam denote a subject’s counterfactual value for Y if A were
set to a and M were set to m. Some additional technical conditions referred to as consistency
and composition are also needed to relate the observed data to counterfactual quantities. The
consistency assumption in this context is that when A = a, the counterfactual outcomes Ya

and Ma are, respectively, equal to the observed outcomes Y and M , and that when A = a
and M = m, the counterfactual outcome Yam is equal to Y . The composition assumption is
that Ya = YaMa . Further discussion of these assumptions in the context of mediation is given
elsewhere [3]. Pearl [2] gave the following definitions for controlled and natural direct and indirect
effects based on interventions on the mediator M . Robins and Greenland [15] provided related
definitions. The controlled direct effect of exposure A on outcome Y comparing A = a with
A = a∗ and setting M to m is defined by Yam − Ya∗m and measures the effect of A on Y not
mediated through M , i.e. the effect of A on Y after intervening to fix the mediator to some value
m. For a binary exposure this would be Y1m − Y0m. In the example above, with m = 0, the
controlled direct effect Y10 − Y00 would indicate whether the collaborated care managed would
have any effect on depression symptom outcomes if there were no use of antidepressants. It
would capture the effect of the collaborative care management not through antidepressant use.
In contrast to controlled direct effects, natural direct effects fix the intermediate variable for each
individual to the level it naturally would have been under e.g. the absence of exposure. The
natural direct effect of exposure A on outcome Y comparing A = a with A = a∗ intervening to set
M to what it would have been if exposure had been A = a∗ is formally defined by YaMa∗ −Ya∗Ma∗ .
Essentially, the natural direct effect assumes that the intermediate M is set to Ma∗ , the level
it would have been for each individual had exposure been a∗, and then compares the direct
effect of exposure (with the intermediate set to this level Ma∗). Thus, in the example above,
the natural direct effect, Y1M0 −Y0M0 would compare having versus not having collaborated care
management with the use of antidepressant in both scenarios fixed to the level it would have been
in the absence of collaborated care management. Corresponding to a natural direct effect is a
natural indirect effect. The natural indirect effect comparing A = a with A = a∗ and intervening
to set exposure A to a is formally defined by YaMa − YaMa∗ . The natural indirect effect assumes
that exposure is set to some level A = a and then compares what would have happened if the
mediator were set to what it would have been if exposure had been a versus what would have
happened if the mediator were set to what it would have been if exposure had been a∗. In the
example above, the natural indirect effect, Y1M1 − Y1M0 , would compare the effect of having
collaborative care management with antidepressant use set to the level it would have been with
versus without collaborative care management.

A total effect can be decomposed into a natural direct and indirect effect. For example,
with a binary exposure, the total effect Y1 − Y0 can be written as Y1 − Y0 = Y1M1 − Y0M0 =
(Y1M1 −Y1M0)+ (Y1M0 −Y0M0), where the first expression in the sum is the indirect or mediated
effect and the second expression is the natural direct effect. An important difference between
controlled and natural direct effects is that the effect decomposition above works for natural
direct and indirect effects but not for controlled direct effects. If one subtracts a controlled
direct effect from a total effect, the resulting quantity cannot in general be interpreted as an
indirect effect unless there is no interaction at the individual level between the effects of the
exposure and the mediator on the outcome [16, 17] in which case controlled direct effects and
natural direct effects are equivalent since Yam−Ya∗m will be constant for all values of m and thus
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Yam − Ya∗m = YaMa∗ − Ya∗Ma∗ . In practice individual effects are not estimable and we therefore
focus on population effects conditional on covariates C, which are defined as E(Y1 − Y0|c),
E(Y1m−Y0m|c), E(Y1M0 −Y0M0 |c), and E(Y1M1 −Y1M0 |c) for the total, controlled direct, natural
direct and natural indirect effects respectively.

2.2 ASSUMPTIONS FOR IDENTIFICATION

The identification of direct and indirect effects requires various no-unmeasured confounding as-
sumptions. It is well understood that, in order to estimate causal effects in observational studies,
data is needed on a set C that contains the variables that confound the relationship between
the exposure A and the outcome Y . Formally, we will use the notation A ⊥⊥ B|C to denote
that A is independent of B conditional on C. To identify total effects, it is generally assumed
that, conditional on some set of measured covariates C, the effect of exposure A on outcome Y is
unconfounded given C; in counterfactual notation, this is Ya ⊥⊥ A|C. In practice, a researcher
will attempt to collect data on a sufficiently rich set of covariates C to make the assumption
plausible.

For controlled direct effects, one needs not just one no unmeasured confounding condition but
two. Controlled direct effects are identified if the set of baseline covariates C suffices to control
for confounding of not only the exposure-outcome relationship but also the mediator-outcome
relationship. In counterfactual notation, we require that for all a and m [2, 15]:

Yam ⊥⊥ A|C (1)
Yam ⊥⊥ M |{A,C}. (2)

Assumption (1) can be interpreted as: conditional on C, there is no unmeasured confounding for
the exposure-outcome relationship. Assumption (2) can be interpreted as: conditional on {A,C}
there is no unmeasured confounding for the mediator-outcome relationship. If assumptions (1)
and (2) hold, then average controlled direct effects conditional on C are identified and given by:

E[Yam − Ya∗m|c] = E[Y |a,m, c]− E[Y |a∗,m, c]

When attempts are made to estimate direct effects by including the mediator in a regression
of the outcome on the exposure, it is often forgotten that one must control not only those
variables which confound the exposure-outcome relationship but also those which confound the
mediator-outcome relationship. When control is not made for confounders of the mediator-
outcome relationship, this leads to biased estimates for the controlled direct effect [15, 18, 19].
Judd and Kenny [18] had pointed out early on that assumption (2) requiring control for mediator-
outcome confounders was needed for direct and indirect effects but unfortunately the point was
not noted by Baron and Kenny [20] and much of the subsequent literature, following Baron and
Kenny [20], has ignored this point.

Natural direct and indirect effects will be identified if four no-unmeasured confounding as-
sumptions hold. Natural direct and indirect effects will be identified if, in addition to assumptions
(1) and (2), the following two assumptions hold, that for all a, a∗ and m [2]:

Ma ⊥⊥ A|C (3)
Yam ⊥⊥ Ma∗ |C. (4)

Assumption (3) can be interpreted as: conditional on C, there is no unmeasured confounding of
the exposure-mediator relationship. On a causal diagram interpreted as a set of non-parametric
structural equations [21], if assumption (2) holds, then assumption (4) will hold if there is no
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effect L of exposure A that itself affects both M and Y , i.e. no effects of exposure A that
confound the mediator-outcome relationship. If, however, there is an effect of the exposure that
confounds the mediator-outcome relationship as in Figure 2, then natural direct and indirect
effects will not in general be identified irrespective of whether data is available on L or not [1],
except under strong assumptions about no interaction between the exposure and the mediator
at the individual level [16].

Figure 2. Mediation with a mediator-outcome confounder, L, that is affected by the exposure

In Section 3, we will develop sensitivity analysis techniques for cases in which there is a
mediator-outcome confounder L that is affected by the exposure.

If assumptions (1)-(4) hold, then the average natural direct effect conditional on C is identified
and is given by [2]:

E[YaMa∗ − Ya∗Ma∗ |c] =
∑

m
{E[Y |a,m, c]− E[Y |a∗,m, c]}P (m|a∗, c)

and the average natural indirect effect conditional on C is identified and is given by:

E[YaMa − YaMa∗ |c] =
∑

m
E[Y |a,m, c]{P (m|a, c)− P (m|a∗, c)}.

Note that if exposure A is randomized then assumptions (1) and (3) will hold automatically,
but assumptions (2) and (4) may not.

2.3 OVERVIEW OF A REGRESSION-BASED APPROACH

VanderWeele and Vansteelandt [3] recently showed how the notions of direct and indirect effects
from the causal inference literature presented above could be used to extend the regression
approach of Baron and Kenny [20] to settings in which there were interactions between A and
M . In particular, if assumptions (1)-(4) hold and if Y and M are continuous and the following
regression models for Y and M are correctly specified:

E[Y |a,m, c] = θ0 + θ1a+ θ2m+ θ3am+ θ′4c

E[M |a, c] = β0 + β1a+ β′
2c

then the average controlled direct effect and the average natural direct and indirect effects are
given by:

E[Yam − Ya∗m|c] = (θ1 + θ3m)(a− a∗)

E[YaMa∗ − Ya∗Ma∗ |c] = {θ1 + θ3(β0 + β1a
∗ + β′

2c)}(a− a∗)

E[YaMa − YaMa∗ |c] = (θ2β1 + θ3β1a)(a− a∗).
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If there is no interaction between A and M so that θ3 = 0, then these expressions reduce to the
expressions of Baron and Kenny [20] employed in the psychology literature. The controlled direct
effect and the natural direct effect are then both equal to θ1(a − a∗) and the natural indirect
effect is θ2β1(a− a∗).

VanderWeele and Vansteelandt [3] also derived standard errors for these effects and showed
that if Σβ and Σθ are the covariance matrices for the estimators β̂ of β ≡ (β0, β1, β

′
2)

′ and θ̂ of
θ ≡ (θ0, θ1, θ2, θ3, θ

′
4)

′ and we let

Σ ≡
(

Σβ 0
0 Σθ

)
,

then standard errors of the controlled and natural direct and indirect effects estimators given
above then can be obtained using the Delta method as

√
ΓΣΓ′|a− a∗|

with Γ ≡ (0, 0, 0′, 0, 1, 0,m, 0′) for the controlled direct effect, Γ ≡ (θ3, θ3a
∗, θ3C

′, 0, 1, 0, β0 +
β1a

∗+β′
2C, 0

′) for the natural direct effect and Γ ≡ (0, θ2+θ3a, 0
′, 0, 0, β1, β1a, 0

′) for the natural
indirect effect, where 0′ denotes a row vector of the dimension of C, containing only zeroes.

With a binary outcome, we would likewise define direct and indirect effects on an risk ratio
or odds ratio scale [22]. On a risk ratio scale conditional on C = c, the total effect is given by
RRTE

a,a∗|c = P (Ya=1|c)
P (Ya∗=1|c) , the controlled direct effect is given by RRCDE

a,a∗|c(m) = P (Yam=1|c)
P (Ya∗m=1|c) , and

the natural direct effect is given by RRNDE
a,a∗|c =

P (YaMa∗=1|c)
P (Ya∗Ma∗

=1|c) . The natural indirect effect on the

risk ratio scale conditional on C = c is given by RRNIE
a,a∗|c =

P (YaMa=1|c)
P (YaMa∗=1|c) . The total effect then

decomposes into the product of the natural direct and indirect effects on the risk ratio scale:
RRTE

a,a∗|c = RRNIE
a,a∗|c ×RRNDE

a,a∗|c. Effects could likewise be defined on the odds ratio scale.
VanderWeele and Vansteelandt [22] derived expressions for controlled direct effects and nat-

ural direct and indirect effects for a rare binary outcome under a logistic regression model and a
normally distributed continuous mediator; these would apply then on the odds ratio scale that
also approximates the risk ratio scale for a rare outcome. The expressions obtained in Vander-
Weele and Vansteelandt [22] would also hold for a common binary outcome if the logistic model
was replaced by a log-linear model and natural direct and indirect effects on the risk ratio scale
were used. Valeri and VanderWeele [23] derived similar expressions for either binary or contin-
uous outcomes when the mediator is binary. Other techniques to estimate natural direct and
indirect effects are also available [7,24,25]. The approach described here has the advantage that
macros are currently available to provide estimates and standard errors in SAS and SPSS [23].

3 SENSITIVITY ANALYSIS IN THE PRESENCE OF AN EXPOSURE-INDUCED
MEDIATOR-OUTCOME CONFOUNDER

We introduce sensitivity analysis parameters in Section 3.1, and propose a sensitivity analysis
method using the parameters in Section 3.2. The proposed method is compared with other
techniques in Section 3.3.

3.1 SENSITIVITY ANALYSIS PARAMETER

Suppose now that exposure is randomized but that no further assumptions are made about
confounding so that there may be mediator-outcome confounding variables that are unmeasured
or there may be mediator-outcome confounding variables that are affected by exposure. Our
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covariate set C can either be empty or we can consider analysis conditional on C = c. For each
possible value m, consider the following sensitivity analysis parameter:

γmc = E[Y1m|A = 1,m, c]− E[Y1m|A = 0,m, c] (5)

In the application already mentioned, the exposure A is a care management intervention and
the outcome Y is a depression score; the potential mediator M is an indicator of adherence
to antidepressant medication. The sensitivity analysis parameter γ1c = E[Y11|A = 1,M =
1, c] − E[Y11|A = 0,M = 1, c] would be a contrast of depressive outcome scores for two sub-
populations. The two subpopulations would be first those who had in fact received the care
management intervention (A = 1) and adhered to the antidepressant (M = 1), and second,
those who had not received the care management intervention (A = 0) but had adhered to the
antidepressant (M = 1). We would then consider what would have happened to depression
scores for these two subpopulations had we intervened to give the care management program
and ensure adherence antidepressant (i.e. we would consider Y11); the contrast between the
depression scores for these two subpopulations under this particular intervention is our sensitivity
analysis parameter γ1c. If we thought that the second subpopulation was overall healthier or
more competent (e.g. because they adhered even though they did not have the care management
intervention), then the depression scores might be higher in the first subpopulation and our
sensitivity analysis parameter γ1c would in this case be positive.

The other sensitivity analysis parameter γ0c = E[Y10|A = 1,M = 0, c] − E[Y10|A = 0,M =
0, c] would also be a contrast of depressive outcome scores for two subpopulations. The two
subpopulations in this case would be first those who had in fact received the care management
intervention (A = 1) but had not adhered to the antidepressant (M = 0), and second, those
who had not received the care management intervention (A = 0) and had not adhered to the
antidepressant (M = 0). For these two subpopulations, we would consider what would have
happened to depression scores for these two subpopulations had we intervened to give the care
management program but had not allowed adherence to the antidepressant (i.e. we would con-
sider Y10); the contrast between the depression scores for these two subpopulations under this
particular intervention is our sensitivity analysis parameter γ0c. Again, if we thought that the
second subpopulation were healthier or more competent (e.g. because the first did not adhere
even though they had the care management intervention), then the depression scores for the first
subpopulation were higher and our sensitivity analysis parameter γ0c would also be positive.

We have considered sensitivity analysis parameters of the type given above in (5) in other
work on inference for principal stratum effects when outcomes have been truncated by death [26].
Here we will exploit this sensitivity analysis parameter for inference about natural direct and
indirect effects in the potential presence of an exposure-induced mediator-outcome confounder.

3.2 SENSITIVITY ANALYSIS METHOD

If the exposure is randomized, we might then proceed to attempt to estimate natural direct
and indirect effect using methods, such as those described in Section 2, which will be consistent
for natural direct and indirect effects if no-unmeasured-confounding assumptions (1)-(4) hold.
Define

Q1 =
∑

m
E[Y |A = 1,m, c]{P (m|A = 1, c)− P (m|A = 0, c)}

Q2 =
∑

m
{E[Y |A = 1,m, c]− E[Y |A = 0,m, c]}P (m|A = 0, c).

The expressions Q1 and Q2 will be consistent for the natural indirect and direct effects, respec-
tively, if assumptions (1)-(4) hold. Suppose that these assumptions do not hold but that exposure

e 9 0 2 7 - 7



Stat i S t i ca l  MethodS

epidemiology Biostatistics and Public health - 2014, Volume XX, Number X

SeNSitiVity aNalySiS for direct aNd iNdirect effectS

is randomized. If we had unmeasured mediator-outcome confounding variables that were not af-
fected by exposure we could use sensitivity analysis techniques in VanderWeele [10]. However,
if we have a mediator-outcome confounder that is affected by exposure, then the techniques in
VanderWeele [10] are inapplicable.

Define the bias factor for natural indirect effect, BNIE
c , as the difference between Q1 and the

true natural indirect effect; and define the bias factor for natural direct effect, BNDE
c , as the

difference between Q2 and the true natural direct effect; i.e.

BNIE
c = Q1 − E[Y1M1 − Y1M0 |c]

BNDE
c = Q2 − E[Y1M0 − Y0M0 |c].

We then have the following result. The proof is given in the appendix.

Theorem 1 Suppose that exposure A is randomized. Let γmc = E[Y1m|A = 1,m, c]−E[Y1m|A =
0,m, c] and let Γc =

∑
m γmcP (m|A = 0, c), then

BNIE
c = −Γc

BNDE
c = Γc.

We thus have that

E[Y1M1 − Y1M0 |c] = Q1 −BNIE
c

E[Y1M0 − Y0M0 |c] = Q2 −BNDE
c

where BNIE
c and BNDE

c are given as in Theorem 1. Note that BNIE
c = −BNDE

c .
If we estimate Q1 and Q2 using methods for natural indirect and direct effects (e.g. [3,7,23–

25]) but if the identification assumptions (1)-(4) do not hold because of unmeasured mediator-
outcome confounding or an exposure-induced mediator-outcome confounding variable, then our
estimators will not be consistent for the true natural indirect and direct effects. However, we can
obtain corrected estimates of the natural indirect and direct effects by specifying the sensitivity
analysis parameter γmc for each level of m (we will have two such parameters if M is binary as
above) and then computing the bias factors from Theorem 1. To obtain corrected estimates for
natural indirect and direct effects we then subtract the bias factors, BNIE

c and BNDE
c , respec-

tively, from our estimates of the natural indirect and direct effects. The corrected estimators will
be consistent for the true natural indirect and direct effects if we have specified the sensitivity
analysis parameters γmc correctly. Of course, we do not know what the true values of these
sensitivity analysis parameters are but we can vary them in a sensitivity analysis to assess the
extent to which our conclusions about direct and indirect effects depend on the magnitude of
these parameters. We give an example of such a sensitivity analysis in Section 5.

The sensitivity analysis parameters in Theorem 1 depend on the probabilities P (m|A = 0, c)
which must be estimated from the data. This can make obtaining corrected confidence intervals
for direct and indirect effect estimates more challenging. If γmc were constant across strata of
m then the bias factors BNIE

c and BNDE
c would no longer depend on P (m|A = 0, c) and we

could simply subtract BNIE
c and BNDE

c from both limits of the confidence intervals for Q1 and
Q2 to obtain corrected confidence intervals for natural indirect and direct effects respectively.
Likewise, if the data set is sufficiently large so that estimates of P (m|A = 0, c) are very precise
e.g. if the mediator were binary and the covariate set C empty, and the sample size large,
then approximate corrected confidence intervals for natural indirect and direct effects could be
obtained by simply subtracting BNIE

c and BNDE
c from both limits of the confidence intervals
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for Q1 and Q2. In other contexts, however, in which we must estimate P (m|A = 0, c) from the
data and our estimates of P (m|A = 0, c) are themselves subject to sampling variability, then
to obtain corrected confidence intervals for natural indirect and direct effects, we could proceed
by bootstrapping wherein for each fixed value of the sensitivity analysis parameters γmc and
with each bootstrapped sample we would obtain both estimates of Q1 and Q2 and estimates of
P (m|A = 0, c) and subsequently BNIE

c and BNDE
c to derive a corrected estimate of the natural

direct and indirect effects. Corrected confidence intervals could then be obtained by using a
percentile method over the corrected estimates across the bootstrapped samples.

Theorem 1 has an interesting corollary.

Corollary 1 If γmc ≥ 0 for all m, then E[Y1M1 − Y1M0 |c] ≥ Q1 and E[Y1M0 − Y0M0 |c] ≤ Q2. If
γmc ≤ 0 for all m, then E[Y1M1 − Y1M0 |c] ≤ Q1 and E[Y1M0 − Y0M0 |c] ≥ Q2.

Corollary 1 states that if the sensitivity analysis parameter γmc is non-negative for all values
of m, then using the observed data and estimators that are consistent for Q1 and Q2, we will
numerically underestimate the true natural indirect effect and numerically overestimate the true
natural direct effect. Conversely, if the sensitivity analysis parameter γmc is non-positive for all
values of m, then using the observed data and estimators that are consistent for Q1 and Q2, we
will overestimate the true natural indirect effect and underestimate the true natural direct effect.
This corollary will also be of interest in the application below.

Here, we have been considering a binary exposure A; however the approach generalizes to non-
binary exposures by simply replacing A = 1 and A = 0 with A = a and A = a∗. We have also
assumed that the exposure is randomized, but this assumption can be relaxed in observational
studies to (Yam,Ma∗) ⊥⊥ A|C for all a, a∗, and m. This is essentially an assumption of joint
unconfoundedness of the exposure-outcome and exposure-mediator relationships. It would hold
if exposure is randomized. Technically, it is a slightly stronger than simply Yam ⊥⊥ A|C (i.e.
assumption 1) and Ma∗ ⊥⊥ A|C (i.e. assumption 3), but on any causal diagram defined by
non-parametric structural equations [21], where these two conditions hold the stronger condition
(Yam,Ma∗) ⊥⊥ A|C will also hold.

3.3 COMPARISON WITH OTHER TECHNIQUES

Other techniques for sensitivity analysis for direct and indirect effects have also recently been
developed that handle the presence of an exposure-induced mediator-outcome confounder.

Imai and Yamamoto [8] proposed a technique that requires specification of a linear structural
equation model with random coefficients. Our technique, in contrast to theirs, is non-parametric.
Their technique also assumes that data is available on the exposure-induced mediator outcome
confounder L, whereas ours does not.

Tchetgen Tchetgen and Shpitser [7] proposed a technique that requires specifying as sensi-
tivity analysis parameters the quantities E[Y1m|A = a,M = m,C = c] − E[Y1m|A = a,M �=
m,C = c] for each a and m. For a fixed level of c, their technique thus requires specifying a
number of sensitivity analysis parameters equal to dim(A)×dim(M), whereas our technique only
requires specifying a number of sensitivity analysis parameters equal to dim(M). Moreover, for
the technique of Tchetgen Tchetgen and Shpitser [7], the parameters E[Y1m|A = a,M = m,C =
c]−E[Y1m|A = a,M �= m,C = c] may be difficult to specify in practice if M is not binary as the
parameters are not a simple contrast comparing two values of M, but rather comparing a single
value (M = m) to an entire set of values (M �= m). Note that when M is not binary, both their
technique and ours will require specifying a potentially large number of parameters, making it
more difficult to use such techniques in practice.
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Finally, Vansteelandt and VanderWeele [9] also proposed a sensitivity analysis technique
for an exposure-induced mediator-outcome confounder. Their technique, like that of Imai and
Yamamoto [8], requires that data is available on the exposure-induced mediator-outcome con-
founder L, whereas the technique presented here does not. The technique of Vansteelandt and
VanderWeele [9] also involves specifying a selection bias function which can be difficult to inter-
pret in practice, but does have the advantage that it is essentially zero so long as there is no
three-way interaction between A, L and M .

4 SENSITIVITY ANALYSIS FOR NATURAL DIRECT AND INDIRECT EF-
FECTS ON A RATIO SCALE

We will now consider how a similar sensitivity analysis technique can be employed when natural
direct and indirect effects on the ratio scale are of interest, as for example in the application
to perinatal epidemiology considered by Ananth and VanderWeele [12]. Suppose again that
exposure is randomized but that no further assumptions are made about confounding. Under
assumptions (1)-(4) above, the natural indirect and direct effects on the risk ratio scale would
be identified by [22]:

Q3 =

∑
mE[Y |A = 1,m, c]P (m|A = 1, c)∑
mE[Y |A = 1,m, c]P (m|A = 0, c)

Q4 =

∑
mE[Y |A = 1,m, c]P (m|A = 0, c)∑
mE[Y |A = 0,m, c]P (m|A = 0, c)

.

However, these expressions will be biased for the true natural indirect and direct effects if there
is an unmeasured mediator-outcome confounder or a mediator-outcome confounder affected by
the exposure. Define the following bias factors:

Bi
c =

1

Q3
− 1

P (Y1M1
=1|c)

P (Y1M0
=1|c)

Bd
c = Q4 −

P (Y1M0 = 1|c)
P (Y0M0 = 1|c)

.

We then have the following result. The proof is given in the appendix.

Theorem 2 Suppose that exposure A is randomized. Let γmc = E[Y1m|A = 1,m, c]−E[Y1m|A =
0,m, c] and let Γc =

∑
m γmcP (m|A = 0, c), then

Bi
c =

Γc

E[Y |A = 1, c]

Bd
c =

Γc

E[Y |A = 0, c]
.

and thus

P (Y1M1 = 1|c)
P (Y1M0 = 1|c)

=
Q3

1−Q3 ×Bi
c

P (Y1M0 = 1|c)
P (Y0M0 = 1|c)

= Q4 −Bd
c .
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If we estimate Q3 and Q4 using methods for natural indirect and direct effects on the ra-
tio scale [22] but if the identification assumptions (1)-(4) do not hold because of unmeasured
mediator-outcome confounding or an exposure-induced mediator-outcome confounding variable,
then our estimators will not be consistent for the true natural indirect and direct effects. How-
ever, we can use Theorem 2 to obtain corrected natural indirect and direct effect estimates by
specifying the sensitivity analysis parameters γmc = E[Y1m|A = 1,m, c] − E[Y1m|A = 0,m, c],
and then using this to obtain the bias factors Bi

c and Bd
c by using also empirical estimates for

E[Y |A = 1, c] and E[Y |A = 0, c] and then using these bias factors to obtain corrected natural
indirect and direct effect estimates on the ratio scale.

In general, to obtain corrected confidence intervals for natural indirect and direct effect risk
ratio, we would have to use bootstrapping, wherein for each fixed value of the sensitivity analysis
parameters γmc and with each bootstrapped sample, we would obtain both estimates of Q3

and Q4 and estimates of P (m|A = 0, c), E[Y |A = 1, c] and E[Y |A = 0, c] from the data, and
subsequently Bi

c and Bd
c , and use the formulas in Theorem 2 to calculate a corrected estimate

of the natural indirect and direct effect risk ratios. Corrected confidence intervals could then
be obtained by using a percentile method over the corrected estimates across the bootstrapped
samples.

As with the Corollary to Theorem 1, it likewise follows immediately from Theorem 2, that
if γmc ≥ 0 for all m, then P (Y1M1

=1|c)
P (Y1M0

=1|c) ≥ Q3 and P (Y1M0
=1|c)

P (Y0M0
=1|c) ≤ Q4. If γmc ≤ 0 for all m, then

P (Y1M1
=1|c)

P (Y1M0
=1|c) ≤ Q3 and P (Y1M0

=1|c)
P (Y0M0

=1|c) ≥ Q4.

5 ILLUSTRATION

Emsley et al. [27] considered mediation in the Prevention of Suicide in Primary Care Elderly:
Collaborative Trial (PROSPECT). They assessed whether the effect of randomized exposure (col-
laborative care management versus care as usual), A, on the score from the Hamilton Depression
Scale, Y , was mediated by adherence to antidepressants, M . They assumed no interaction be-
tween the effect of A and M on Y , and obtained an estimate of the direct effect, of −2.66
(standard error = 0.93) and an estimate of the indirect effect, of −0.49 (standard error = 0.43)
for a total effect of −3.15. A standard deviation for the Hamilton Depression Scale is about four
points. If there was indeed no exposure-mediator interaction, and if assumptions (1)-(4) for the
mediator M were satisfied, then their estimator of the direct effect would be consistent for the
natural direct effect, E[Y1M0 − Y0M0 ] (i.e. the effect of having versus not having collaborated
care management, with the use of antidepressant in both scenarios fixed to the level it would
have been in the absence of collaborated care management) and their estimator of the indirect
effect would be equal to the natural indirect effect, E[Y1M1 − Y1M0 ] (i.e. the effect of having
collaborative care management with antidepressant use set to the level it would have been with
versus without collaborative care management).

In their analysis, however, it is likely that there are variables that confound the relationship
between antidepressant adherence and depression scores. Medical co-mordities might affect both
depression scores and also whether a patient is adherent to antidepressant since patient’s medical
co-morbidities may deter patients from taking antidepressant medications because of so many
other medications necessitated by their medical condition. If these mediator-outcome confound-
ing variables were not affected by exposure, we could potentially use the sensitivity analysis
technique in VanderWeele [10] or Imai et al. [25]. However, it may be the case the medical
co-mordities are affected by the collaborative care management intervention. Moreover, there
may be other mediator-outcome confounding variables that are affected by the exposure. For
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example, we might consider whether patients have a regular eating schedule during follow-up.
If patients typically take anti-depressant medications with meals, then having a regular eating
schedule may affect adherence; regulation of meals and diet may also affect depression scores;
and whether there is a regular eating schedule may itself be affected by whether collaborative
care management is provided.

We may allow for such mediator-outcome confounding variables affected by exposure and
still apply the sensitivity analysis approach in Theorem 1 with C = ∅. As above, our sensitivity
analysis parameter γ1c = E[Y11|A = 1,M = 1, c] − E[Y11|A = 0,M = 1, c] compares what
depression scores would have been with care management and adherence for two subpopulations,
those who received the care management intervention (A = 1) and adhered to the antidepressant
(M = 1), versus those had not received the care management intervention (A = 0) but had
adhered to the antidepressant (M = 1). If we thought that the second subpopulation was overall
healthier or more competent, we might specify a positive sensitivity analysis parameter, e.g.
γ1c = 1 (roughly a quarter of a standard deviation for the depressive symptom scale). The
other sensitivity analysis parameter, γ0c = E[Y10|A = 1,M = 0, c] − E[Y10|A = 0,M = 0, c],
compares what depression scores would have been with care management without adherence for
two subpopulations, those who received the care management intervention (A = 1) but had not
adhered to the antidepressant (M = 0) versus those who had not received the care management
intervention (A = 0) and had not adhered to the antidepressant (M = 0). If we thought that
the second subpopulation was healthier or more competent, we might again specify a positive
sensitivity analysis parameter, e.g. γ0c = 0.5.

The probability of the mediator in the control group in their data is 0.45 and we could then
calculate Γc =

∑
m γmcP (m|A = 0, c) = (0.55)(0.5)+(0.45)(1) = 0.725. The corrected estimates

for the direct and indirect effects would be −2.66− 0.725 = −3.39 and −0.49− (−0.76) = 0.24,
respectively. The direct effect would still be quite substantial, but the indirect effect (the effect
mediated by antidepressant adherence) would be detrimental (i.e. would increase depression),
which does not seem likely. The sensitivity analysis parameters specified may be too extreme.
We could of course specify different sensitivity analysis parameters as well. If we thought that the
sensitivity analysis parameters were half of what was specified above, we would have Γc = 0.36
and corrected direct and indirect estimates of −2.66 − 0.36 = −3.02 and −0.49 − (−0.36) =
−0.13, respectively. By Corollary 1, if the sensitivity analysis parameters are positive, then
irrespective of their actual values we would have the true direct effect was in fact more negative
(more protective) than the initial estimate of −2.66. Moreover, even if the sensitivity analysis
parameters took the opposite sign they would have to be fairly substantial in magnitude, e.g.
γ1c = γ0c = 2.66 (roughly half a standard deviation in depression scores) to explain away
the direct effect. The direct effect itself then seems fairly robust to potential unmeasured or
exposure-induced mediator-outcome confounding; however, the indirect, as we have seen, is not.

More generally, several different approaches to assessing robustness are possible. One may
not believe any specific values of the sensitivity analysis parameters but they can be changed
and varied to assess robustness to conclusions under different values, as in the illustration above.
A large table could also be presented with many different values. One can also report the
parameters that would suffice to explain away an effect, as in the illustration above. Finally, the
parameters themselves might also be informed by external data or expert knowledge.

6 DISCUSSION

In this paper, we have developed a method for sensitivity analysis for natural direct and indirect
effects that can be used in the presence of unmeasured mediator-outcome confounding or of
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an exposure-induced mediator-outcome confounder. The latter scenario, of exposure-induced
mediator-outcome confounding, has presented a challenge for the causal inference literature on
mediation, both in terms of identification [1] and also with regard to prior sensitivity analysis
techniques [10, 25]. Our technique is applicable for natural direct and indirect effects on both
the difference and ratio scales and requires specifying fewer parameters than some alternative
techniques. Our technique has the advantage that it is non-parametric and thus applicable
irrespective of the method or models used to obtain the initial direct and indirect effects estimates.
Moreover, at least on the difference scale, there are some contexts when it is particularly easy
to derive not only corrected estimates but corrected confidence intervals as well. The method
provided here is, however, subject to some important limitations. First, the sensitivity analysis
parameters are not particularly straightforward to interpret. Second, unless the mediator is
binary, the technique proposed here will require specifying a relatively large number of parameters
which may make it more difficult to assess the robust of one’s conclusions to mediator-outcome
confounding. In spite of these limitations, the sensitivity analysis technique given here still does
help extend the range of settings in which investigators can reason about direct and indirect
effects, and we hope that it will be useful in future applications.
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APPENDIX

Proof of Theorem 1

Under randomization of A, we have:

E[YaMa |c] = E[Ya|c]
= E[Ya|A = a, c]

= E[Y |A = a, c]

=
∑

m
E[Y |A = a,m, c]P (m|A = a, c)

where the first equality follows by composition, the second by randomization, the third by con-
sistency and the fourth by iterated expectations. We also have

E[Y1M0 |c] =
∑

m
E[Y1m|M0 = m, c]P (M0 = m|c)

=
∑

m
E[Y1m|A = 0,M0 = m, c]P (M0 = m|A = 0, c)

=
∑

m
E[Y1m|A = 0,M = m, c]P (M = m|A = 0, c)

=
∑

m
{E[Y1m|A = 1,M = m, c]− γmc}P (M = m|A = 0, c)

=
∑

m
E[Y |A = 1,M = m, c]P (M = m|A = 0, c)−

∑
m
γmcP (M = m|A = 0, c)

=
∑

m
E[Y |A = 1,M = m, c]P (M = m|A = 0, c)− Γc

where the first equality follows by iterated expectations, the second by randomization, the third
by consistency, the fourth by definition of γmc, and the fifth by consistency. From this it follows
that

BNIE
c =

∑
m
E[Y |A = 1,m, c]{P (m|A = 1, c)− P (m|A = 0, c)} − E[Y1M1 − Y1M0 |c]

= E[Y1M1 |c]− {E[Y1M0 |c] + Γc} − E[Y1M1 − Y1M0 |c]
= −Γc

and likewise

BNDE
c =

∑
m
{E[Y |A = 1,m, c]− E[Y |A = 0,m, c]}P (m|A = 0, c)− E[Y1M0 − Y0M0 |c]

= E[Y1M0 |c] + Γc − E[Y0M0 |c]− E[Y1M0 − Y0M0 |c]
= Γc.

This completes the proof.

Proof of Theorem 2

Suppose that exposure A is randomized. As in Theorem 1, we have P (Y0M0 = 1|c) =
∑

mE[Y |A =
0,m, c]P (m|A = 0, c) = E[Y |A = 0, c] and P (Y1M0 = 1|c) =

∑
mE[Y |A = 1,M = m, c]P (M =
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m|A = 0, c)− Γc and thus we have

Bd
c = Q4 −

P (Y1M0 = 1|c)
P (Y0M0 = 1|c)

=

∑
mE[Y |A = 1,m, c]P (m|A = 0, c)∑
mE[Y |A = 0,m, c]P (m|A = 0, c)

− P (Y1M0 = 1|c)
P (Y0M0 = 1|c)

=

∑
mE[Y |A = 1,m, c]P (m|A = 0, c)

E[Y |A = 0, c]

−
∑

mE[Y |A = 1,M = m, c]P (M = m|A = 0, c)− Γc

E[Y |A = 0, c]

=
Γc

E[Y |A = 0, c]
.

Also as in Theorem 1, we have P (Y1M1 = 1|c) =
∑

mE[Y |A = 1,m, c]P (m|A = 1, c) = E[Y |A =
1, c] and P (Y1M0 = 1|c) =

∑
mE[Y |A = 1,M = m, c]P (M = m|A = 0, c)−Γc and thus we have

Bi
c =

1

Q3
− 1

P (Y1M1
=1|c)

P (Y1M0
=1|c)

=

∑
mE[Y |A = 1,m, c]P (m|A = 0, c)∑
mE[Y |A = 1,m, c]P (m|A = 1, c)

− P (Y1M0 = 1|c)
P (Y1M1 = 1|c)

=

∑
mE[Y |A = 1,m, c]P (m|A = 0, c)

E[Y |A = 1, c]

−
∑

mE[Y |A = 1,M = m, c]P (M = m|A = 0, c)− Γc

E[Y |A = 1, c]

=
Γc

E[Y |A = 1, c]
.

Since,

Bi
c =

1

Q3
− 1

P (Y1M1
=1|c)

P (Y1M0
=1|c)

,

solving for P (Y1M1
=1|c)

P (Y1M0
=1|c) gives:

P (Y1M1 = 1|c)
P (Y1M0 = 1|c)

=
Q3

1−Q3 ×Bi
c

.

This completes the proof.
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