
B IOSTA T I S T I CS

Epidemiology Biostatistics and Public Health - 2014, Volume 11, Number 1

Multi-state Markov models for cancer progression

Comparison of multi-state Markov models 
for cancer progression with different 
procedures for parameters estimation.  
An application to breast cancer
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Background: the knowledge of sojourn time (the duration of the preclinical screen-detectable 
period) and screening test sensitivity is crucial for understanding the disease progression and the 
effectiveness of screening programmes. For this purpose a model of the natural history of the disease 
is needed. The aim of this work is to provide an illustration of the application of multistate Markov 
models for breast cancer progression to the data of the Florentine screening programme, in order to 
estimate the sojourn time and sensitivity for breast cancer screening. 
Methods: three different multi-state Markov models of increasing complexity were used with three 
different estimation procedures based on non-linear least squares, maximum likelihood, and on a 
Bayesian approach. All the models produced estimates for screening sensitivity and mean sojourn 
time. The data used in our application seem to lead to a non-identifiability problem, since the 
estimation procedures for both the Maximum Likelihood and Non-Linear Least Squares gave estimates 
that changed with the parameters’ initial values or difficultly converged. In order to take this problem 
into account we used the Bayesian Approach by incorporating prior information on all the parameters.
Results: the mean sojourn time varied between 2-7 years and 3-5 years for women aged 50-59 and 
60-69, respectively. When the model complexity was increased a higher variability in estimates was 
observed among the estimation procedures. The results of the screening sensitivity estimates were 
highly variable, both among estimation techniques and models - varying between 63% and 100%, and 
between 77% and 100% for women aged 50-59 and 60-69, respectively.
ConclusionS: results are in accord with the literature; those obtained through the Bayesian Approach 
seem to be more reliable.
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INTRODUCTION

Early detection by mass screening 
programmes is of major public health 
importance for control of at least some kinds of 
progressive chronic disease. By advancing the 
diagnosis of disease, the hope is to reduce the 
risk of serious consequences, especially death. 
For cancer, the definitive demonstration that 
early detection is of benefit is a reduction in 
disease-specific mortality in a screened group. 

To properly define the more appropriate 
screening intervals and understand the effect of 
screening activities on the incidence of cancer, a 
model of the natural history of the disease is needed.

Following Day et al [1], we assume that the 
disease progresses as shown in Figure 1. If no 
intervention were to take place, an individual 
would enter the preclinical phase of the disease 
detectable by screening at time T

0
 and would 

begin to manifest symptoms, i.e. the disease 
would become clinically apparent at time T

1
. 

For the individual, the sojourn time is defined 
as T

1
-T

0
. Suppose that a person is screened at 

time T
2
 (T

0
<T

2
<T

1
) and the preclinical stage is 

diagnosed. For the individual, the lead time 
- the interval by which diagnosis is brought 
forward - is defined as T

1
-T

2
. The probability 

that the screening test correctly identifies an 
individual as being in the preclinical phase is 
termed the “sensitivity” (Se) of the test. 

The time that a disease remains in the 
preclinical detectable phase (PCDP), the sojourn 
time, is important in determining the potential 

effectiveness of a screening programme. It 
provides an absolute upper limit to the lead time 
obtainable and indicates what interval between 
screens is likely to achieve a useful lead time. If 
the sojourn time is long, the maximum attainable 
lead time is correspondingly long. If the sojourn 
time is short, however, the potential gains from 
screening are smaller and screening should take 
place more frequently in order to increase the 
probability that preclinical disease is found before 
it surfaces to the clinical stage. Furthermore, lead 
time estimates are needed to properly interpret 
changes in cancer incidence after the start of a 
screening program and, particularly, to evaluate 
the presence of overdiagnosis.

Different models have been developed to 
estimate mean sojourn time (MST) and Se, for 
breast as well as for other cancer screening 
programmes.

Day and Walter [1] proposed a simplified 
model to estimate both the MST and the test Se 
for breast cancer screening and showed that the 
sojourn time distribution is well approximated 
by an exponential distribution. The exponential 
distribution implies that the average advance in 
diagnosis due to screening is equal to the MST 
and that the standard deviation of the sojourn 
time is equal to its mean.

Using generalized linear models, Paci and 
Duffy [2] used information on interval cancers 
between screens by applying an exponential 
form for the sojourn time distribution, to estimate 
MST, Se and positive predictive value based on 
the Florence breast cancer screening programme. 

FIGURE 1

Scheme for the progression of the disease 
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This model was modified by Prevost et al 
[3]  and applied to colorectal cancer screening 
to take into account the possibility that the Se 
is substantially less than 100%, using a two 
states Markov model. More complex multi-state 
Markov models were successively proposed to 
assess the natural history of the disease [4, 5]. 
Multi-state Markov models - which consider 
more states in modeling the natural history of 
the disease - allow for the specification of the 
transition rates from preclinical to clinical states 
through different pathways (dimension, nodes 
involvement, non-progressive disease).

Uhry et al [6] applied multi-state Markov 
models to estimate natural history parameters 
that were applied to data from breast 
screening programmes in three districts in 
France. Using the node status as a prognostic 
factor, they applied a multi-state Markov 
model in order to estimate the Se of the 
screening procedure and the MST, and to 
predict the mortality reduction associated 
with screening, To explore the effect of 
overdiagnosis on parameter estimates, they 
added a non-progressive preclinical state.

Using data from Finnish screening program, 
Wu et al [7] presented a refinement of the multi-
state Markov model to estimate the progression 
rate of breast cancer, making allowance for 
measurement errors and for different methods 
to detect breast cancer including cancers arising 
from non-participants.

The aim of this study is to provide an 
illustration of the application of multi-state 
Markov models for breast cancer progression to 
data from the first two rounds of the Florentine 
screening programme (1991-1993). Three 
different multi-state Markov models that are 
widely used in the literature were applied, and 
three different estimation procedures (non-linear 
least squares, maximum likelihood, Bayesian 
approach) were used. Limits and advantages of 
these different methods are discussed.

METHODS

We modeled the natural history of breast 
cancer - describing the progression of the 
tumour from the asymptomatic phase to the 
clinical phase - according to three different 
multi-state Markov models [3, 4, 5]: two, three, 
and five-state models.

The Markov model provides a convenient 
way to model prognosis for clinical problems. 
The model assumes that the patient is always 
in one of a finite number of states of health, 
which are termed Markov states. All events of 
interest are modeled as transitions from one 
state to another.

In this paper, multi-state Markov stochastic 
processes which we apply are defined by the 
following properties:

•	 The transition rates between the states 
are invariant with time.

•	 The sojourn time in a given state 
follows an exponential distribution.

•	 The sojourn times in successive states 
are independent.

•	 The probability to transition from one 
state a, to another state b, is independent 
of the time spent in state a.

•	 The probability to transition from 
one state a, to another state b, is 
independent of the past states before a 
(Markov property).

Two-state Markov model

According to Prevost et al [3], we defined a two-
state model for the natural history of the disease 
where the states are preclinical breast cancer that 
are detectable by screening (asymptomatic) and 
clinical breast cancer (symptomatic), and λ

12
 is 

the transition rate from the first state to the other 
(Figure 2). The inverse of the transition rate, 1/λ

12
, 

is the MST under the exponential distribution.

FIGURE 2

Scheme of the two-state Markov model

State (1) is the asymptomatic breast cancer, state (2) is the symptomatic breast cancer, and λ
12

 is the transition rate from state 
1 to state 2. The model has been extensively presented by Prevost et al [3]. A more detailed presentation of the model is in the 
Supplementary Materials of this paper
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Three-state Markov model

According to the model proposed by Duffy 
et al [4] and revised by Uhry et al [6] we 
suppose that the natural history of the disease 
is described by three health states: no detectable 
breast cancer, preclinical cancer detectable by 
screening (asymptomatic) and clinical breast 
cancer (symptomatic) (Figure 3). The transition 
rate λ

01
 represents the incidence rate of the 

preclinical disease, and λ
12
 is the transition rate 

from asymptomatic to symptomatic breast cancer. 
As in the two-state model, the MST is equal to 1/λ

12
 

under the exponential assumption. The model is 
presented in detail in the Supplementary Materials.

Five-state Markov model:

The five-state model differentiates the 
progression of a tumour according to node 
status, i.e. node negative (PN-), and node 
positive (PN+). As a consequence, the overall 
MST in the preclinical phase can be calculated 

by the sum of the MST in the preclinical phase 
for PN- (state 1) and MST in the preclinical 
phase for PN+ (state 2) multiplied by the 
proportion of cancer moving from state 1 to 
state 2 (Figure 4).

Estimation procedures

For each of the models described, the 
parameters were estimated using three different 
techniques: maximum likelihood (ML), non-linear 
least squares (NLS), and a Bayesian approach 
(BA) using the Gibbs sampling technique.

ML and NLS are among the most frequently 
used procedures to estimate the parameters of 
a large variety of statistical models, including 
multi-state Markov models.

The likelihood function is the joint 
probability (density) function of observed data 
expressed as the function of the unknown 
parameters. The idea behind the maximum 
likelihood parameter estimation is to determine 
the parameters that maximize the probability of 

FIGURE 3

Scheme of the three-state Markov model

State (0) is where there is no detectable breast cancer, state (1) is the asymptomatic breast cancer, state (2) is the symptomatic 
breast cancer, and λ

01
 and λ

12
 are the transition rates between the states [6]

FIGURE 4

Scheme of the five-state Markov model 

State (0) is where there is the no detectable breast cancer, state (1) is the preclinical cancer PN- detectable by screening 
(asymptomatic), state (2) is the preclinical breast cancer PN+ detectable by screening (asymptomatic), state (3) is the clinical breast 
cancer PN- (symptomatic), and state (4) is the clinical breast cancer PN+ (symptomatic). λ

01
, λ

12
, λ

13
 and λ

24
 are the transition rates 

between the states [6]
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the sample data (likelihood). The ML estimation 
finds the most “likely” values of the distribution 
parameters for a set of data. The likelihood 
derivation for the Markov models under study 
is based on assumptions regarding the densities 
of the available data (Supplementary Materials).

NLS regression extends the linear least 
squares regression in order to be used for a much 
larger and more general class of functions. Almost 
any function that can be written in closed form can 
be incorporated in a nonlinear regression model. 
The idea of using NLS technique to estimate 
the Markov model parameters is to calculate 
the observed and expected transitions, as well 
as to treat the equation (observed = expected 
+ error) as a non-linear regression equation, 
with regression coefficients for screening Se and 
transition parameters to be estimated [4]. 

Both the NLS and ML procedures generally 
perform quite well, but sometimes a non-
identifiability problem can occur, i.e. the 
impossibility of the model parameters to be 
uniquely determined from the distribution of the 
observed random variables. The latter may occur 
if the model does not have sufficient information 
to estimate all the parameters of interest. This 
problem may depend on the specific data used 
to inform the model. The non-identifiability 
problem may be overcome by adding external 
information, e.g. data from non-participants [6, 
7], by further simplifying the model structure in 
order to reduce the number of parameters to be 
estimated, or by incorporating prior information 
in a Bayesian framework [8, 9]. 

The data used in our application seem to 
lead to a non-identifiability problem, since both 
the ML and NLS estimation procedures gave 
estimates that changed with the parameters’ 
initial values or difficultly converged. In 
order to take this problem into account, this 
problem we used the BA by incorporating prior 
information on all the parameters. 

In a Bayesian framework, extra information 
may be added to the analysis by combining the 
data - expressed through the likelihood function 
- with prior information on unknown parameters 
- expressed through suitable distributions - 
and thus deriving posterior distributions using 
the Bayes theorem. The posterior distribution 
contains updated beliefs about the values of the 
model parameters, after taking into account the 
information provided by the data. 

Suitable prior distributions for the unknown 
parameters must be specified. In this analysis we 

used an uninformative flat prior Gamma(0.001, 
0.001) for the transition rates. The Gamma 
distribution is a distribution that is continuous, 
flexible, and constrained between [0,+∞), and 
is often used to model transition rates [3, 10, 
11]. The Beta distribution is a natural choice to 
represent the uncertainty on a probability being 
continuous and constrained in the interval (0,1) 
[12]. Since estimates of Italian breast cancer 
screening Se are available from several studies 
[13-15], an informative Beta distribution was 
assumed as prior distribution for the test Se. The 
Beta parameters were derived with the method 
of moments [16] from the point estimates and 
standard errors from previous published studies 
[13-15]. The selected parameters were 4.11 
and 1.37 which corresponded to an average 
sensitivity around 75%. 

The posterior distribution given the prior 
distributions, and data likelihood was computed 
by Gibbs sampling [8], providing random 
samples from marginal posterior densities for 
each parameter of interest. For the analyses 
presented, posterior inferences were based on 
100 000 iterations of the Gibbs sampler after 
a burn-in of 50 000 iterations was discarded. 
Convergence was assessed by running multiple 
chains from dispersed starting values [17]. 

We carried out a sensitivity analysis on 
the prior distributions in order to evaluate the 
robustness of the results. In particular, both 
shape and inverse scale parameters of the 
Gamma distribution were

changed from 0.1 to 0.0001. In the 
same way the shape parameters of the Beta 
distribution were changed from 1 to 5; the 
mean of the Se varied between 0.50 and 0.90.

We calculated the determination coefficient 
for the modeled outcomes from each model as a 
measure of goodness of fit comparing the observed 
number of cases to the estimated numbers [18]. 

The results for the ML and NLS presented 
above were used as initial values for the 
estimates from the BA.

We used the freeware program Just another 
Gibbs sampler (JAGS) [19] for the Bayesian 
modeling, and the R software for the ML and 
the NLS estimation procedures [20].

Data

The observed data that were used to 
inform the three Markov models consist of 
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detection rates from different screening rounds 
and interval cancer rates. We used data from 
the cohort of 50-69 years-old women who 
participated in the first two screening rounds 
of the Florentine screening programme in the 
period from 1991-1993, and who were followed 
up for breast cancer up to two years after the 
second round [21, 22].

The screening histories of all women from 
of the cohort were extracted from the local 
computerized screening database. Screening 
exposure was defined on the basis of attendance 
at the first and second rounds.

To identify the types of breast cancer that 
occurred within the cohort, a linkage with the 
Tuscan Cancer Registry [23] was made and the 
cases were classified according to:

•	 screen detected cancers that occurred 
during the first round (prevalent cases)

•	 screen detected cancers that occurred 
during the second round (incident 
cases)

•	 interval cancers that occurred between 
the first and second round

•	 interval cancers that occurred during 
the first year after the first round

•	 interval cancers that occurred during 
the second year after the first round

•	 interval cancers that occurred between 
the second round and the two 
subsequent years.

Based on the TNM classification, all cases 
were stratified according to the lymph-node 
status (PN-, PN+). 

Table 1 presents the data from the Florentine 
screening programme. Twenty-eight thousand 
three hundred and ninety women participated in 
the first round of screening with a detection rate 
of 7.2‰, and 23 445 women participated in the 
second round with the detection rate of 3.6‰; 
32 interval cancers were detected between the 
first and the second round, and 31 during the 
two years after the second round. 

The detection rate was higher in the age-class 
60-69 than in those aged 50-59 both during the first 
and the second round. The occurrence of interval 
cancers was quite stable in the two intervals 
considered  and similar across age-classes.

RESULTS

We performed the analyses for the three 
models using three different estimation 

procedures on the Florentine dataset stratified 
for the two age classes (50-59 and 60-69). The 
results from the two, three, and five-state 
models are reported in Tables 2, 3, and 4, 
respectively.

Table 2 presents the results from the two-
state model. The model provides a very good 
fit with determination coefficients around 0.99 
for both age classes. 

The transition rate from asymptomatic to 
symptomatic cancer had a very similar result 
with the three estimation procedures. On the 
contrary, estimates of screening sensitivity 
showed meaningful differences among the 
estimation procedures, especially for the 
parameters estimated for the 50-59 age class 
with very high values (around 1) for the 
optimization procedures. In all of the estimation 
procedures, MST values were higher for older 
women. 

Table 3 presents the results from the 
three-state model. This model also fits very 
well for both age classes with determination 
coefficients around 0.99. Although the 
transition rate estimates from no detectable 
to asymptomatic cancer had very similar 
results with the three estimation procedures 
and the two age classes, the transition 
rates from asymptomatic to symptomatic 
cancer resulted lower in the Bayesian 
estimation procedure with respect to the 
optimization ones. The resulting MST values 
were therefore 1 and 1.5 years higher in the 
Bayesian estimation procedure respectively 
for 50-59 and 60-69 age classes. 

Results from the five-state model are shown 
in Table 4. Also in this case the model had a 
very good fit with determination coefficients 
around 0.97 and 0.98 for the 50-59 and 60-69 
age classes, respectively. The transition rate 
from no detectable to asymptomatic PN- cancer 
had a very similar result in all the estimation 
procedures and in the two age classes. All the 
estimates (transition rates and Se) had a higher 
result using the ML procedure than did the BA 
and NLS for both age-classes. 

The estimates of Se resulted around 100% 
for both age-classes when the ML procedure 
was used, while BA and NLS Se estimates 
were respectively 75% and 63% for ages 
50-59, and 77% and 87% for ages 60-69. In all 
the procedures, sensitivity seems to increase 
with age.

The MST estimates from the three procedures 
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had a rather similar result in the older age-class 
with values around 4 years for BA and NLS, and 
3 years for ML. Estimates for the 50-59 age-class 
instead had a different result among procedures, 
with values around 4, 2, and 7 years for BA, ML, 
and NLS procedures, respectively.

DISCUSSION

We applied three multi-state Markov 
models to data from breast cancer screening 
in Florence. The case-study illustrates the 
use of different estimation procedures with 

TABLE 2

Results for the two-state model with the three estimation procedures

Estimation procedure Age λ
12

95%CI Se 95%CI MST

BA
50-59 0.31 0.22, 0.39 0.91 0.74, 0.99 3.27

60-69 0.20 0.14, 0.26 0.87 0.68, 0.99 4.96

ML
50-59 0.34 0.27, 0.41 0.99 - 2.94

60-69 0.21 0.15, 0.29 0.91 0.46, 0.99 4.76

NLS
50-59 0.34 0.31, 0.34 1.00 0.91, 1.00 2.94

60-69 0.20 0.17, 0.23 0.88 0.77, 0.98 5.00

λ
12

: transition rate from asymptomatic cancer to symptomatic cancer; Se: sensitivity of the screening test; 95%CI: 95% confidence 
interval (credible in the Bayesian estimation procedure); MST: mean sojourn time; BA: Bayesian approach; ML: maximum likelihood; 
NLS: non-linear least squared

TABLE 1

Data from the cohort of 50-69 year-old women who participated in the Florentine screening 
programme from the period 1991-1993, stratified according to two age classes (50-59 and 60-69)

  Age 50-59 Age 60-69

Round 1

Screened women 14 608 13 782

PN+ cancers at screening 21 21

PN- cancers at screening 64 99

Total cancers 85 120

Round 2

Screened women 12 305 11 140

PN+ cancers at screening 11 12

PN- cancers at screening 26 36

Total cancers 37 48

Interval cancers

Women 1 year after round 1* 14 523 13 662

Cancers 1 year after round 1* 3 4

Women 2 years after round 1* 14 520 13 658

Cancers 2 years after round 1* 13 12

PN+ cancers between rounds 1 and 2 5 6

PN- cancers between rounds 1 and 2 11 10

PN+ cancers 2 years after round 2 6 8

PN- cancers 2 years after round 2 10 7

*Interval cancers are needed yearly to fit the two-state model
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three multi-state Markov models for the main 
purpose of estimating screening Se and MST.

These estimates may further be used to 
make predictions for future trends of the 
burden of breast cancer and of the associated 
mortality after the introduction of screening.

The MST varied between 2 and 7 years and 
between 3 and 5 years for women aged 50-59 
and 60-69, respectively. The two-state model 
gave the same MST estimates across the three 
estimation procedures for both age-classes. 
Alternatively, increasing the model complexity 
a higher variability in estimates was observed 
among the estimation procedures.

The screening Se varied between 63% 
and 100% and between 77% and 100% for 

women aged 50-59 and 60-69, respectively. 
The screening sensitivity estimates had a 
highly variable result, both among estimation 
techniques and models.

The three Markov models in combination 
with the three estimation procedures had 
very good fits. The latter was found in similar 
applications of Markov models [6, 24]. 

All the models produced estimates for MST 
that were globally consistent with the literature 
[25, 26], with a slight underestimation of MST for 
the older age-class in the two-state model, and 
an overestimation of the MST in the young age-
class for the NLS approach (Tables 2, 3, 4). The 
MST estimates showed an increase with ageing 
- a point that has already being raised in the 

TABLE 3

Results for the three-state model with the three estimation procedures

Estimation 
procedure Age λ

01
95%CI λ

12
95%CI Se 95%CI MST

BA
50-59 1.81e-3 1.12e-3, 2.36e-3 0.26 0.10, 0.39 0.81 0.47, 0.99 3.83

60-69 2.16e-3 1.22e-3, 2.91e-3 0.20 0.07, 0.32 0.80 0.48, 0.99 4.92

ML
50-59 2.09e-3 1.73e-3, 2.53e-3 0.36 0.28, 0.45 1.00 0.99, 1.00 2.78

60-69 2.71e-3 2.22e-3, 3.17e-3 0.30 0.24, 0.37 1.00 0.99, 1.00 3.34

NLS
50-59 2.09e-3 1.87e-3, 2.19e-3 0.36 0.26, 0.37 1.00 0.83, 1.00 2.78

60-69 2.71e-3 2.18e-3, 287e-3 0.31 0.19, 0.33 1.00 0.75, 1.00 3.23

λ
01

: transition rate from no detectable cancer to asymptomatic cancer; λ
12

: transition rate from asymptomatic cancer to symptomatic 
cancer; Se: sensitivity of the screening test; 95%CI: 95% confidence interval (credible in the Bayesian estimation procedure); 
MST: mean sojourn time; BA: Bayesian approach; ML: maximum likelihood; NLS: non-linear least squared

TABLE 4

Results for the five-state model with the three estimation procedures

Estimation 
procedure Age λ

01
95%CI λ

12
95%CI λ

13
95%CI λ

24
95%CI Se 95%CI MST

BA
50-59 1.81E-03 0.95e-3, 2.45e-3 0.19 0.03, 0.36 0.17 0.05, 0.28 0.49 0.08, 0.99 0.75 0.37, 0.98 3.88

60-69 2.29E-03 1.08e-3, 3.21e-3 0.17 0.03, 0.31 0.11 0.03, 0.19 0.67 0.11, 1.32 0.77 0.39, 0.99 4.50

ML
50-59 2.26E-03 1.89e-3, 2.70e-3 0.33 0.23, 0.45 0.24 0.16, 0.35 0.84 0.55, 1.20 1.00 - 2.47

60-69 2.91E-03 2.46e-3, 3.44e-3 0.28 0.21, 0.37 0.15 0.10, 0.23 1.09 0.72, 1.52 1.00 0.99, 1.00 2.92

NLS
50-59 1.33E-03 0.70e-3, 2.01e-3 0.07 0.01, 0.26 0.12 0.05, 0.24 0.21 0.02, 0.68 0.63 0.43, 1.00 6.90

60-69 2.28E-03 1.24e-3, 2.79e-3 0.16 0.04, 0.24 0.12 0.05, 0.19 0.73 0.18, 1.00 0.87 0.60, 1.00 4.37

λ
01

: transition rate from no detectable cancer to asymptomatic cancer PN-; λ
12

: transition rate from preclinical cancer PN- to preclinical 
cancer PN+; λ

13
: transition rate from preclinical to clinical cancer PN-; λ

24
: transition rate from preclinical to clinical cancer PN+; 

Se: sensitivity of the screening test; 95%CI: 95% confidence interval (credible in the Bayesian estimation procedure); 
MST: mean sojourn time;  BA: Bayesian approach; ML: maximum likelihood; NLS: non-linear least squared
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literature. Numerous studies based on Markov 
models for the progression of disease showed 
that MST becomes longer with ageing, ranging 
from 2 to 3.7 in the 50-59 age group and from 
3.3 to 4.2 in those aged 60-69 [2, 6, 7, 26-28].

The Se estimates from ML and NLS had a 
result in accord with the literature that reports 
estimates varying from 0.82 to 1.00 in 50-59 and 
from 0.88 to 1.00 in those aged 60-69 [2, 6, 7, 
26-28]. NLS underestimates Se in the younger 
age-class. Estimates of the Se based on data 
from observed interval cancers in a screening 
programme showed a slightly lower value with 
respect to the model-based approach - from 70% 
to 82% [13-15]. The BA estimates seem more 
plausible, perhaps because of the use of prior 
information on such parameters (Tables 2, 3, 4).

Increasing the model’s complexity has the 
advantage of allowing us to describe the natural 
history of the disease of cancer with increasing 
detail, i.e. the five-state model has the advantage 
of estimating cancer cases by node status. 
However, as highlighted by Uhry et al. [6], it 
should be considered that the validity of some 
assumptions in the five-state model should be 
closely inspected. In particular, the MST in 
the two preclinical states (PN- and PN+) was 
assumed to be independent, whereas they might 
be positively correlated. The use of estimates 
derived from two separate dataset (screened and 
unscreened) has been proposed [6] as a way to 
avoid bias in prediction of the node status when 
predicting screening scenarios.

One of the several drawbacks of this 
kind of Markov model is that it aims to jointly 
estimate Se and MST that are highly correlated 
[6]. In our application the BA overcomes this 
problem by strengthening the knowledge on 

screening Se with the integration of prior 
belief. By increasing the model complexity, the 
BA showed an Se estimate that comes closer to 
the data represented in the literature.

In addition, the BA gave robust estimates 
with all the models. Indeed, for all the models, 
sensitivity analyses confirmed the stability of 
posterior estimates over different values of the 
prior hyper-parameters.

In conclusion, we estimated both natural 
history parameters and Se using data from the 
two-yearly mammographic screening programme 
implemented in Florence, Italy. Results were 
in accordance with the literature, and the BA 
was identified as being more appropriate in 
this setting, given the non-identifiably problem 
arising from the ML and NLS techniques, and 
given the more reliable parameter estimates. 
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