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Description of survival data extended
to the case of competing risks: a
teaching approach based on
frequency tables

DAVIDE PAOLO BERNASCONI®), LAURA ANTOLINI®

Survival analysis is a powerful statistical tool to study failure-time data. In introductory
courses students learn how to describe right-censored survival time data using the product-
limit estimator of the survival function on a given end-point relying on a product of con-
ditional survival probabilities. In the case of a composite end-point, the next step is to
account for the presence of competing risks. The complement to one of the survival func-
tion is decomposed into the sum of cause-specific incidences, which are obtained as sum of
unconditional probabilities due to the single competing risk. However, this algebraic decom-
position is not straightforward, given the difference between the structures of the involved
estimators. In addition, one is tempted to use the Kaplan-Meier estimator, leading to an
erroneous decomposition of the overall incidence. Here we discuss a simple reinterpretation
of the Kaplan-Meier formula in terms of sum of non-conditional probabilities of developing
the end-point in time, adjusted for the presence of censoring. This approach could be used
for describing survival data through simple frequency tables which are directly generalized
to the case of competing risks. In addition, it makes clear how the estimation of the single
cause-specific incidence through the Kaplan-Meier estimator, simply considering the occur-
rence of competing events as censored data, leads to an overestimation of the cause-specific
incidence. Two examples are provided to support the explanation: the first one could help
to clarify the procedure described by the formulas; the second one simulates real data in
order to present graphically the results.
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1 INTRODUCTION

Survival analysis deals with the behavior of variables representing time T elapsed between an
initial time and the occurrence of an event of interest (end-point). Examples in medicine include
the time elapsed between the diagnosis of a disease and the patient death, the beginning of
exposure to a pollutant and the onset of a disease, the start of a treatment and the treatment
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failure [1], [2]. Survival analysis is helpful even in the industrial context, where it is referred to
as "reliability analysis": for example, considering a particular equipment, could be of interests to
study the time elapsed from its first use to the occurrence of the first failure. In practical appli-
cations it often happens that the end-point is composite, because it is defined as the occurrence
of the first between two or more different types of event. In this case an analysis that accounts
for the presence of competing risks is usually recommended [3]|. A typical example in the clinical
context is the occurrence of the first event between relapse of disease and death due to severe
toxicity in the absence of relapse. Consequences will be different, both for the patient and for
clinical interpretation, depending on whether the achievement of the composite end-point was
due to relapse or death.

Basics on competing risks are required even in introductory courses in survival analysis since
with the improvement of care, applications in medicine move from hard end-points (such as
death) to end-points including non-fatal events. In our experience, one of the difficulties a
teacher encounters in handling non parametric estimation tools for competing risks description
is that the Aalen-Johansen estimator of cause-specific incidences differs from the Kaplan-Meier
estimator of the overall incidence in terms of algebraic form [4], [5]. This makes more difficult to
understand that the sum of the cause-specific probabilities leads exactly to the overall incidence
and encourages a typical mistake, also seen in the application literature, that arise when using
the Kaplan-Meier formula: to treat competing risks as cause of censoring. Indeed this leads to
an overestimation of the crude incidence function.

Here we discuss a simple reinterpretation of the Kaplan-Meier formula in terms of sum of
non-conditional probabilities of developing the end-point in time, adjusted for the presence of
censoring. This approach is aimed to help students to describe survival data through simple
frequency tables and is directly generalized to the case of competing risks.

We consider, for the sake of simplicity, the case of a discrete failure time random variable.
The paper is organized as follows: in Section 2, we explain, with the help of a tutorial example,
the general approach to analyze survival data through the Kaplan-Meier method. We review
an alternative formulation of the Kaplan-Meier estimator defined in an iterative way as sum of
non-conditional probabilities [6]. This helps in understanding the analysis of competing risks
data using the Aalen-Johansen estimator of the cause-specific incidence presented in Section 3
where also the improper use of the Kaplan-Meier method is discussed. In Section 4 we give
a graphical presentation of our results, using a simulated example that mimics real data. We
conclude with a discussion in Section 5.

2 NON PARAMETRIC ESTIMATION OF THE INCIDENCE FUNCTION: THE
KAPLAN-MEIER METHOD

The key quantities to describe the random variable survival time T are the functions of time ¢:

e incidence: F(t) = P(T < t), proportion of subjects for whom the end-point has occurred
within time ¢;

e survival: S(t) =1 — F\(t), proportion of subjects event free at time ¢;

e hazard: h(t) = P(T =t | T > t), instantaneous probability that the end-point occurs at
time ¢ conditional on being event free right before ¢.

The observed data are realizations of the pair Y = min(T,C) and A = I(T < C) where C is
the censoring time and A the end-point indicator. The random variables 7" and C' are assumed
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independent. On a sample of N subjects the observed data are {y;;9;} with ¢ = 1,..., N. With re-
spect to the observed discrete times t1 < 3 < ... < t; < ..., where the end-point was observed on
at least one subject, data can be organized by the counts of subjects at risk n; = Zf\il I(y; > tj)
and of subjects reaching the end-point at time ¢;, d; = Zfil I(y; = t;)0;.

The hazard function, which can be thought as the "velocity" of occurrence of the event of interest,
increases in time the proportion of subjects F'(t) reaching the end-point and, conversely, reduces
the proportion of event free subjects S(t). This relationship is described by the recursive equation

F(0)=0 F(t)=F(t—)+ P(T =t) = F(t—) + S(t—)h(t) (1)

where t— is the discrete time right before ¢. Let us note that moving in time from t— to t,
the incidence (1) increases of a quantity equal to S(t—)h(t) because the hazard h(t) acts on the
proportion of subjects S(t—) event free at t—.

Let us consider a simple example about the time (measured in months) elapsed between
the start of an oncologic treatment and the achievement of the end-point, defined as relapse of
disease or death for severe toxicity in the absence of relapse. In a sample of N = 4 subjects
with observed survival times equal to: 10, 20, 30, 40, the estimated incidence function is equal
to the ratio between the number of subjects who have reached the end-point by time t and the
total of 4 subjects considered: F(10) = i,f?’(20) = %,F(SO) = %,F(ZIO) = 1. In the absence of
censoring, as in this example, it is easy to notice that the incidence function at time ¢; can be
thought as the cumulative relative frequency of the end-point at time ¢;, arguing as follows. The
frequency of the subjects reaching the end-point at t;: is %, thus the cumulative frequency at t;
is Fi(t;) =2 <, %. The incidence function can also be estimated, obtaining the same values,
using the recursive formula (1), as it is shown in Table 1. It can be noticed that:

1. the estimates of the risk function ﬁ(tj) are obtained as a ratio between the number of
subjects d; reaching the end-point at time ¢; and the number n; of event free subjects at
tj;

A

2. the relative frequency of the subjects reaching the end-point at t;, P(T = t;), is calculated
by S(t;_1)h(t;) which turns to be equal to %'

3. the estimate of the incidence function F(t) is the cumulative of S(t—)h(t).

Table 1. Incidence function estimated by the iterative method (1)

~ ~ ~ A

gt ny di h(t;)  S@Ei-0)h(t) F(t;)

1 10 4 1 1/4 (1-0)*1/4-1/4 0+1/4-1/4
2 20 3 1 1/3 (1-1/4)*1/3=1/4 1/4+1/4-1/2
330 2 1 1/2 (1-1/2)*1/2=1/4 1/2+1/4=3/4
440 1 1 1/1  (1-3/4)*1/1=1/4 3/4+1/4-1/4

The approach we used in this simple example with no censoring is known as Kaplan-Meier
method [5]. Although in (1) the Kaplan-Meier estimator is defined as a sum of non-conditional
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probabilities, it is usually presented by the formula based on product of conditional probabilities:

F(t)=1-]]~h(w) (2)

u<t

where u are discrete times, as in [7]. Formulas (1) and (2) are equivalent. This can be proved
by showing that the difference between the value of the function at two contiguous time points,
F(t) — F(t—), according to both (1) and (2), is equal to S(t—)h(t).

The Kaplan-Meier method allows to include also the contribution of censored data. Let us as-
sume we have another subject, whose survival time is known to be greater than 30 (for example
the last control visit was performed at 30 months after the beginning of the treatment adminis-
tration). This subject will give a contribution to the hazard estimation h(t) only at times less
or equal to 30. Specifically he/she will give a unitary contribution to the denominator and no
contribution to the numerator. The estimating process for this case is shown in Table 2.

Table 2. Incidence function estimated by the Kaplan Meier method, using formulation (1),
in presence of censored data. The superscript € indicates the presence of a censored data

~ ~ ~ A

J_ i omj dy h(t)  S(ti—1)h(t) F(t))

1 10 5 1 1/5 (1-0)*1/5=1/5  0+1/5=1/5
2 20 4 1 1/4 (1-1/5)*1/4=1/5 1/5+1/5=2/5
3 30 3 1 1/3 (1-2/5)%1/3=1/5 2/5+1/5-3/5
4 40 1 1 1/1 (1-3/5)*1/1-2/5 3/5+2/5-1

At time t3 = 30 there are ng = 3 subjects at risk, 1 subject reaching the end-point and 1
censored subject, thus at time t4 = 40

1. the estimate of the risk function iL(40) is obtained as a ratio between the number of subjects
d4 = 1 reaching the end-point and the number of event free subjects ny = 1 which is equal
to nz = 3 eroded by both the subject reaching the end-point and the subject censored at
ts = 30;

N

2. the relative frequency of the subjects reaching the end-point at ty, P(T = t4), is calculated
by S(t3)h(ts) = 2 which now is different from ?V—“ = 1 due to the presence of censoring.

The estimate of the incidence function F(t) is again the cumulative of S(¢t—)h(t).

3 NON PARAMETRIC ESTIMATION OF THE CAUSE-SPECIFIC INCIDENCE
OF A COMPETING RISK

3.1 The Aalen-Johansen estimator

When we need to handle a composite end-point, defined as the occurrence of the first between one
or more events, we could be interested in splitting the end-point into two (or more) components
by determining the cause-specific quantities. It becomes useful to distinguish between the causes
of the end-point development, especially in order to interpret the impact of treatment. To this
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purpose we introduce, in addition to the survival time 7', another indicator e, where ¢ = 1 if
T is the time to occurrence of event 1 (e.g. relapse of the disease), and ¢ = 2 if T is the time
to occurrence of event 2 (e.g. toxic death). The incidence and hazard functions are defined
depending on the event (cause) occurred, as follows:

e cause-specific incidence due to cause 1 (relapse): Fi(t) = P(T < t;e = 1), proportion of
subjects for reached the composite end-point before time t due to cause 1;

e cause-specific hazard: hy(t) = P(T = t;e = 1 | T > t), instantaneous probability to
develop the composite end-point due to cause 1 at time ¢ in subjects free from the composite
end-point (i.e. free from both relapse and death) right before ¢.

Similarly for death we can define
o Fr(t)=P(T <t;e=2)and ho(t) = P(T =t;e =2|T > t).

Notice that Fiy(t) 4+ Fa(t) = F(t) and hy(t) + ha(t) = h(t), so the cause-specific quantities are the
decomposition of the incidence and the hazard of the composite end-point in the two components
due to relapse and death.

The relationship between the cause-specific incidence (also known as crude incidence) and the
cause-specific hazard functions is described by the recursive equation |[1]

Fil(0)=0 Fi(t)=F(t—)+P(T=te=1)=F(t-)+St—)h() (3)

where t— is the discrete time right before ¢. It is worth to note that (3) involves both the
cause-specific hazards due to relapse hj(t) and death ho(t). In fact S(t—) is derived from (1) and
depends on the overall hazard h(t) = hy(t)+ha(t). Moving in time from ¢— to ¢ the cause-specific
incidence increases by the quantity S(t—)h;(t) due to the action of the hazard of relapse hq(t) on
the proportion of subjects S(t—) free from the composite end-point at time t—. Let us note that
experiencing death as the first event implies having no relapse as first event and thus an apparent
protection against relapse. This can be seen considering that, by (3), an increase in "velocity"
of the onset of death hg(t) will lead to an increased hazard of composite end-point h(t) and a
consequent decline in the proportion of subjects S(t—) on which h;(¢) can act. Let us consider
again the example on the N = 4 subjects with no censoring, assuming that the first and the third
time are due to relapse while the second and the fourth are due to death. We can still estimate
the cause-specific incidence function as the ratio between the number of subjects reaching the
composite end-point due to the event considered by time ¢; and the total of 4 subjects:
F1(10) = F1(20) = 1, F1(30) = F1(40) = 3, F5(10) =, F5(20) = F5(30) = 1, F5(40) = 1. The
cause-specific incidence function can also be estimated by the iterative formula (3), as shown in
Table 3.

The example describes the situation where the end-point is composite and no censoring
occurs. Thus, Table 3 can be thought as the extension of Table 1 to the case of competing risks,
and analogous considerations can be done:

1. the estimates of the cause-specific risk function iLl(tj) are obtained as a ratio between the
number of subjects d;; reaching the end-point 1 (relapse) at time ¢; and the number n; of
subjects free from both events at time ¢;; the same applies to ha(t;);

N

2. the relative frequency of the subjects reaching the end-point due to cause 1 at t;, P(T =
tj;e = 1), is calculated by S(t;_1)hi(t;) which turns to be equal to %; analogous calcula-
tions are valid for endpoint 2;
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3. again, the estimates of the two cause-specific incidence functions Fi(t) and Fy(t) are the
cumulative of S(t—)h1(t) and S(t—)ha(t) respectively.

Table 3. Cause-specific estimated incidence functions by the iterative method (3).

t; my dy dy ha(ty)  ho(t)  S(ti—0)ha(ty) S(ti—ha(t;)  Filty) Fu(t;) F(t))

j

1 10 4 1 0 1/4 0 (1-0)*1/4=1/4 (1-0)*0=0 1/4 0 1/4
2 20 3 0 1 0 1/3 (1-1/4)%0=0  (1-1/4)*1/3=1/4 1/4  1/4  1/2
330 2 1 0 1/2 0 (1-1/2)%1/2=1/4  (1-1/2)*0=0 12 1/4  3/4
4 40 1 0 1 0 1/1 (1-3/4)*0—0  (1-3/4)*1/1-1/4 1/2  1/2 1

When censored data are present, the Aalen-Johansen estimator (3) enables to take this into
account [1]. The method relies on this principle: if we consider a new subject with censored
survival time equal to 30, he/she will give a contribution to the hazard estimation only for times
less or equal to 30. Specifically, he/she will give a unitary contribution to the denominator and
no contribution to the numerator. The estimating process for this case is shown in Table 4.

Table 4. Cause-specific incidence estimated function by the iterative method (3) in
presence of censored data (Aalen-Johansen method). The superscript € indicates the presence
of a censored data.

Jti o omy diy deyy ha(ty) he(t)  SEi—1)ha(ty) S(ti—)ha(ty)  Fi(ty) Ia(t) F(t)
1 10 5 1 0 1/5 0 (1-0)*1/5-1/5 (1-0)*0—0 1/5 0 1/5
2 20 4 0 1 0 1/4 (1-1/5)¥0=0  (1-1/5)*1/4=1/5 1/5  1/5  2/5
3 30° 3 1 0 1/3 0 (1-2/5)*1/3=1/5  (1-2/5)*0=0 2/5  1/5  3/5
4 40 1 0 1 0 1/1 (1-3/5)%0=0  (1-3/5)*1/1=2/5  2/5  3/5 1

The approach here described is the correct way to deal with survival time data when censoring
and competing risks are present. Thus, Table 4 represents the extension of Table 2 to the case

of competing risks.
At time t3 = 30 there are ng = 3 subjects at risk, 1 subject reaching the end-point due to cause

1 and 1 censored subject, thus at time t; = 40

1. the estimate of the cause-specific risk function 32(40) is obtained as a ratio between the
number of subjects d2.4 = 1 reaching the end-point due to cause 2 and the number of
subjects ngy = 1 free from both events, which is equal to ng = 3 eroded by both the subject
reaching the composite end-point and the subject censored at t3 = 30;

2. the relative frequency of the subjects reaching the end-point due to cause 2 at t4, P(T =
ty;e = 2), is calculated by S(t3)ha(ts) = 2 which now is different from dQT*“ = 1 due to the
presence of censoring.

The estimate of the two cause-specific incidence functions Fy(t) and Fy(t) are the cumulative of

S(t—)h1(t) and S(t—)ha(t), respectively.
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3.2 The improper use of the Kaplan-Meier estimator

It is important to point out that the cause-specific estimates of the incidence described in section
3.1 cannot be obtained by the Kaplan-Meier method (2) simply considering the occurrence of the
event different from that of interest as censored. This approach would lead to an overestimation
of the cause-specific incidence as shown in Table 5 [§].

Table 5. Overestimation of the cause-specific incidence functions by the Kaplan-Meier
method (4) considering times relative to the competing event as censored.

J_ti ny dyy dyy ha(ty)  ha(t)) Firnm(ty) Form(t))

1 10 4 1 0 1/4 0 0-(1-0)*1/4=1/4 0-+(1-0)*0=0

2 20 3 0 1 0 1/3  1/4+(1-1/4)*0-1/4  0+(1-0)*1/3-1/3

330 2 1 0 1/2 0 1/4+(1-1/4)*1/2=5/8 1/3+(1-1/3)*0=1/3
440 1 0 1 0 1)1 5/80(1-5/8)%0=5/8  1/31+(1-1/3)*1/1-1

Let us note that for every time ¢ the estimates FlKM(tj) and Fhy (tj) in Table 5 are greater
or equal to the corresponding estimates Fy (tj) and Fg(tj) shown in Table 4.
An intuitive explanation of the cause of this overestimation can be given as follows. Let us sup-
pose we want to calculate the cause-specific incidence function at time ¢ for relapse, 12 (tj), using
equation (2). Since (2) is equivalent to (1) (Section 2), the cause-specific incidence function,
according to the Kaplan-Meier method, would be:

F1(0) =0 Fi(t) = Fi(t—) + S1(t=)ha(t) (4)

where S;(t—) = 1—Fj(t—). Let us observe that the velocity of occurrence of event 1, represented
by the cause-specific hazard hq(t), would cause a proportion of event-free people Si(t) greater
than the true S(t), which is eroded not only by hi(t) but also by hg(t) since h(t) = hq(t) +
ha(t). As a consequence, the cause-specific incidence function at time next to t, Fj(t+), will be
overestimated. This, in other words, means that Sy(t—)hi(t) > S(t—)hi(t) = P(T =t;e = 1).

4 GRAPHICAL EXAMPLE

Here we consider a sample of simulated data that mimics a randomized study comparing a
"standard" against an "experimental" treatment, the latter associated with a lower incidence of
failure, defined as occurrence of relapse or toxic death. Figure 1 shows the estimated incidence
function, according to the treatment group, obtained by the cumulative relative frequency (1).
Let us note that, for example, after 50 weeks from the start of treatment, the cumulative relative
frequency of subjects reaching the end-point is about 40% in the experimental group and about
60% in the standard one.

The incidence of the composite end-point shown in Figure 1 can be split into two cause-
specific components using (3): one due to relapse and the other due to death (Figure 2).
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Figure 1. Example of incidence function in a simulated randomized study.
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In each treatment group, at each ¢ the sum of the values laying on the y-axis in figures 2a and
2b equals the y-axis values of the corresponding group in Figure 1. This is consistent with the
relationship between the incidence of the composite end-point and the cause-specific incidences
F1(t) + F»(t) = F(t) in the population quantities.

The decomposition of the total incidence (Figure 1) into the cause-specific incidences (Figure 2)
shows that the gain provided by the experimental treatment reducing the occurrence of the com-
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posite end-point compared with standard treatment is mainly due to a reduction of occurrence
of relapse (Figure 2a) and not of death (Figure 2b). Figure 3 shows the overestimation of F}(t)
obtained by the Kaplan-Meier method, censoring the competing event, in the two treatment
groups.

Figure 3. Cause-specific incidence of relapse obtained by the Aalen-Johansen estimator
(solid line) and by the Kaplan-Meier estimator (dashed line).
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5 CONCLUSION

We have provided a reinterpretation of the Kaplan-Meier incidence as the cumulative relative
frequency of event in time, where the frequency of event at each time point is adjusted for the
presence of censoring. This can be helpful for students to move from simple analysis of frequency
tables to the description of survival data.

This approach can be of interest from a pedagogical perspective also in the more complex scenario
involving competing risks where the Kaplan-Meier incidence, usually presented as a product of
conditional probabilities, is decomposed into the cause-specific components due to the causes of
failure using the Aalen-Johansen estimator. The latter, which is a sum of unconditional proba-
bilities, is coherent with the expression of the Kaplan-Meier incidence written as a cumulative
relative frequency.

In this context, the estimator of the overall incidence of the composite end-point (1) and the
cause-specific incidence (3) are written in the same fashion. The only difference is the type of
hazard (overall vs cause-specific) applied to the proportion of subjects S(t—) free from the com-
posite end-point. From this similarity it follows directly, i.e. with no need of algebraic proof, that
the equality between the incidence of the composite end-point and the sum of the cause-specific
incidences holds also for the estimates. A further advantage of this approach is that it makes
clear how the Kaplan-Meier incidence (written as product of conditional probabilities) using the
cause-specific hazard instead of the overall hazard leads to an overestimation of the cause-specific
incidence.
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