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Building reliable evidence from real-
world data: methods, cautiousness and 
recommendations
Giovanni Corrao(1)

Routinely stored information on healthcare utilisation in everyday clinical practice has proliferated over the 
past several decades. There is, however, some reluctance on the part of many health professionals to use 
observational data to support healthcare decisions, especially when data are derived from large databases. 
Challenges in conducting observational studies based on electronic databases include concern about the 
adequacy of study design and methods to minimise the effect of both misclassifications (in the absence of 
direct assessments of exposure and outcome validity) and confounding (in the absence of randomisation). 
This paper points out issues that may compromise the validity of such studies, and approaches to managing  
analytic challenges. First, strategies of sampling within a large cohort, as an alternative to analysing the full 
cohort, will be presented. Second, methods for controlling outcome and exposure misclassifications will be 
described. Third, several techniques that take into account both measured and unmeasured confounders will 
also be presented. Fourth, some considerations regarding random uncertainty in the framework of observational 
studies using healthcare utilisation data will be discussed. Finally, some recommendations for good research 
practice are listed in this paper. The aim is to provide researchers with a methodological framework, while 
commenting on the value of new techniques for more advanced users.
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1. PRELIMINARY REMARKS

In the last decades, routinely collected 
and electronically stored healthcare information 
has spread throughout the world [1]. Large 
computerised databases with millions of 
observations regarding the use of drugs, vaccines, 
devices, and procedures along with health 

outcomes may be useful in assessing which 
treatments are most effective and safe in routine 
care without long delays and the prohibitive costs 
of randomised clinical trials (RCTs) [2]. There is, 
however, some reluctance on the part of many 
health professionals to use observational data, 
especially when data are derived from large 
databases [2]. This distrust issues, at least in part, 
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from the fact that observational studies have 
been downgraded in the hierarchy of evidence 
[3], primarily because of their heterogeneity, 
the potential for systematic and random 
errors, as well as discordance between some 
observational studies and RCTs [4, 5]. Challenges 
in conducting observational studies based on 
electronic databases encompass concern about 
the adequacy of study design, approaches to 
minimise the effect of misclassification in the 
absence of direct assessments of exposure and 
outcome validity, and control of confounding 
in the absence of randomisation [6-12]. Such 
threats to validity limit the usefulness of these 
studies and application of findings in policy 
and practice. However, with proper research 
design and application of an array of traditional 
and newer analytical approaches such matters 
of concern may be addressed to improve our 
understanding of care effects [13, 14].

This paper outlines issues that may 
compromise the validity of such studies, 
and approaches to manage such analytical 
challenges. First, a strategy of sampling within 
a large cohort, as an alternative to analysing 
the full cohort, will be presented (par. 2). This 
sampling scheme is crucial for observational 
studies that use real-world data, where 
cohorts are large and formidable challenges 
in data analysis are consequently required [7]. 
Second, methods for controlling outcome and 
exposure misclassifications will be described 
(par. 3). Methods to overcome measuring 
errors must be implemented particularly when, 
owing to the lack of relevant information, 
approximations of the level of exposure to 
medical care are necessarily used [15]. Third, 
several techniques that take into account both 
measured and unmeasured confounders will 
also be presented (par. 4). These techniques 
play a crucial role when data is collected from 
real-world databases, especially healthcare 
utilisation (HCU) data, where detailed clinical, 
lifestyle, and socioeconomic information is 
systematically lacking [16]. Fourth, some 
considerations regarding random uncertainty 
in the framework of observational studies using 
HCU data will be discussed (par. 5). Finally, 
some recommendations for good research 
practice in this setting are listed in paragraph 6.

The goal is to provide researchers with 
a methodological framework and to supply 
a critical overview of the new techniques for 
more advanced users.

2. DESIGNING A STUDY

2.1. Basic cohort design

As an illustrative example, we describe 
a cohort of ten incident users (inception 
cohort) of oral hypoglycaemic drugs, ranked 
according to the date of first prescription of 
the considered drugs (according with Ray [17], 
this approach has been described “new user 
design” already in the introductory article of 
this issue). Figure 1, box A, clarifies that this 
cohort can be obtained by considering the 
first drug dispensation during years 2006-2007 
and by excluding patients with at least one 
prior dispensing oral hypoglycaemic drug. This 
approach is comparable with the wash-out 
period approach commonly used in RCTs [13]. 
Other restriction criteria for cohort entry can be 
used but must be clearly reported in the study 
protocol. For example, younger patients and 
those who previously experienced the outcome 
of interest might be excluded in order to study 
patients more likely affected by type 2 diabetes 
and to focus on primary prevention of the 
considered outcome.

Figure 1, box A, also depicts the 
heterogeneity of exposure for both drug type 
and treatment duration. This is per se an 
important finding in the setting of real-world 
clinical practice. Evaluating deviations from 
guideline-based medical recommendations, 
assessing persistence with, and adherence to 
oral hypoglycaemic drugs, and measuring costs 
linked with diabetes treatment, may be easily 
achieved by means of this new-user design.

Arguably, the most important and 
challenging part in using this basic cohort 
design is to detect causes of heterogeneity that 
can affect the outcome. To better illustrate this 
new perspective, an alternative depiction of 
the same cohort is reported in Figure 1, box 
B, which presents a new time axis considering 
the years since the start of treatment, ranking 
subjects according to the length of follow-
up time. Hence, it is clear that patients who 
experienced the outcome had a shorter time 
of drug exposure than those who did not 
experience it. Indeed, every patient belonging 
to the first category was treated in average 
only one year against more than three years 
benefitted by outcome-free patients. On the 
other hand, also considering the shorter follow-
up period of patients who experienced the 
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outcome, this group resulted from drug therapy 
for about 50% of the follow-up time, against 
61% of those who benefitted by the therapy but 
did not experience it. Accordingly, one might 
conclude that drug exposure prevents onset of 
the outcome. This is, however, a misleading 
conclusion because it was drawn regardless of 
the time varying nature of drug treatment.

A tool that may help us to illustrate the 
follow-up cohort experience is the risk set. A 
risk set is formed by all members of the cohort 
who are at risk of the outcome at a given point 
in time, that is, they are free of the outcome of 
interest and are members of the cohort at that 

point in time. The only relevant risk sets for 
data analysis are those defined by the time of 
occurrence of each outcome [7]. The reader can 
verify that before the onset of the first outcome 
(first risk set), drug therapy was available for 
about 8 months (covering nearly 48% of the 
time of follow-up) for both the single patient 
who experienced the outcome (i.e. patient # 
5), as well as the average follow-up time of 
the remaining nine outcome-free patients. As 
far as the second risk set is concerned, drug 
therapy was available for about 16 months (and 
covered nearly 53% of the follow-up time) for 
both the single patient who experienced the 

FIGURE 1

Illustration of a fixed cohort of ten incident users of a given therapy generated from a well 
defined dynamic population from 2006 through 2007

Cohort members are monitored until 31 December 2011. Calendar time and time since cohort entry are used as time axes, as illustrated 
in box A and box B, respectively. Case-control sample of one control per case nested into the same cohort is illustrated in box C
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second outcome (i.e. patient # 9), as well as, 
in average, the remaining eight outcome-free 
patients. Hence, the time of occurrence of an 
outcome does not seem to be associated with 
drug exposure.

The example suggests that, when studying 
exposures that vary with time, such as drug 
availability or healthcare room attendance, 
time-dependent exposure must be accounted 
for in both design and analysis [18, 19]. 
This can be accomplished by including time-
dependent covariates in a Cox proportional-
hazards regression model [20]. Briefly, with 
this approach, the hazard ratio associated with 
exposure is derived by using information that 
is concurrent to the observed outcomes, rather 
than the exposure profile over the full length 
of the follow-up period [21]. This approach, 
however, requires enormous computational 
resources especially when real-world HCU 
data are used, and very large cohorts are 
accordingly formed.

2.2. Sampling within the cohort

Alternatively, the nested case-control 
approach may be used provided that the 
exposure information among controls (patients 
who do not experience the outcome) reflects 
values corresponding to the time of selection of 
their respective case (patients who experience 
the outcome). This may be accomplished 
by including in the study, along with all 
patients who experience an outcome (cases), 
also a random sample of those who did not 
experience it (controls).

The idea of a nested case-control design 
within a cohort was first introduced in 1973 
by Mantel [22], who proposed an unmatched 
selection of controls and called it a synthetic 
retrospective study. The nested case-control 
design involves three steps: (i) selecting all 
cases in the cohort; (ii) forming the risk set 
corresponding to each case; and, finally, (iii) 
randomly selecting one or more controls from 
each risk set [7].

Figure 1, box C, illustrates the selection of 
a case-control sample nested into the above-
described cohort, with one control per case 
(1:1 matching). It is clear from the definition 
of risk set, that a future case is eligible to be a 
control for a prior case, as illustrated in Figure 
1, box C, for patient # 9, and that a subject may 

be selected as a control more than once. If, 
instead, controls are necessarily selected only 
from non-cases and subjects are not permitted 
to be considered more than once in the nested 
case-control sample, a bias is introduced in the 
estimation of the relative risk because control 
exposure prevalence will lean towards subjects 
with a longer follow-up period who do not 
become cases during the study follow-up [7].

The issue of required criteria for case-
control matching is important. It is clear that 
members of each case-control(s) set must have 
the same observational time-window length; 
that is, all members would have experienced 
the same exposure pattern under the null 
hypothesis (i.e., absence of exposure-outcome 
association). This was achieved, according to 
the concept of risk set, by randomly selecting 
as controls patients who were still at risk of 
developing the outcome at the time when 
the index case had the event, as illustrated in 
Figure 1, box C. In pharmacoepidemiology and 
healthcare research, however, drug exposure 
can vary substantially over calendar time, thus 
introducing a “cohort effect”. In order to avoid 
it, controls would be matched at the index 
case also by start date of treatment (follow-up). 
Other matching criteria, although important 
for some research issues, are not so essential 
since matching criteria are an alternative to 
adjustments made by data analysis for the 
corresponding effects (see par. 4.3.2).

Another important issue is the required 
number of controls per case. Since the number 
of cases in the cohort is fixed and cannot be 
increased to satisfy this requirement, the only 
remaining alternative is to increase the control-
to-case ratio. It can be readily noticed in 
sample size tables that the power significantly 
rises with every additional control up to four 
controls per case, but becomes negligible 
beyond this ratio [the reader can easily see the 
following website for details of the sample size 
formula: http://www.statsdirect.co.uk/help/
sample_size/ssmc.htm]. Although this general 
rule of an optimal 4:1 control-to-case ratio 
is appropriate in the majority of cases, one 
should be aware that when drug exposure is 
infrequent, the theorised relative risk moves 
beyond unity, or several factors or other drugs 
are being assessed simultaneously, the ratio 
could easily be required to increase to 10 or 
more controls per case [7]. This is generally not 
a problem in HCU-based investigations.
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The analysis of data from a nested 
case-control study must maintain the time-
matched nature of the selection of cases and 
controls. Conditional logistic regression is the 
appropriate model as it uses case-controls 
set as the fundamental unit of analysis, in 
agreement with the proportional hazards model 
of the full cohort.

It has been recently proven empirically 
that a nested case-control approach can be 
used to analyse a cohort with time-dependent 
covariates, with results that are similar to those 
obtained by Cox regression [23]. Additionally, 
given that the nested case-control approach 
obviates the computationally intensive 
calculations involved in Cox regression when 
time-dependent covariates are used, the paper 
also illustrates the large quantitative reduction 
in CPU time required for analysis. This 
explains why the nested case-control design 
is an increasingly popular sample technique to 
address issues of time-dependent exposures, 
which are commonly encountered in HCU-
based studies that estimate drug and other 
healthcare effects.

2.3. Other observational designs

Another well recognised observational 
design implying sampling within a cohort is 
the one we currently call case-cohort design. 
It was originally used by Hutchison [24] in 
performing external comparisons of leukaemia 
rates in patients submitted to radiation therapy 
for cervical cancer. It was ultimately developed 
and formalised by Prentice [25], who coined the 
name “case-cohort”. In the case-cohort design, 
the cohort is defined as in a cohort study (par. 
2.1), in which cohort members attend a follow-
up period to identify those who experience the 
outcome. If additional information is required 
(e.g., blood level of a given disease marker, or 
biological material for genetic analyses), then 
said information may be collected for all cases, 
and for a random sample selected from the 
included cohort. Note that, conversely to the 
nested case-control design, which considers 
the exposure experience from entry until 
onset of the outcome, the case-cohort design 
is intended to supply additional information 
characterising the cohort members when they 
joined the cohort. Compared to the cohort 
design, the case-cohort one is intended to 

increase efficiency when additional information 
needs to be collected or when studying more 
than one outcome [26].

Some additional designs like 2-stage studies 
[27], validation studies [16], and case-only 
designs [28] are not discussed here, since they 
have been created to deal with issues regarding 
confounding under specific scenarios. Some of 
these issues will be discussed in the following 
paragraphs as they are useful to deal with 
confounding.

3. MEASUREMENT ERRORS AND 
MISCLASSIFICATION

Errors can occur in measuring both exposure 
and outcome. These errors lead to classification 
bias, that is (i) identifying subjects as having 
experienced the disease outcome when they 
have not (or being exposed to a drug when 
they are not), or (ii) not having experienced 
the outcome when they experienced it (or not 
being exposed when they are).

Classification bias is further categorised 
as differential or non-differential. Differential 
misclassification is present when the likelihood 
of outcome misclassification differs between 
exposed and unexposed (or exposure 
misclassification differs between subjects 
who experience outcome and those who do 
not). An example of differential exposure 
misclassification is when exposed patients have 
a lower likelihood of outcome misclassification 
because, since they have to enter the healthcare 
system to receive medication, their likelihood 
of recording a correct diagnosis increases. 
Those not exposed are much more likely to 
be misclassified as not having the disease, 
which is an artefact of not entering the 
healthcare system [13]. Non-differential 
misclassification occurs when the likelihood 
of misclassification is the same across either 
the exposed or outcome groups. Examples of 
non-differential misclassifications include those 
caused by coding errors of diagnosis or medical 
procedure reported in the hospital discharge 
database (e.g., according to ICD 9th revision), 
medicaments reported in drug prescription 
database (e.g., in the ATC code), or identifier 
code (e.g., in the fiscal or health individual 
code) due to accidental mistyping. Upcoding, 
assigning codes of higher reimbursement value 
over codes with lesser reimbursement value, is 
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an additional source of error at coder level [29].
The direction of misclassification regarding 

measures of association will depend on 
the type of misclassification [30]; when it 
is differential, association measures would 
be biased either toward or away from the 
null [31]. The effect of non-differential 
misclassification varies by the factor that is 
misclassified. When outcome variables suffer 
of non-differential misclassification, association 
measures are typically biased toward the null 
[32]. When non-differential misclassification 
affects variables used to define the cohort (e.g., 
by excluding prevalent disease at baseline), 
association measures could be biased away 
from the null, with the degree of bias varying 
by disease incidence and prevalence [33]. 
Therefore, the effect of misclassification on 
study conclusions even when a single variable 
alone is misclassified is unpredictable.

3.1. Outcome misclassification

Specific disease coding must be used to 
extract patients experiencing a given outcome 
and to characterise their clinical profile from 
HCU data.

The International Classification of Diseases, 
9th revision, Clinical Modification: ICD-9-CM 
(http://icd9cm.chrisendres.com/), and the ICD-
10th revision in some countries (http://apps.
who.int/classifications/icd10/browse/2010/
en), are the classification systems of disease 
and medical procedures, common to most 
HCU databases. Each disease coding system 
necessarily implies a loss of information as 
a simple consequence of classification, as 
opposed to nomenclature. Many authors have 
discussed the qualitative loss that occurs with 
ICD-9-CM coding [34-39]. Besides problems 
with billing considerations distorting coding, 
and the errors of coding caused thereby, they 
note that coding diagnosis categories lose 
essential information about the true conditions 
of patients [40].

To understand the effect of outcome 
misclassification on association measure 
estimates, it is important to note that a lack 
of specificity of the outcome measurement 
is worse than a lack of sensitivity in most 
situations. If specificity of the outcome 
assessment is 100%, then relative risk 
estimates are unbiased [41]. Given this, 

literature on misclassification of HCU data 
diagnoses is not as depressing as it might 
first appear to be. A recent comprehensive 
study on the misclassification of HCU data 
diagnoses using medical records review as the 
gold standard revealed that the sensitivity of 
claims diagnoses is often less than moderate, 
whereas specificity is usually 95% or greater 
(Figure 2) [42]. A high specificity of diagnostic 
coding in HCU data can be expected because 
if a diagnosis is coded and recorded, this 
diagnosis was most likely made, particularly 
in hospital discharge summaries [43]. From 
this perspective, HCU data may be assumed 
to be suitable for association studies (e.g., 
to investigate the effect of healthcare on 
the onset of a given outcome), rather than 
to measure the incidence of diseases (e.g., 
incidence and prevalence).

Since chronic diseases usually require 
multiple contacts with the health system, a 
single diagnostic code may not suffice to 
accurately identify cases [44]. This explains 
the widespread use of diagnostic algorithms 
in identifying patients who experience a given 
outcome [45]. Furthermore, the use of hospital 
charts to identify cases limits the possibility 
of detecting all the outcomes (e.g., those 
that do not require hospital admission), thus 
introducing a bias due to the selective inclusion 
of more severe outcomes. Alternative techniques 
have been specifically developed for detecting 
less severe outcomes. For example, when a 
drug A is suspected of causing an outcome 
that itself is treated by a drug B, we only need 
to search the drug prescription database for 
patients who experience outcome. The effect 
of antibiotics on the risk of arrhythmias has 
been investigated with this method in a study 
that estimated the association between use of 
drugs belonging to the classes of antibacterials 
(exposure) and the risk of arrhythmia (outcome) 
[46]. Yet, the suspected causal association 
between the use of statins and the risk of 
diabetes [47] might be investigated by studying 
the strength of the association between statin 
use (exposure) and the risk of starting an 
antidiabetic therapy (outcome). It should be 
considered, however, that patients on statins 
are those in whom diabetes is most likely 
diagnosed. In other words, we cannot exclude 
the possible occurrence of a detection bias 
[48] with a subsequent amplification in the 
exposure-outcome relationship.
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3.2. Exposure misclassification

The drug coding system, i.e. the Anatomical 
Therapeutic Chemical (ATC) classification 
system of the WHO (http://www.whocc.no/
atc_ddd_index/), must be used for extracting 
patients who use a given medicament, as well 
as those who use other drugs and can be 
considered as proxies of their clinical profile, 
from HCU data.

Pharmacists fill out drug prescriptions 
with little room for interpretation and are 
reimbursed by Health Authorities on the basis 
of detailed, complete, and accurate claims that 
are submitted electronically [49-51]. Pharmacy 
dispensing information is, therefore, expected 
to provide highly accurate data, also because 
filling out an incorrect report about dispensed 
drugs has legal consequences [52]. These 
data are usually seen as the gold standard of 
drug exposure information compared to self-
reported information [53] or prescribing data in 
outpatient medical records [54].

The time-window during which patients 
are considered exposed to a given drug is 
often a key variable in assessing exposure [13]. 

This variable requires at least that information 
for calculating the days covered by each 
prescribed drug canister are either available, 
or may be approximated. Within most USA 
prescription databases, the “days of supply” 
are usually included as a data field within 
each prescription claim (e.g., 60 tablets of a 
medication that is taken twice daily would yield 
a 30-day supply), along with the dispensation 
dates of the prescription [55]. In several non-
USA databases (e.g., in Italy), information about 
date dispensation and dispensed quantity are 
available, but not those about the prescribed 
drug dose. Hence the need to approximate the 
number of days covered by each dispensed 
canister by considering the quantity of drug 
contained in the dispensed canister and some 
metric calculations of the average daily dose, 
e.g., defined daily dose (DDD), established 
as the typical adult’s daily maintenance dose 
[56]. However, it should be emphasised that 
the DDD is a unit of measurement, and does 
not necessarily mirror the recommended or 
Prescribed Daily Dose (PDD). Discrepancies 
between PDD (which may by assumed as a 
gold standard of exposure duration), and DDD 

FIGURE 2

Sensitivity and specificity of selected diagnoses in databases from hospital and clinical care
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(which is likely affected by measurement error) 
necessarily introduce classification bias.

Figure 3 illustrates some typical 
misclassification problems in drug exposure 
assessment [6]. If the calculated days of supply 
are too few, or if patients decide to stretch a 
prescription by using a lower dose (e.g., tablet 
splitting), some person-time will be classified 
as unexposed when actually exposed. Most 
chronically administered drugs are used for 
longer periods, resulting in multiple refills. 
A patient can thus be classified as being 
unexposed intermittently despite continuous 
exposure. As a result, many investigators extend 
the calculated days of supply by a fraction 
(e.g., 50%) to avoid this misclassification. 
However, said strategy aggravates another 
misclassification that can occur if a patient 
discontinues drug use without finishing the 
supply. The right balance between improved 
sensitivity of drug exposure assessment and 
specificity depends on how precisely the days 
of supply are calculated; this depends on the 
type of drug and how regularly it is taken.

Over-the-counter (OTC) medications 
present a scenario in which misclassification 

is particularly problematic [57]. Measurements 
based on HCU data will exclude the use of 
OTC products and lead to misclassification 
of exposure to those medications [58, 59]. 
The inability to measure exposure during the 
observation period can also be an issue if the 
available data do not fully capture all sources 
of exposure. The use of OTC medication as 
exposure is one example of not being able to 
accurately capture all exposures, but this may 
occur in other circumstances. For example, 
in most databases, hospital discharge files do 
not contain drug use information. Therefore, 
every stay in hospital represents a period 
with missing drug exposure information by 
design, thus generating a particular form 
of exposure misclassification labelled as 
“immeasurable time bias” [60]. Furthermore, 
exposure may be misclassified because of 
protopathic bias, i.e. the drug use could 
be attenuated or interrupted owing to the 
onset of early symptoms of the outcome 
[61]. It must be said that both sources of 
bias likely generate differential exposure 
misclassification because they mainly affect 
patients who experience the outcome.

30d

45d

20d

FIGURE 3

Typical causes for drug exposure misclassification in studies based
on drug prescription databases

Source: Schneeweiss S & Avorn J [6], modified
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3.3. Strategies to account for misclassification

3.3.1. Algebraic methods

The impact of misclassification can be 
considerable but is rarely quantified. If the 
sensitivity and specificity of an exposure or 
outcome measurement are known, simple 
algebraic methods can be applied for 
unmatched [32] and matched analyses [62]. 
All these methods are, however, applied 
only to unadjusted associations (i.e., raw 2×2 
data tables), which is an unrealistic analysis 
in pharmacoepidemiology and healthcare 
research. Other techniques use the positive 
predictive value (PPV) of the outcome measure 
to be determined in a separate validation 
study [63, 64]. This is an interesting approach 
for database studies because typically PPVs 
are easier to estimate in internal validation 
studies than sensitivity and specificity. This 
approach requires (i) a sample of records to 
be randomly selected from the HCU database; 
(ii) the corresponding medical documentation 
to be traced to the provider (i.e., the hospital) 
where the records were generated; (iii) medical 
documentation to be reviewed by a trained 
physician, possibly blinded regarding the 
diagnostic code as reported in the HCU database. 
However, because data anonymization is often 
employed by institutional review boards for 
protecting patient privacy, this approach might 
be unfeasible.

3.3.2. Sensitivity analyses

Because the lack of detailed information 
makes the use of approximations a necessity to 
define both outcome and exposure, the effect 
of such approximations can be explored by 
sensitivity analyses. Sensitivity analysis tests 
various criteria to define a critical measure in an 
effort to determine how those definitions affect 
the results and interpretation [65]. For instance, 
the influence of diagnostic criteria for outcome 
definition (e.g., using either ICD-9 codes or a 
combination of these codes and free-text, if 
available), or the length of the time-window 
for exposure definition (e.g., extending the 
calculation of day of supply adding different 
fractions to the calculation based on DDD) are 
commonly used techniques for investigating 
the robustness of findings by varying criteria 

applied in the principal analyses. Yet, the 
application of various methods for correcting 
immeasurable time bias [60], protopathic bias 
[61], and detection bias [67] would be used 
when appropriate.

Finally, a sensitivity approach for estimating 
the effect of OTC drugs on the exposure-outcome 
association has been recently proposed [68].

3.3.3. External adjustment

Methods that use individual validation 
data to account for measurement errors have 
been available for several years [69]. Among 
these, regression calibration (RC) may play an 
interesting role. RC is an intuitive, non-iterative 
statistical method that is useful for adjusting point 
and interval estimates obtained from regression 
models for measurement-error bias [70].

To illustrate the RC method, consider an 
HCU-based study measuring the effect of X’ 
(e.g., the coverage length for a given drug 
dispensation approximated by DDD) and a 
dichotomous outcome Y (Y=1 for event, 0 for no 
event). The effect of X’ on the risk of Y is usually 
obtained from the logistic-regression model

When a gold standard assessment is 
available, a validation study conducted in a 
random subsample of patients included in the 
main (HCU) study can be used to validate the 
usual exposure measure (X’) against its gold 
standard (X). For example, data obtained by 
a sample of physicians operating in the same 
area as the target population under study may 
be informative about the drug doses prescribed 
to patients. Assuming the prescribed daily dose 
as gold standard (X), and considering that X’ 
is also measurable from this validating data 
source, the misclassification function may be 
easily obtained by the linear-regression model

	

Rosner et al [71] proposed to estimate 
logarithm relative risk by substituting b’ with

the corresponding variance being

The RC method is, therefore, an appropriate 
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approach when information about true exposure 
is available from a validation study and the 
assumption of a linear relationship between 
observed and true exposure measures is not.

RC was originally proposed by Willett in a 
study aimed to measure the effects of fat and 
fibre on breast cancer [72], and has been widely 
used in the field of nutritional epidemiology 
[15, 73] as well as in other fields [74, 75]. 
Strangely, though RC does not involve particular 
computational complexities, it is not very 
popular in the field of pharmacoepidemiology 
and healthcare research.

3.4. Misclassification due to record linkage errors

Each HCU database supplies information 
about a single care setting (e.g., pharmacy and 
hospital files). Research methods, however, need 
to build a patient history that captures clinical 
encounters across several care settings. The 
development of methods to link records from 
different sources across time and providers has 
achieved this [76-78]. Record-linkage (RL) helps 
the identification of the same patient in various 
files containing different types of information. 
For example, by linking drug prescription, 
hospital discharge and vital statistics information 
we are able to generate a longitudinal electronic 
patient history, which allows assessing safety, 
effectiveness and cost of healthcare, and other 
health-related objectives [79].

Although RL is an important tool in 
observational research, it may be associated 
with various types of error. When linking two 
databases, there is a proportion of records that 
will match and a proportion that will remain 
unmatched. An error arises if data sources 
do not consistently capture the same cases, 
records that correspond to the same person fail 
to link due to missing or inaccurate data (false 
negatives), or unrelated records are mistakenly 
linked (false positives) [80].

The success of linkage, often described 
in terms of minimising mismatches, can 
depend on a number of factors, including the 
quality of the information used in the linkage 
process and how uniquely identified reported 
information is. Recent studies have shown that, 
unlike deterministic methods, the flexibility 
of probabilistic record linkage allows for 
minimisation of mismatches under variations 
in data quality [81]. A systematic review of the 

accuracy of probabilistic linkage identified six 
papers that had complete data on summary 
measures of linkage quality and found that 
linkage sensitivity (i.e., the proportion of truly 
matched records detected) ranged from 74% to 
98%, and that specificity (i.e., the proportion of 
truly unmatched records detected) ranged from 
99 to 100% [82].

At a glance, these arguments may 
be interpreted as a reason to implement 
probabilistic RL procedures when conducting 
observational studies based on HCU data. 
Caution is, however, recommended. First, 
probabilistic RL procedures require enormous 
computational resources, especially when 
real-world HCU data are used. For example, 
probabilistic RL between drug prescriptions 
(DP) and hospital admissions (HA) during a 
time window of five years among residents in 
the Italian Region of Lombardy (i.e., between 
the almost 387 • 106 DP, and 5 • 105 

HA records over five years) requires the 
comparison of (DP • HA =) 193.5 • 1012 

pairs of identifier codes; each of them should 
be submitted to a decisional rule to either 
match or not match the corresponding pair 
of records! As a consequence, even admitting 
that sufficient computational resources are 
available, probabilistic RL procedures would be 
implemented when deterministic RL introduces 
important misclassification errors. It has been 
recently reported that, assuming true positive 
rates between 60% and 75%, the relative bias is 
about 5% for large study sizes as those based 
on HCU data [79].

Second, the rule for matching a couple of 
records according to probabilistic procedure is 
based on the discriminating power and accuracy 
of identifier codes (i.e., in what are the two 
codes alike?) [77]. Hence, similar, but not equal, 
identifiers (which should not be matched by 
a deterministic procedure) are attributed to 
the same patient if the probability that they 
belong to a single patient is higher than an 
established threshold (and the probability that 
they belong to different patients is lower than 
an established threshold), thus reducing the 
number of false negatives, and increasing the 
matching sensitivity. On the other hand, this 
implies a reduction of matching specificity 
(i.e., an increased probability of matching 
unrelated records). The question is whether 
we would privilege matching sensitivity or 
specificity. In my opinion RL might be applied 
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for studies aimed at estimating the frequency of 
a given disease or condition (e.g., prevalence, 
incidence, attack rate). In fact, in this case 
we would be able to capture all patients 
who present that disease, even if some false 
positives are necessarily included among cases 
captured by probabilistic RL. On the other hand, 
specificity would be privileged in investigating 
the association between healthcare and a given 
outcome, even if not all patients who experience 
the outcome are identified. In this case we 
would be able to ensure that patients classified 
as experiencing the outcome are true positives. 
Deterministic RL ensures this objective, since it 
is unlikely that said procedure may introduce 
false matching.

4. CONFOUNDING AND BEYOND

Misclassification is not the only type of 
bias researches are faced with. Confounding is 
also involved. Confounding occurs when the 
exposure-outcome relationship estimate is biased 
by the effect of one or several confounders. A 
confounder is an independent (causal) risk factor 
for the outcome analysed, and it is associated 
with the analysed exposure in the population, 
but it is not an intermediate step in the causal 
pathway between exposure and outcome [83, 
84]. For example, low-density lipoprotein level 
would be expected to be a confounder in a study 
on the effects of statin treatment on the risk of 
cardiovascular events. The low-density lipoprotein 
level may lead a physician to prescribe a statin, 
and it may also be an independent risk factor for 
cardiovascular events.

4.1. Sources of confounding

Patient exposure to a medical therapy is 
determined by healthcare system-, physician-, 
and patient-level factors that may interact in 
complex and poorly understood ways [12, 16]. 
For example, a physician’s decision regarding 
treatment may be based on an evaluation 
of the patient’s health status and prognosis. 
Patients may initiate and comply with a new 
therapeutic regimen because of their disease 
risk and the benefits of treatment. Treatment 
initiation and adherence may also depend on 
a patient’s physical and cognitive abilities. 
Patient and physician factors that determine 

the use of a treatment may directly affect 
health outcomes, or be related to them through 
indirect pathways. Several sources of bias can 
result from this process.

Confounding by indication or severity. A 
common, pernicious and often intractable form of 
confounding, endemic to pharmacoepidemiologic 
and healthcare research studies, is confounding 
by indication of treatment, that is physicians’ 
tendency to prescribe medications to and perform 
procedures on patients who are most likely to 
benefit by them [16]. Because it is often difficult 
to assess medical indications and underlying 
disease severity and prognosis, confounding by 
indication often makes medications appear to 
cause outcomes they are meant to prevent [85, 
86]. For example, statins, lipid-lowering drugs, 
reduce the risk of cardiovascular (CV) events 
in patients with CV risk factors. Hence, these 
drugs tend to be prescribed to patients who 
are perceived as presenting a higher CV risk. 
Incomplete control of CV risk factors can make 
statins appear to cause rather than prevent CV 
events [16].

Confounding by contraindication. When 
an adverse event is known to be associated with 
a therapy, confounding by contraindication is 
possible. For instance, women with a family 
history of venous thrombosis may avoid 
postmenopausal hormone therapy [87].

Confounding by functional status. 
Patients who are functionally impaired (defined 
as having difficulty performing daily living 
activities) may be less able to visit a physician 
or pharmacy and, therefore, may be less 
likely to collect prescriptions and receive 
healthcare services [16]. This phenomenon 
could exaggerate the benefits of prescription 
medications, vaccines, and screening tests. 
For example, functional status appeared to be 
a strong confounder in studies on both the 
effect of non-steroidal anti-inflammatory drugs 
(NSAIDs) and the influenza vaccine on all-
cause mortality in the elderly [88-90].

Confounding by cognitive impairment. 
A similar form of confounding could result 
from differences in cognitive functioning. 
Depression may be considered as an example 
of such a bias because of the evidence that 
depression is a strong risk factor for several 
outcomes (such as CV disease [91]) as well as 
reduction in healthcare utilisation (e.g., lower 
compliance to treatment [92]).

The healthy user and healthy adherer 
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bias. Patients who initiate a preventive 
medication may be more likely than others to 
engage in other healthy, prevention-oriented 
behaviours [16]. For example, patients who start 
a preventive medication may be more likely to 
seek out preventive healthcare services, exercise 
regularly, moderate their alcohol consumption, 
and avoid unsafe and unhealthy activities. 
Incomplete adjustment to such behaviours can 
make use of preventive medications, spuriously 
associating them with a reduced risk of a wide 
range of adverse health outcomes.

Similarly, patients who adhere to treatment 
may also be more likely to engage in other 
healthy behaviours [93, 94]. Strong evidence of 
this “healthy adherer” effect comes from a meta-
analysis of randomised controlled trials in which 
adherence to placebo was found to be associated 
with a reduced mortality risk [95]. This is clearly 
not an effect of the placebo but is rather due 
to the characteristics of patients who take a 
medication as prescribed. The healthy adherer 
bias is also evident in studies that reported 
associations between statin adherence and an 
increased use of preventive healthcare services, 
as well as a decreased risk of accidents [96, 97].

The healthcare access bias. Patients may 
vary substantially in their ability to access 
healthcare [16]. For example, patients who live 
in rural areas may have to drive long distances 
to receive specialised care. Other obstacles to 
accessing healthcare include cultural factors 
(e.g., trust in medical system), economic factors 
(e.g., affordability), immigration status, and 
institutional factors (e.g., restrictive formularies), 
all of which may have some direct or indirect 
effects on study outcomes.

4.2. Strategies to account for confounding: a 
general guide

It has been stated that confounding 
by indication, as well as other sources of 
confounding, are not an insurmountable 
problem [98]. This belief is based on two 
assumptions. The first is that the magnitude 
of confounding may be small because the 
treatment decisions of physicians may be 
poorly related to the pre-treatment prognostic 
characteristics of patients. Evidence 
to underpin this assumption comes from 
studies on the phenomenon of practice 
variation [99-103]. The reported magnitude of 

practice variation seems so large that some 
researchers have inferred that it could not 
arise from variability in patient characteristics 
(e.g., illness rates, insurance coverage, or 
preferences) [104] and, therefore, physicians 
pay little attention to individual patients’ 
clinical characteristics when making decisions 
[105]. This assumption, however, does not 
take into account the fact that an unbalance in 
measured features among drug user categories 
has been repeatedly reported. For example, 
with the aim of avoiding falls and hip fractures, 
newer sedative-hypnotics are preferentially 
prescribed to frail elderly patients who more 
likely experience such outcomes. Frailty is 
difficult to measure in HCU databases [106], 
and has led to an overestimation of the 
association of newer sedative hypnotics with 
hip fractures, when compared with users 
of traditional benzodiazepines or non-users 
[107]. Generalising, since both magnitude and 
direction of confounding consequences are 
often unpredictable, the use of adequate tools 
to deal with confounding is always needed.

The second assumption is that HCU 
databases contain sufficient and sufficiently 
accurate information about pre-treatment 
prognostic differences between patients in order 
to make effective corrections by taking said 
differences into account. For example, Roos 
et al stated that “administrative data has been 
shown to do nearly as well for risk adjustment 
as data that rely on physiological measures and 
physician judgment of health status” [108]. All 
researchers, however, have not been comfortable 
with the role of observational studies using HCU 
databases [109-111]. Controversy focused on 
accuracy and sufficiency of information available 
in HCU databases to check differences in 
populations receiving different treatments and, 
in a broad sense, receiving care from different 
hospitals, providers, or healthcare systems.

Strategies to adjust for confounding 
vary depending on whether the potential 
confounders are measured in a given database. 
If confounders are measured, then usual (basic) 
strategies to account for confounding include 
those concerning study design (e.g., restriction 
and matching), and those concerning data 
analysis (standardisation, stratification and 
regression). These techniques, listed in Figure 
4, are well described in standard epidemiology 
texts [112] and can be directly applied to 
database studies with the usual caveats. 
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However, the degree to which these clever 
devices achieve the goal of fully controlling 
confounding remains unpredictable, since 
unknown, unmeasured, or immeasurable 
confounders may strongly impact the findings. 
Residual confounding refers to factors that 
have been incompletely controlled, so that 
confounding effects of these factors may 
remain in the observed treatment-outcome 
effect. As depicted in Figure 4, strategies of 
accounting for residual confounding include 
those concerning study design (e.g., case-only 
designs) and data analysis (e.g., sensitivity 
analysis and instrumental variables approach).

The implications of these techniques when 
they are applied to HCU based studies need 
to be discussed. The purpose of the following 
paragraphs is to show different techniques, both 
usual and emerging, to adjust for measured and 
unmeasured confounders in the framework of 
observational studies based on HCU data.

4.3. Accounting for confounders through study design

4.3.1. Restricting the study cohort

The basic idea of restricting a study cohort is to 
make its population more homogeneous regarding 
measured patient characteristics. Restriction will 
reduce the cohort size but population based HCU 
databases are so large that some restriction to 
improve the validity of findings will usually not 
impair precision significantly.

There are many different approaches to 
restriction in specific studies [113] and it is, 
therefore, difficult to provide general advice 
that fits specific study designs. However, 
several guiding principles can be identified 
that should be considered in HCU database 
studies on effectiveness and safety of medical 
interventions [114]. Three restrictions are 
generally worth considering in comparative 
effectiveness research [9].

FIGURE 4

Strategies to check for measured and unmeasured confounders by means
of study design and data analysis

Source: Schneeweiss S  [174], modified

ACCOUNTING FOR CONFOUNDING
(par. 4.2)

Study design
(par. 4.3)

Measured 
confounders

Restriction (par. 4.3.1)
Matching (par. 4.3.2)

Standardization

Stratification and regression modelling 
(par. 4.4.1)

Utilizing proxy measures (par. 4.4.2)
	 Exposure Propensity Score
	 Comorbidity Score

Sensitivity analysis (par. 4.4.3)
	 Rule-out approach
	 External adjustment (Monte Carlo 	
	 Sensitivity Analysis and Propensity 	
	 Score Calibration)

Instrumental variables (par. 4.4.4)

Case-only designs (par. 4.3.3)
	 Case-crossover
	 Case-time control
	 Self-controlled case series

Unmeasured 
confounders

Data analysis
(par. 4.4)
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Restricting to users and choosing a 
comparison group. Choosing a comparison 
group is a complex and, at times, subjective 
issue. The ideal comparison should comprise 
patients with identical distributions of measured 
and unmeasured risk factors of the study 
outcome [13]. Selecting comparison drugs that 
have the same perceived medical indication 
for head-to-head comparisons of active drugs 
(i.e., comparing the effects of two active and 
competing therapies that are prescribed under 
the assumption of identical effectiveness and 
safety [6]) will reduce confounding by selecting 
patients with the same indication [13]. Hence, 
excluding non-users and, consequently, actively 
comparing patients exposed to drugs with 
the same indication (i.e., the basic approach 
of comparative effectiveness research) has 
become increasingly popular in the field of 
observational studies that use HCU data [11]. 
However, new competitors within a class are 
often marketed for better efficacy, slightly 
expanded indications, or better safety, thus 
influencing the prescribing decisions of 
physicians [115]. New sources of confounding 
by indication can, therefore, arise.

Restricting to new users. As mentioned 
above, the basic cohort design identifies all 
patients in a defined population who were 
treated with the study medication during a 
defined study period. Such a cohort will 
consist of prevalent (ongoing) and incident 
(new) drug users; depending on the average 
duration (chronicity) of use, such cohorts may 
be composed predominantly of prevalent users 
and few new users. The estimated average 
treatment effect will, therefore, underemphasise 
effects related to drug initiation and will 
overemphasise the effects of long term use [18]. 
Furthermore, prevalent users of a drug have 
persisted by definition in their drug use, which 
may correlate with higher educational status 
and health-seeking behaviour, particularly if 
the study drug is treating a non-symptomatic 
condition, e.g., blood pressure (BP) lowering 
agents for treatment of hypertension, or statins 
for treatment of hyperlipidaemia [106, 116]. 
Consequently, the restriction to new initiators 
of the study drug (inception cohort) will 
mitigate those issues and will also ensure 
that patient characteristics are assessed before 
initiating treatment with the study drug.

The decision to rule out prevalent users 
from observational studies is underpinned by a 

recent study that evaluated the effect of excluding 
prevalent users of statins from a meta-analysis of 
observational studies on subjects with CV disease 
[117]. The pooled, multivariate adjusted mortality 
hazard ratio for statin use was 0.77 in 4 studies 
that compared incident users with non-users, 
0.70 in 13 studies that compared a combination 
of prevalent and incident users with non-users, 
and 0.54 in 13 studies that compared prevalent 
users with non-users. The corresponding hazard 
ratio from 18 RCTs was 0.84. It appears that the 
greater the proportion of prevalent statin users in 
observational studies, the larger the discrepancy 
between observational and randomised estimates. 
The advantages of the new user design have been 
summarised by Ray [17].

Restricting to adherent patients. Patients 
dropping out of RCTs for reasons related to the 
study drug may cause bias. Non-informative 
discontinuation causes bias toward the null 
in intention-to-treat analyses. Physicians and 
regulatory agencies accept such bias because 
its direction is known and trial results are 
considered conservative regarding the drug’s 
efficacy period. Discontinuation of treatment 
may also be associated with study outcomes 
through lack of perceived treatment effect and 
drug intolerance.

RCTs try to minimise bias from non-
adherence by frequently reminding patients and 
by run in phases before randomisation to identify 
and exclude non-adherent patients. Adherence 
to drugs is substantially lower in routine care 
than in RCTs. It has been recently shown that 
in 36-37% of patients who start therapy for 
hypertension, hyperlipidaemia or type 2 diabetes, 
initial treatment is not followed by another 
specific prescription [118]. The study also showed 
that patients for whom an isolated prescription 
was issued presented clinical features (e.g., 
co-treatments and comorbidities), as well as 
a rate of hospitalisation for CV events, that 
was intermediate between those of patients for 
whom the considered medicaments were more 
regularly prescribed and those of individuals to 
whom such medicaments were never dispensed. 
Therefore, isolated users would be considered a 
heterogeneous category of individuals including 
those who would have needed continuous 
drug therapy and those for whom the lack of 
prescription renewal may be considered a later 
correction of inappropriate initial drug treatment. 
Similarly, it has been consistently shown that only 
45%, 50% and 40% of patients who respectively 

e 8 9 8 1 - 1 4



THEME :  OBSERV ING  REA L  WORLD  C L IN I CA L  PRACT I C E

Epidemiology Biostatistics and Public Health - 2013, Volume 10, Number 3

Bu ilding    reliable       evidence   from real  -world  data

start therapy for hypertension, hyperlipidaemia 
or type 2 diabetes, refill their prescriptions after 
one year [119-121].

Several studies based on HCU data start 
follow-up after the second or third refill of the 
study drug in new user cohorts with the aim of 
excluding patients presenting less adherence. 
External validity (generalizability) is a matter of 
concern for this restricting criterion. However, in 
order to make a prescribing decision, physicians 
must assume that patients will take a drug as 
directed. If clinicians knew beforehand that a 
patient would not take a prescribed medication, 
they would not evaluate the appropriateness of 
the drug in the first place [9].

4.3.2. Matching

Matching is one of the techniques used to 
avoid confounding through study design. In a 
cohort study this is done by ensuring that once 
an exposed subject is enrolled for the study 
on a given date (e.g., because on that day he/
she experienced the first prescription of the 
considered drug), one or more individuals 
belonging to the same population as the one 
that generated exposed ones are included 
on two conditions: (i) they did not have 
experienced exposure up to that date, (ii) 
regarding the exposed subject, they presented 
the same features which we think may confound 
the analysed association. A good example of 
a matched cohort study was presented by 
Ludvigsonn et al [122] who investigated the 
association between celiac disease (CD) and 
risk of renal disease. In this study, 14 336 CD 
patients and 69 875 patients without CD were 
matched by gender, age, calendar year, and 
country. As a result of matching, these variables 
had an equal distribution among both groups; 
therefore, these variables had no effect as 
confounders. Greenland & Morgenstern showed 
that matching can reduce the efficiency of a 
cohort study, even when it produces no sample-
size reduction and even if the matching variable 
is a confounder [123]. This perhaps explains 
why this technique is not as popular in the field 
of observational cohort studies [124].

In a nested case-control study, a case (i.e., 
a subject who had experienced the outcome 
at a given date), is always matched with one 
or more controls (i.e., individuals who did 
not experience the outcome from the cohort 

entry until that date). As already discussed 
in par. 2.2., this design requires matching to 
ensure that members of each case-control(s) 
set have the same observational time-window 
length. In addition, case and relevant controls 
might be matched for other variables/features, 
which we think might confound the analysed 
association. For example, taking into account 
a patient who entered the cohort on a specific 
date and was 40 years old on entrance, one or 
more controls can be included in the cohort on 
the same date, with the same age on entrance 
and presenting the risk of experiencing the 
outcome at index date. Hence, we ensure that 
case and controls are balanced in terms of 
duration of observational period, and also of 
age. This prevents age from confounding the 
investigated association.

Because of their easiness and applicability, 
nested case-control studies are often designed 
taking into account matching for confounding 
adjustment. However, this technique has at 
least two weaknesses. First, once matching 
has been performed, the effect of matching 
variables on the outcome risk cannot be 
measured. Second, overmatching is always a 
hazard when this technique is used [125, 126]. 
This phenomenon can be explained with a 
theoretical example. Suppose we were able to 
match for all the variables affecting outcome. 
Both cases and controls would become almost 
completely similar, resulting in an odds ratio 
of approximately 1 [127]. In a broad sense, 
overmatching is introduced when at least one of 
these three conditions occurs: (i) the matching 
variable is not an independent risk factor for 
the outcome, thus reducing the efficiency of 
the analysis [128]; (ii) the matching variable 
is not associated with exposure (or is a proxy 
of exposure), thus resulting in an obscured 
exposure-outcome relation; (iii) the matching 
variable is on the causal exposure-outcome 
pathway (see par. 4.5.2). A motivating example 
is given by studies investigating the impact of 
gestation length and plurality on short-term 
outcome of in vitro fertilisation (IVF)-children. 
Since the high number of multiple and preterm 
births is an intrinsic part of current IVF practice, 
matching the control group by gestation length 
and/or the number of multiple births may yield 
misleading results on the total health impact of 
IVF, and should, therefore, be avoided [129].

Therefore, matching should be considered 
in case-control studies only if the matching 
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factor is known to be an independent risk 
factor for disease and unlikely to be on the 
causal path between the analysed exposure 
and the disease. However, given the scarce a 
priori knowledge on the possible effect of all 
analysed external variables, and owing to the 
large sample size of studies based on HCU data, 
other techniques would be better to count for 
confounders.

4.3.3. Case-only designs

Although cohort and nested case-control 
studies are widely accepted designs for the 
evaluation of the risks and benefits of post-
licensure medications, these designs are 
vulnerable to confounding. In the late 1980s, 
alternative methods relying only on cases (i.e., 
without controls), termed case-only designs, 
were introduced with the aim of attempting 
to account for unmeasured confounders [130]. 
Case-only designs are attractive because cases 
are self-matched, which eliminates time-
invariant confounders. They are generally less 
expensive, shorter in time, and simpler to carry 
out than conventional designs [131]. Among 
existing case-only designs, five have been used 
in pharmacoepidemiology: the case-crossover 
design [132], the self-controlled case series 
design, originally called case series analysis 
[133], the case-time-control design [134], the 
screening method [135] and the prescription 
sequence symmetry analysis also called the 
symmetry principle [136]. Of those designs, the 
first two are the most frequently used and will 
be briefly described below.

Case-crossover design. The case-crossover 
(CC) design was introduced by Maclure in 1991 
to study the short-term effects of intermittent 
exposures on the risk of acute outcomes [132]. 
In a CC study, case-subjects are their own 
self-matched controls by using pre-defined 
time period(s). Probability of exposure is 
compared between a risk (or hazard) time-
period immediately preceding the onset of 
the outcome of interest, and one, ore more 
than one, control period(s) preceding the risk 
period. Characteristics of time periods (width, 
number of control periods, gap from the onset 
the outcome, etc.) depends on the studied 
outcome and exposure. Only discordant pairs, 
i.e., cases exposed only in the risk period or 
only in the control period, contribute to the 

analysis. The odds ratio for the outcome is 
usually estimated by fitting conditional logistic 
regression model.

In a CC analysis, confounding by constant 
characteristics is implicitly eliminated. On the 
other hand, a bias due to exposure time trend 
is introduced. Case-time control (CTC) design 
adjusts the CC estimate for a time-trend in the 
exposure, by means of estimating it from a 
group of control subjects [134].

Self-controlled case series. The self-
controlled case-series (SCCS) design was 
introduced by Farrington in 1995 to assess post-
licensure adverse events related to vaccines, 
and more generally associations between acute 
outcome and transient exposure [133]. The SCCS 
design focuses on the relative incidence of a 
outcome between risk (post-exposure) and control 
time periods. Depending on the background 
knowledge, risk periods are defined during and/
or after an exposure, when people are theorised 
to be at greater risk of the event. Control periods 
include all time periods with baseline risk, which 
may occur both before and after the exposure 
[137]. The model used to estimate the IRR is 
conditional Poisson regression; the condition is 
indeed the fact that all subjects are cases (all have 
experienced the analysed event). The tutorial by 
Whitaker et al [138] provides a very useful guide 
for this method.

Figure 5 depicts these two main case-only 
designs. It clarifies that, while the CC design 
relates to a case control study (by comparing 
the probability of exposure between case and 
control periods), the SCCS relates to a cohort 
study (by comparing the probability of events 
between exposed and non-exposed periods). 
It should, however, be emphasised that both 
designs are particularly suited to study the 
effect of intermittent/transient exposures on 
the risk of acute outcomes [139]. Thus, to 
study chronic or cumulative effects of long 
term exposures, we must use other methods to 
account for residual confounding.

4.4. Accounting for confounding through data analysis

Causal graphs in Figure 6 illustrate 
data modelling techniques that account for 
confounding [9, 140]. Ideally, we would be 
able to fully assess all features that make 
unbalanced comparative groups and, then, to 
consider said features by means of stratification 
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and regression modelling (Figure 6, box A, and 
par. 4.4.1). However, as specified above, most 
non-randomised studies using HCU data with 
limited patient information will not be able to 
fully measure and adjust such confounders, and 
will, therefore, be unable to show the effect 
of exposure because of residual confounding. 
This difficulty to fully adjust to all possible 
confounders may be faced using several tools, 
such as resorting to proxy variables (Figure 
6, box B, and par. 4.4.2), applying some 
sensitivity analysis techniques, e.g., external 
adjustment models (Figure 6, box C, and par. 
4.4.3), or using instrumental variables. (Figure 
6, box D, and par. 4.4.4).

4.4.1. Stratification and regression modelling

Like restriction, stratification identifies 
patient subgroups based on measured patient 
factors [141]. In contrast to restriction, 
stratification does not discard the “unwanted” 
population but provides treatment effect 
estimates for all strata and combines them 
into one weighted summary effect measure 

[9]. In the absence of effect modification (e.g., 
treatment has the same effect in old and young 
patients) and under the assumption that all 
confounders were measured, stratified analyses 
will provide unbiased treatment effects. The 
large size of HCU databases permits many such 
subgroup analyses with substantial numbers 
of subjects and is an attractive alternative to 
wholesale restriction [9].

Regression analyses use statistical 
modelling to make stratified analyses more 
efficient [26]. Study design, conditioning the 
forms of study outcome, exposure of interest, 
and included covariates, will determine the 
regression model to be used. For cohort designs 
(see par. 2.1) that model time-to-event data with 
varying follow-up periods and censor study 
outcomes, the common analysis methodology 
is Cox proportional hazards regression. To 
be precise, this approach can easily handle 
exposures and covariates, whose values vary 
over time. When time-varying covariates are 
affected by time-varying treatment, marginal 
structural models may be required. A number 
of excellent textbooks describe how to analyse 
time-to-event data [142, 143]. For matched study 

FIGURE 5

Schematic representation of case-only designs (self-controlled case series and case-crossover)
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designs (e.g., nested case-control design, see 
par. 2.2), conditional logistic regression may 
be considered. Finally, if the study outcome is 
binary with fixed follow up and is rare, Poisson 
regression with robust standard errors can 
be used to estimate relative risks and obtain 
correct confidence intervals [144, 145].

There are a number of analysis options that 
must be considered, which depend on the study 
question and details of the study design. For 
example, repeated outcomes, such as asthma 
attacks leading to emergency room admissions, 

can multiply the apparent number of subjects, 
resulting in falsely narrow standard errors [6]. 
Generalised estimating equations (GEE) are 
a frequently-used approach to account for 
correlated data [146]. Events are thus used as 
the unit of analysis, and standard errors are 
corrected to correlate covariate information 
within subjects [6].

Multilevel (also known as hierarchical, 
or mixed effects) regression modelling is a 
suitable approach to handle patient clustering 
with healthcare providers [147-150]. Failure 

FIGURE 6

Causal diagrams and notations showing the mechanisms of confounding
and approaches to control confounding 

Box A, confounding by unmeasured risk factors of the disease outcome (D) that are also associated with treatment exposure (E); box B, 
measured confounders as proxies for unmeasured confounders; box C, external adjustment using additional information on previously 
unmeasured risk factors (C); box D, an instrumental variable (IV) as an unconfounded substitute for treatment exposure (E).

The points on the graph representing the variables (exposure, disease, confounder, instrumental variable) are called nodes. The edges 
of the graph connecting any two nodes indicate relationships between these variables. An edge with an arrow connects causal variables 
to their effects. This, of course, signifies prior knowledge about how the variables operate in the population. A non-directional arc (an 
arc without arrowheads) is used to indicate that two variables are associated for reasons other than sharing an ancestor or affecting 
one another.

Sources: Schneeweiss S [9] and Greenland S et al [140], modified
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to use analytical methods that account for 
clustering can result in misleading conclusions. 
In a recent study, results from data consisting 
of acute myocardial infarction patients nested 
within treating physicians nested within 
hospitals with and without the use of multilevel 
modelling were contrasted [151]. The 95% 
CIs for hospital effects were much wider 
when multilevel logistic models were used 
compared with conventional logistic regression 
models that ignore clustering. Furthermore, 
substantially fewer statistically significant 
associations between patient outcomes and 
hospital characteristics were found when 
multilevel regression models compared with 
conventional regression models were used. 
When evaluating research using HCU data, 
readers need to carefully assess whether the 
statistical methods accounted for any clustering 
that may have been present in the data.

Approaches for such longitudinal data 
are described in detail in a number of 
textbooks [152, 153].

4.4.2. Using proxy measures

Researchers routinely adjust their analyses 
using proxy confounders. For example, the 
most common confounder of treatment effects 
is the patient’s age. Although age itself does 
not cause outcomes, old age is associated with 
many conditions that may be incompletely 
recorded in the available data, but that are 
associated with the outcome and may be a 
determinant of pharmacologic interventions. 
Therefore, age can be considered an implicit 
proxy confounder [154].

In a study on the use of statins and CV 
outcomes, Seeger et al found that certain 
healthcare utilisation variables, such as 
frequency of lipid tests ordered and physician 
visits, were strong predictors of statin initiation 
and appeared also to be strong confounders 
[155]. In fact, although the frequency of lipid 
testing does not directly affect CV risk, it 
could be viewed as a proxy for concern about 
disease risk. Therefore, the frequency of tests 
may be associated with other risk modifying 
behaviours or with the underlying risk.

In several HCU databases, the number 
of proxies describing cross-sectional and 
longitudinal health status can quickly rise 
to several hundred, making it difficult to fit 

multivariate regression models for a limited 
number of observed outcomes even in large 
studies [156]. The most popular methods to 
efficiently adjust for a large number of proxies in 
database studies envisage constructing exposure 
propensity score and comorbidity score.

Exposure propensity score. In a cohort 
study, there are often substantial differences 
in the prevalence of measured patient factors 
between drug exposure groups that may lead to 
confounding, if these factors are also independent 
risk factors for the study outcome. Such factors 
need to be adjusted in further analyses. Instead 
of considering each factor individually, all 
patient characteristics can be combined into a 
single exposure propensity score (EPS), which 
is the estimated probability of treatment, given 
all covariates (i.e., the conditional probability 
of being treated given an individual’s set of 
covariates [157, 158]), and is commonly calculated 
with logistic regression models.

The more formal EPS definition provided 
by Rosenbaum & Rubin [157] for the ith subject 
(i = 1, . . . , N) is the conditional probability 
of assignment to a treatment (Z

i
 = 1) versus 

comparison (Z
i
 = 0) given observed covariates, x

i
:

	

The underlying approach to propensity 
scoring uses observed covariates X to derive a 
“balancing score” b(X) such that the conditional 
distribution of X given b (X) is the same for 
treated (Z = 1) and untreated patients (Z = 0) 
[157, 158]. There are three main applications 
of EPS: matching [158], stratification [159], 
and regression adjustment [160, 161]. When 
EPS is utilised in these standard applications, 
treatment effects are unbiased where measured 
covariates are nearly equally balanced across 
comparison groups [162, 163]. This transparent 
balancing of confounders promotes confidence 
in interpreting the results compared to other 
statistical modelling approaches [161]. This is 
why PS methodology has become increasingly 
popular to efficiently adjust large numbers of 
proxies in database studies.

Comorbidity score. Health status, 
as measured by disease history, has long 
been recognised as a major class of potential 
confounder in most observational studies. Over 
the last three decades, a variety of methods have 
been developed that might allow more uniform 
comorbidity adjustment across epidemiological 
studies. Six distinct comorbidity scores that 
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are useful for studies based on HCU data 
have been identified by a literature search and 
tested for their predictive performance [164]. 
Comorbidity measuring instruments include 
the Dartmouth-Manitoba method [165-167], the 
Chronic Disease Score [168], and its extended 
version [169], and the score proposed by 
Deyo et al [170], D’Hoore et al [171, 172], 
and Ghali et al [173]. All these scores reduce 
the number of covariates by summarising the 
diseases presented, that were recorded as 
ICD-9 code in a specific HCU database, in a 
single measure. Under the assumption that the 
score entirely captures information about the 
clinical profile of all included patients, which 
may be unrealistic in most practical settings, 
an analysis adjusting for the score produces 
exposure effect estimates unbiased by among-
patients heterogeneity in clinical profile.

4.4.3. Sensitivity analysis

Basic sensitivity analyses of residual 
confounding attempts to understand how the 
strength of an unmeasured confounder and 
imbalance among drug exposure categories 
affects the observed or apparent RR. The 
observed exposure-outcome relative risk (ARR) 
can be expressed as the ‘true’ relative risk times 
a “bias factor,” which expresses the imbalance 
of a binary confounding factor among exposed 
(P

C1
) and unexposed subjects (P

C0
) [174]:

	

where RR
CD

 is the strength of the association 
between confounder and disease outcome.

Schneeweiss [6, 9, 174, 175] describes 
two families of approaches investigating the 
impact of unmeasured confounding in the 
field of HCU databases: (1) identifying the 
strength of residual confounding that would be 
necessary to explain an observed drug-outcome 
association (rule-out approach); (2) external 
adjustment given additional information on 
single binary confounders from survey data 
using algebraic solutions and a Monte Carlo 
sampling procedure (Monte Carlo sensitivity 
analysis), or considering the joint distribution 
of multiple confounders from external sources 
of information (propensity score calibration).

The rule out approach. The approach 

aims at assessing the extent of confounding 
necessary to fully explain the observed findings, 
that is, when the observed point estimate 
would move to the null value. The hope is 
to rule out unmeasured possible confounders 
because they cannot possibly be strong enough 
to explain the observed association [175]. This 
approach was also called target-adjustment 
sensitivity analysis [176].

The approach consists in finding all 
combinations of OR

EC
 (i.e., the confounder-

exposure odds ratio that measures the strength 
of the exposure-confounder association) and 
RR

CD
 (i.e., the confounder-outcome relative risk 

that measures the strength of the confounder-
outcome association) that are necessary to 
move the observed point estimate of ARR to 
1. It should be observed that OR

EC
 and RR

CD
 

are respectively the left and right sides of the 
confounding triangle in Figure 6, box C [140].

Schneeweiss [174] showed that OR
EC

 is a 
function of the prevalence of the confounder 
among exposed (P

C1
) and marginal probabilities 

of exposure P
E
 and confounder P

C
:

	
           (1)

while, assuming no underlying true 
exposure-disease association (RR=1), Walker 
[177] showed that the apparent relative risk 
(ARR) is a function of P

C1
, P

E
, P

C
, and the 

confounder-disease association RR
CD

:
	

 (2)

Since the primary interest is to explore the 
relationship between OR

EC
 and RR

CD
 for a given 

ARR, we need to solve Equation (2) for P
C1

 and 
substitute the derived term in Equation (1). 
Hence, we may calculate the pair (OR

EC
 - RR

CD
) 

values that cancel the true exposure-disease 
association. Figure 7 provides an example 
of such a sensitivity analysis for residual 
confounding employed by Psaty et al [178] in 
a study on the association between calcium 
channel blocker use and acute MI.

The strength and usefulness of the rule-out 
approach is clear when little or nothing is known 
of possible confounders of the investigated 
association and their effect. However, when 
reliable additional data sources can be identified, 
external adjustment of the drug-outcome 
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association is always advisable [179].
External adjustment methods. If additional 

information is available, for example, a detailed 
survey in a sample of the main database 
study, alternative approaches to sensitivity 
analyses can be used to make adjustments for 
confounders that were not measured in the 
main study [174]. If internal validation studies 
are not feasible, or are too costly, external data 
sources can be used under certain assumptions. 
For example, structured electronic MR databases 
fed by general practitioners (GPs) operating 
in the same area, and covering a sample of 
the same population of the main database, 
may be used to measure a wide variety of 
characteristics that are not captured by HCU 
data, such as drug indications, lifestyle habits, 
body mass index, blood pressure measures 
and laboratory findings, among others. Thus, 
medical records can be used for external 
adjustment of unmeasured confounders in a 
variety of drug studies based on HCU data.

An example has been recently provided by 
Corrao et al [180, 181]. The authors observed 
that, compared with antihypertensive patients 
starting BP lowering therapy on a fixed-dose 
combination, those on an extemporaneous 

combination presented a 15% increase in CV 
risk. From a clinical point of view, this is 
rather puzzling because the reason why two 
antihypertensive drugs had different effects 
depending on whether they are administered in 
two distinct pills or in a single pill is unclear. 
Several uncontrolled factors may, however, 
influence the physician’s decision to start 
therapy. For example, one can imagine that 
patients with more severe hypertension or 
worse clinical profile need a more aggressive 
therapy to quickly achieve BP control, and that 
this aggressive therapy is often obtained by 
dispensing an extemporaneous combination 
of two or more agents, rather than fixed 
combinations. Because severity of hypertension 
and clinical profile are independent predictors 
of the study outcome, failure to control them 
may lead to a confounding bias. Quantitative 
assessment of such a bias may provide more 
realistic estimates of the relationship between 
exposure and outcome. 

The authors applied the following four-step 
procedure. First, they assessed the exposure-
confounder association (that is, do patient’s 
clinical characteristics affect the choice of 
prescribing a given antihypertensive drug 

FIGURE 7

Example of sensitivity analysis of residual confounding (rule-out approach) 

This example by Psaty et al. [178] evaluates the effect of unmeasured confounders on the association between use of calcium channel 
blocker (CCB) and the risk of acute myocardial infarction (apparent relative risk or ARR = 1.57). Prevalence of the unobserved confounder 
of 0.2 and of CCB treatment of 0.01 were assumed from the study. Each line splits the area into two: the upper right area represents all 
parameter combinations of the strength of the associations between confounder and drug (OREC) and confounder and outcome (RRCD) 
that would create confounding by an unmeasured factor strong enough to move the point estimate of the ARR (ARR 1.57) to the null 
(ARR 1) or even lower, i.e., make the association go away. Conversely, the area to the lower left represents all parameter combinations 
that would not be able to move the ARR to the null

Source: Schneeweiss S [9], modified
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regimen?) by drawing out the corresponding 
data from an Italian network of general 
practitioners, the so called Health Search/
Cegedim Strategic Database. Second, some 
assumptions were made on confounder-
outcome association (that is, do the clinical 
characteristics of patients affect the CV risk?). 
Third, these two types of external information 
were used to correct estimates generated from 
the main study consistently with Steenland & 
Greenland’s approach [182]; they proposed 
estimating the bias factor by measuring the 
extent of the residual bias that would result 
from failure to check for a generic confounder:

                                     	 (3)

where j indexes a generic confounder’s 
category with j = 0, 1 for mild/moderate, severe 
hypertension; or j = 0, 1, 2 for an increasing 
number of chronic comorbidities. In equation 
(3) the risk ratio for the confounder-outcome 
association (RR

j
) is weighted for the proportion 

of patients belonging to the same confounder 
category among those who started with a 
fixed-dose combination (p

j0
) or with another 

therapeutic regimen (p
j1
). The effect of starting 

with a given regimen for the CV risk, estimated 
from the main study, was separately adjusted 
for severity of hypertension and chronic 
comorbidities simply by dividing the original 
estimates by the bias factor (equation 3).

In the fourth step, the Monte-Carlo 
Sensitivity Analysis (MCSA), an expanded 
version of ordinary sensitivity analysis, was 
used with the aim of taking into account other 
random uncertainties of estimates obtained 
with external adjustment through a Monte-
Carlo sampling procedure [182].

Figure 8 displays the CV odds ratios associated 
with the initial treatment regimen observed 
in HCU data (white squares) and after MCSA 
adjustment for severity of hypertension and CDS 
(black circles). Patients on an extemporaneous 
combination presented a higher CV risk than 
those on a fixed-dose combination. However, 
evidence that patients on an extemporaneous 
combination present a higher CV risk than those 
on a fixed-dose combination was cancelled after 
the adjustment for CDS, even if a relatively weak 
confounder - outcome association was imposed 
(scenario 2). This happens because of the large 

difference in clinical profile between patients 
starting BP-lowering therapy with a fixed-dose 
or extemporaneous combination. As a matter 
of fact, consistently with data from Health 
Search used for external adjustment, patients 
on an extemporaneous combination had higher 
prevalence of severe hypertension and worse 
clinical profile than those on a fixed-dose 
combination. Medical record data can be used 
to assess confounding bias unmeasured by HCU 
database with MCSA. The authors have supplied 
an SAS code that is useful for any application of 
this technique [181].

The main limitation of MCSA is that it is not 
helpful if several confounders are unmeasured and 
the joint effect of such confounders is unknown. 
However, external adjustment methods were 
recently extended to a multivariate adjustment 
for unmeasured confounders that use a new 
technique of propensity score calibration (PSC) 
[183]. In a validation study for each subject, the full 
database record is available along with detailed 
survey information. The goal is to compute an 
error-prone exposure PS within the validation 
population by only using database information, 
as well as an improved exposure propensity score 
that also includes survey information for each 
subject. The error component in the validation 
study is then quantified and can be used to correct 
the PS in the main study database by adopting 
established regression calibration techniques [71]. 
PSC implicitly takes into account the joint effect of 
unmeasured confounders that are measured only 
in the validation study, as well as relations between 
measured and unmeasured confounders. PSC can, 
therefore, elegantly overcome major limitations 
in the algebraic approach to external adjustment 
described above, though it may not perform well 
in situations that violate the surrogacy assumption 
of regression calibration [71, 184].

4.4.4. Instrumental variable estimation

To overcome the inability to check for 
residual confounding by unobserved factors, an 
analytic approach, known in econometrics as 
instrumental variable (IV) estimation [185], can 
provide unbiased estimates of causal effects 
in non-randomised studies [186] by mimicking 
random assignment of patients into groups of 
different likelihood for treatment [187].

A IV is a variable that is related to treatment 
but is unrelated to observed and unobserved 
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confounders. It is also unrelated to the outcome 
(Figure 6, box D), other than through treatment. 
Both characteristics are key assumptions 
for valid IV estimation. In the analysis, the 
unconfounded instrument substitutes the actual 
treatment status that may be confounded [9]. 
The instrument effect on the study outcome will 
be estimated and then rescaled by its correlation 
with the actual exposure [9]. The stronger the 
IV-treatment association is, the smaller the 
residual confounding effect will be. Moreover, 
precision of the IV estimation will improve [188].

IV estimation had not been used for the 
evaluation of drug effects until Brookhart 
et al [189] introduced physician prescribing 
preference as a promising tool for comparative 
effectiveness research. The basic idea is that 
there is a distribution of physician’s preference 
for one drug over another that is largely 
independent of patient characteristics. One way 

to define a physician-prescribing preference 
tool is to categorise physicians into strong 
preferers of drug A if they prescribed it to 90% or 
more of their patients, whereas non-preferring 
doctors prescribe it in only 10% or less of cases. 
The variety of implementations of physician-
prescribing preference is extensive, including 
the choice of a drug used by a physician for the 
most recent patient [189, 190]. In a study on the 
comparative effectiveness of selective COX-2 
inhibitors versus non-selective NSAIDs, the last 
new NSAID prescription written by a physician 
was used to determine the IV value of the next 
patient. If the last patient received celecoxib, 
then for the next patient the physician is 
classified as a “celecoxib prescriber” [190]. This 
approach takes into account the fact that NSAID-
prescribing preference may change within 
the study period. The analysis is performed 
with two-stage regression models adjusting 

FIGURE 8

Changes in odds ratios of non-fatal cardiovascular outcomes associated with antihypertensive 
drug treatment based on an extemporaneous combination of two or more drugs versus a fixed-

dose combination (reference) after external adjustment for severity of
hypertension and chronic disease score

Adjustments were made with the Monte-Carlo Sensitivity Analysis taking into account (i) differences in clinical characteristics across 
strata of therapeutic regimens at entry (i.e., therapy with fixed-dose or extemporaneous combinations) estimated by means of external 
information (i.e., from Health Search medical records); (ii) three scenarios imposing that ln(RR) increase with a certain inclination across 
confounder categories

Source: Corrao G et al [181]
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standard errors for correlations among patients 
clustering in the same physician’s clinic [191].

4.5. Beyond confounding

4.5.1. Once again on the definition of 
confounding 

The confounding hypothesis suggests that a 
third variable explains the relationship between 
exposure and outcome [192-196]. However, 
at least one definition of a confounder effect 
specifically requires that the third variable should 
not be an “intermediate” variable, as mediators 
are termed in epidemiological literature [197].

Consider a hypothetical example in which 
we are interested in assessing if periodontal 
disease (exposure) causes cardiovascular 
disease (CVD) (outcome) [198]. We also have 
measurements of C-reactive protein (CRP, 
i.e., the external third variable), a chronic 
inflammation marker that is associated with 
periodontal disease and CVD. In the univariate 
analysis, we find that there are statistically 
significant associations between periodontal 
disease and CVD, periodontal disease and CRP, 
and CRP and CVD. In the multivariate analysis, 
when we include CRP and periodontal disease 
in the same model to predict the CVD risk, we 
observe a null association between periodontal 
disease and CVD, and a positive association 
between CRP and CVD. According to Figure 9, 
box A, CRP elevation is a marker of a hyper-
inflammatory trait, which causes both increased 
bone destruction in periodontal disease and 
atherosclerotic changes in CVD, but there is no 
actual association between periodontal disease 
and CVD. If we take this to be true, then we 
would conclude that periodontal disease does 
not cause CVD. The crude association we 
observed was through the backdoor path via 
CRP, which was closed when we adjusted for 
it in the multivariate analysis. According to 
Figure 9, box B, periodontal disease causes 
chronic low-grade infection, raises CRP levels 
and increases the risk of CVD. If we take this 
to be true, we would conclude that periodontal 
disease causes CVD only by a mediated effect 
via chronic inflammation (CRP). We can thus 
draw completely opposite conclusions with 
the same statistical data depending on which 
causal pathway we believe in.

This example clarifies that it does not suffice 

for a variable to be associated with both exposure 
and outcome to be considered a confounder. It is 
also necessary for the third external variable not 
to be an intermediate factor between exposure 
and outcome [199]. If this is the case, adjusting 
for the effect of the external variable (i.e., 
the intermediate variable or mediator) could 
substantially bias the estimated association 
between exposure and outcome.

This paragraph, which is based on intuitive 
approach, will enlarge on the inadequacy of 
conventional criteria to appropriately identify 
confounders, especially when overadjustment 
from mediation and collider stratification bias 
occurs [130, 200-203].

4.5.2. Intermediate variables and overadjustment

One reason why an investigator may begin 
to explore third variable effects is to elucidate 
the causal process by which exposure affects 
the outcome, i.e., a meditational hypothesis 
[192, 204]. When a meditational hypothesis is 
examined, the relationship between exposure 
and outcome is broken down into two causal 
paths [205]. One of these paths directly links 
exposure to the outcome (the direct effect), 
and the other links the independent variable to 
the dependent variable through a mediator (the 
indirect effect). An indirect or mediated effect 
implies that exposure causes the mediator 
(intermediate variable), which, in turn causes 
the outcome [206, 207].

An example has been recently provided 
by Roumie et al [208]. To study if incident use 
of oral antidiabetic drugs (OADs) is associated 
with the 12-month systolic BP level, and if this 
is mediated through body mass index (BMI), 
the authors included a cohort of veterans with 
hypertension who initiated metformin (n= 2 057) 
or sulfonylurea (n = 1 494) between 1 January 
2000 and 31 December 2007. Figure 10 shows 
that sulfonylurea users had a 1.33 mmHg higher 
12-month systolic BP than metformin users. 
However, when adjusting for BMI change, the 
difference in 12-month systolic BP between 
sulfonylurea and metformin users was not 
significant (p = 0.72), while one BMI unit change 
was associated with an increase in 12-month 
systolic BP of 1.07 mmHg (p<0.0001). These 
findings (i) strengthen the theory that the use of 
sulfonylurea increases systolic BP; (ii) suggest 
that the effect of OAD on BP change is likely 
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“mediated” by the beneficial effects of metformin 
in reducing BMI; (iii) demonstrate that a biased 
estimate of the effect of OAD on BP reduction 
is obtained when adjusting for the mediator 
(intermediate variable). In other words, the 
exposure-outcome association is obscured by the 
so called “overadjustment” effect [209].

Rothman & Greenland [112] discussed 
overadjustment in the context of intermediate 
variables. They clarified that, if checked during 
an analysis, intermediate variables would 
usually bias results towards null. Hence, instead 
of adjusting to exposure–disease associations, 
the assessment of mediation moves beyond 
the mere identification of exposure–disease 
associations toward an explanation of these 
relationships. The reasons for assessing 
mediation in epidemiology are compelling, and 
can be directly linked to extant mediational 
effects. Mediation analysis is very useful to 
open the “black box” between exposure and 

disease in epidemiologic studies [210].
Investigators are at times interested in 

separating total causal effect into direct and 
indirect effects, i.e., explaining the exposure-
outcome directly and through the mediator, 
respectively. The goal of mediation analysis is to 
assess direct and indirect exposure on outcome 
effects. The conventional method of two-stage 
mediation analysis [211] involves fitting a series 
of linear regression models. Structural equation 
model (SEM) based methods have also been 
proposed for mediation analysis [212, 213]. In 
linear cases, it is straightforward to estimate 
mediation effects in the context of multiple 
stages by adopting the product of coefficients 
approach [214]. Some recent research has 
focused on mediation for binary or mixed types 
of variables [215-218]. Finally, a method that is 
applicable to multiple stages of mediation and 
mixed variable types using generalised linear 
models has been recently proposed [219].

FIGURE 9

Causal diagrams representing the effect of periodontal disease on cardiovascular disease 

Box A, C-reactive protein causes periodontal disease on cardiovascular disease. Box B, C-reactive protein is an intermediate variable 
in the causal pathway

Source: Merchant AT & Pitiphat W [198]
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4.5.3. Collider variables

Colliders are the result of two independent 
causes having a common effect [26]. When we 
include a common effect of two independent causes 
in our model, the previously independent causes 
become associated, thus opening a backdoor path 
between treatment and outcome. This phenomenon 
can be explained intuitively if we consider two 
causes for a lawn being wet (either the sprinklers 
have been turned on or it is raining). If we know 
that the lawn is wet and we know the value of 
one of the other variables (it is not raining), then 
we can predict the value of the other variable (the 
sprinkler must be on). Therefore, conditioning on 
a common effect induces an association between 
two previously independent causes, i.e., sprinklers 
being turn on and rain [26].

Consider a hypothetical study that uses 
HCU data to compare rates of acute liver failure 
between new users of CCB and diuretics [26]. 
As illustrated in Figure 11, CCB are mainly 
prescribed to older patients, while younger 
hypertensive subjects mainly receive diuretics (the 
age – antihypertensive arrow). On the other hand, 

older patients are more likely to receive treatment 
for erectile dysfunction (the age – treatment for 
erectile dysfunction arrow) and also have a long 
history of alcohol abuse (the age – alcohol abuse 
arrow). Finally, among the considered factors, 
only alcohol abuse truly causes acute liver failure. 
Nevertheless, antihypertensive treatment and liver 
disease should be associated when adjusting for 
treatment of erectile dysfunction.

The introduced bias is known as collider 
stratification bias [220], or bias due to 
conditioning on a collider [221]. The term 
‘conditioning’ refers to restriction, stratification 
or regression adjustment, which are the 
techniques described above to check for 
measured confounders [222].

5. RANDOM UNCERTAINTY, STATISTICAL 
SIGNIFICANCE AND CAUSALITY

Over the past decades the use of statistics 
in medical journals has increased remarkably. 
One consequence has been a shift in emphasis 
from basic results to undue focus on hypothesis 

FIGURE 10

Mean difference in 12-month systolic blood pressure (BP) among hypertensive diabetic patients 
initiated on a new oral antidiabetic drug (OAD; i.e., sulfonylurea vs. metformin)

*The effect of OAD was not adjusted for BP, only adjusted for covariates and adjusted for both covariates and body mass index (BMI) 
change. The effect of BMI change on BP was only adjusted for covariates and adjusted for both covariates and OAD

Source: Roumie CL et al [208]
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testing. With this approach, data are examined 
in relation to a statistical “null” hypothesis, and 
practice has led to the mistaken belief that studies 
should aim at obtaining “statistical significance”. 
Conversely, the purpose of most observational 
studies is to determine the magnitude of certain 
factor(s) in preventing the onset or in increasing 
the risk of a given outcome [223].

Overemphasis on hypothesis testing is 
particularly troubling in the setting of real-
world data. Since the very large sample size and 
the wide number of possible associations may 
be simultaneously investigated, some caution 
is recommended when using and interpreting 
conventional statistical rationale.

5.1. Statistical significance and clinical relevance

The large sample sizes available in HCU 
databases have the potential to show statistical 
significance even when there are very small 
absolute differences. Although the conventional 
threshold for statistical significance of p<0.05 is 

widely used, one should keep in mind that it is 
arbitrary [224, 225].

The p-value for a regression model 
parameter results from testing the hypothesis 
that the measure of effect is null (e.g., it is 
equal to 1 if the measure is based on a ratio 
metric). The p-value is devoid of meaning with 
regard to the magnitude and clinical relevance 
of the observed effect, as it mirrors the 
precision of effect estimation. Excessive focus 
on a p-value of less than 0.05 can exaggerate 
the importance of statistically significant but 
clinically meaningless results. Likewise, this 
approach can discard potentially meaningful 
information gleaned from an analysis simply 
because the p-value exceeds an arbitrary 
threshold. By overemphasising the p-value, 
researchers may potentially distort the statistical 
model-building process by inappropriately 
adding or omitting certain variables, thereby 
resulting in suboptimal control of confounding 
and potentially invalid inferences. Rather 
than focusing on hypothesis tests (p-values), 
researchers should focus on estimates of effect 

FIGURE 11

Hypothetical causal diagram illustrating collider stratification bias. Age influences treatment 
with CCB (i.e., the exposure variable of interest) and treatment for erectile dysfunction 

Unmeasured alcohol use influences impotence, erectile dysfunction treatment and acute liver disease (i.e., the outcome of interest). 
In this example antihypertensive treatment  has no effect on liver disease, but antihypertensive treatment and liver disease would 
be associated when adjusting for medical treatment of erectile dysfunction. The box around erectile dysfunction treatment indicates 
adjustment and the conditional relationship is represented by the dotted arrow connecting age and alcohol use

Source: Agency for Healthcare Research and Quality [26], modified
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(point estimates and confidence intervals). In 
other words, estimation is preferable to tests 
of statistical significance [226]. Confidence 
intervals communicate both the strength of the 
relationship and the precision of the measure 
and are, therefore, more informative than point 
estimates accompanied by p-values [227].

A final point regarding p-values concerns the 
distinction between association and causality. 
Associations derived from observational data 
alone must not be construed to imply causality, 
regardless of the magnitude of the observed 
effect or its statistical significance. The strength 
of an association is only one of several factors 
that should be evaluated to establish causality 
[228]. Enhanced precision in the estimation 
of a measure of effect, as quantified by a low 
p-value or a narrow confidence interval, does 
not imply stronger evidence for causality [225].

5.2. Multiple comparisons

A wide number of possible associations 
may be investigated from observational studies 
based on HCU data. For example, we can 
compare the effect of different antihypertensive 
drugs in reducing the risk of CV outcomes 
(effectiveness) or the effect of different non-
steroidal anti-inflammatory drugs in increasing 
the risk of serious gastrointestinal adverse 
events (safety). Simultaneous testing carries a 
type I error beyond the conventional threshold 
of a=0.05, and spurious conclusions may 
result. A type I error refers to the conclusion 
that a difference between two treatments 
exists when actually there is no difference 
[224]. All analyses of HCU data are essentially 
secondary data analyses and are, therefore, 
generally more susceptible to such statistical 
error. This implies a high probability of 
generating positive conclusions (i.e., statistical 
significant tests) simply by chance. On the 
other hand, the precision of estimates tends 
to vary considerably among the different 
exposures, depending on the number of 
persons to whom each drug is dispensed. Low 
precision estimates are more likely lead one 
to accept the null hypothesis of no association 
even when this is not true (i.e., low study 
power). When multiple effects are employed, 
the generation of false positive associations 
in addition to the lack of precision of some 
estimates, makes interpretation of the entire 

panel of results difficult. It would be helpful 
to minimise the total error in such hazard-
surveillance programmes to clarify focus for 
further research [229].

A study investigating the association 
between astrological sign and the risk of 
hospitalisation for 223 of the most common 
diagnoses for hospitalisation has been 
recently published to illustrate how multiple 
hypotheses testing can produce not plausible 
associations [230]. Consistently with the 
common statistical criterion, the causes of 
hospitalisation occurring with a significantly 
higher probability compared to the remaining 
signs combined (p<0.05) were identified for 
each astrological sign. Of the (223 possible 
diagnoses • 12 astrological signs =) 2 676 
potential associations, there were 72 causes 
of hospitalisation significantly associated with 
one or more specific astrological signs. For 
example, subjects born under Leo had a higher 
probability of gastrointestinal haemorrhage 
(P = 0.0447), while Sagittarians had a higher 
probability of humerus fracture (P = 0.0123), 
compared to all other signs combined!

It has been suggested that, when the 
researcher performs multiple comparisons 
using the same data, an adjustment should 
be made to maintain the experiment’s a 
error at the prespecified level. Conventional 
multiple comparisons procedures, such as 
Scheffé or Bonferroni adjustments, may 
be useful for said purpose. For example, 
after the Bonferroni correction, none of the 
72 associations found in the study on the 
association between astrological sign and 
cause of hospitalisation would have been 
significant [230]. Nevertheless, conventional 
multiple comparisons procedures have been 
described as unnecessary and ill-advised 
because they assume a global null hypothesis, 
which is neither plausible nor of interest, and 
because they may lead investigators to ignore 
unexpected but important findings [231].

Several methods for overcoming the 
problem of multiple comparisons have been 
developed in recent years. Bender & Lange 
provide an overview of methods that can 
be adjusted for multiple testing in medical 
and epidemiological literature [232]. Two of 
these methods will be briefly described in 
the following two sections. Additional details 
of statistical concepts and implementation 
procedures may be found elsewhere [233-235].
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5.2.1. The False Discovery Rate method

In 1995 Benjamini & Hochberg proposed 
the False Discovery Rate (FDR) method which, 
primarily applied in the field of genetic research, 
controls the expected proportion of false 
rejections among all rejected theories [236].

FDR is the expected proportion of false 
signals (V) among those detected by the testing 
procedure (R), i.e., E(V/R). The FDR controlling 
procedure is based on the adjustment of p-values 
concerning the m hypotheses to be tested 
simultaneously. Unfortunately, the estimation 
of E(V/R) is not straightforward. In practice, 
the use of the FDR method is simplified by 
implementation of an iterative algorithm based 
on a step-up procedure, which can be described 
as follows: (i) the original p-values are sorted 
from the larger to the smaller one; (ii) each 
adjusted p-value is calculated as the minimum 
value between the previous adjusted p-value 
and the original p-value multiplied by the ratio 
between the test number (m) and the number 
of p-values that still need to be adjusted (m-j). 
The iterative procedure to calculate the adjusted 
p-value as proposed by Benjamini & Hochberg 
in their original paper is [236]:

It is easy to see that the adjusted p-values 
are equal to or greater than the corresponding 
original ones, and that the number of signals 
is consequently reduced. However, when the 
number of comparisons becomes very large, 
only the smallest adjusted p-values are greater 
than the originals.

5.2.2. Empirical-Bayes methods

It has been repeatedly proven that, when 
applied properly, Empirical-Bayes (EB) methods 
dramatically outperform conventional methods 
when one wishes to obtain multiple predictions 
or estimates that minimise the total error [237-
241]. EB adjustment is useful under the following 
circumstances: (i) a large number of comparisons 
are made; (ii) the comparisons can be grouped 

into sets within which all comparisons can be 
considered similar or exchangeable; (iii) random 
error is present and presumably accounts for 
much of the observed variation in the parameters 
estimated; (iv) investigators must choose which 
comparisons to investigate further; and (v) 
there is a significant cost associated with such 
additional investigations [242].

The basic idea of EB adjustments for 
multiple associations is that the observed 
spread of the estimated effects around their 
mean is larger than the variation of the true 
but unknown effects. EB methods attempt 
to estimate this extra variation from data 
and then use said estimate to adjust the 
observed effects. Typically, this adjustment 
shrinks outlying effects towards their mean, 
especially if the estimate to be adjusted has 
a large individual variance. A consequence of 
this shrinkage is that the overall variance of 
the EB-adjusted estimates is smaller than that 
of the unadjusted estimates. EB estimators 
belong to a class of shrinkage estimators 
with a long history in statistical literature 
[243, 244]. This class includes estimators 
based on hierarchical, multilevel, and mixed 
models [245]. Simulation and empirical studies 
have shown that EB adjustment can provide 
more accurate point estimates and narrower 
confidence intervals than the original estimates 
[234, 236, 239, 242, 244, 246].

EB adjustment is now being applied in 
several fields of epidemiologic research (e.g., 
in occupational [234, 238, 242], genetic [246], 
and nutritional [247] epidemiology). However, 
to our best knowledge, such an approach has 
rarely been used in comparative effectiveness 
studies based upon HCU data [248].

6. RECOMMENDATIONS FOR GOOD 
RESEARCH PRACTICE

When making healthcare decisions, 
patients, healthcare providers, and 
policymakers routinely seek unbiased 
information about the effects of treatment on 
a variety of health outcomes. High quality 
research can reduce uncertainty about the net 
benefits of treatment by providing scientific 
evidence and other objective information to 
inform healthcare decisions. Nonetheless, 
it is estimated that more than half the 
medical treatments lack valid evidence of 
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effectiveness [249, 250] particularly for long-
term outcomes. Therapies that demonstrate 
efficacy in experimental settings, like 
randomised controlled trials, may perform 
differently in general clinical practice 
where there is a wider diversity of patients, 
providers, and healthcare delivery systems 
[251, 252]. The effects of these variations 
on treatment are sometimes unknown but 
can significantly influence the net benefits 
and risks of different therapy options in 
individual patients.

One of the most important elements 
in designing a study is the development of 
a study protocol, which is the project that 
guides and governs all aspects of how a study 
will be conducted. A study protocol manages 
the execution of a study to help ensure the 
validity of final study results. It also provides 
transparency regarding how the research 
is conducted and improves reproducibility 
and replication of the research by others, 
thereby potentially increasing the credibility 
and validity of a study’s findings [26]. For 
studies designed as randomised clinical trials, 
study protocols are common and standards 
have been defined to establish the contents 
of these protocols. However, for other study 
designs, such as observational ones, there are 
few standards specifically for what elements 
are recommended to be included in a study 
protocol. As a result, there are a wide range 
of practices among investigators [253] in an 
attempt to summarise the current overview of 
methods adopted to overcome the drawbacks 
of an observational approach based on real-
world data, this final paragraph provides 
a checklist for the development of a study 
protocol to increase the transparency of 
the rationale behind study design selection 
and to clearly define methods. Several 
references have inspired the following 
checklist, specifically the document entitled 
“Developing a Protocol for Observational 
Comparative Effectiveness Research 
(OCER): A User’s Guide” by the Healthcare 
Research and Quality (AHRQ) [26], the 
“Guidelines for good pharmacoepidemiology 
practices” from the International Society 
of Pharmacoepidemiology [227], the task 
force report by the International Society for 
Pharmacoeconomics and Outcomes Research 
(ISPOR) concerning “Good Research Practices 
for Retrospective Database Analysis” [2, 13, 

14, 65, 256], besides some key papers on this 
issue [11-13, 257].

6.1. Study objectives and questions (background)

•	 Describe the knowledge or information to 
be gained from the study

•	 Articulate the main study objectives in 
terms of a highly specific research question 
or set of related questions that the study 
will answer

•	 Synthesise the literature and characterise 
the known effects of exposures and inter-
ventions on patient outcomes

6.2. Data sources

•	 Propose data source(s) that include data 
required to address primary and secondary 
research questions

•	 Describe details of data source(s) selected 
for the study

•	 Describe validation or other quality assess-
ments that have been conducted on the data 
source that are relevant to the data elements 
required for the study

•	 Describe what patient identifiers are neces-
sary for the research purpose, how they 
will be protected, and permissions/waivers 
required

•	 Provide details on data linkage approach, 
and the quality/accuracy of linkage, if 
applicable

6.3. Study design

•	 Provide rationale for study design choice 
and describe key design features: e.g., 
cohort, nested case-control, case-cohort, 
case-crossover, case-time-control, self-
controlled case series

•	 Define start of follow-up (baseline)
•	 Define inclusion and exclusion criteria at 

start of follow-up (baseline)
•	 Define exposure (treatments) of interest at 

start of and during the follow-up
•	 Propose a definition of exposure 

that is consistent with the clinical/
conceptual basis for the research 
question

•	 Provide a rationale for exposure 
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time window choice
•	 Describe the proposed data 

source(s) and explain how they 
are adequate and appropriate for 
defining exposure

•	 Provide evidence of validity of the 
operational definition of exposure 
with estimates of sensitivity, 
specificity, and positive predictive 
value, when possible

•	 State the direction of potential 
sources of differential and non-
differential misclassification and 
how that could influence the 
acceptance or rejection of the null 
hypothesis

•	 Propose strategies for reducing 
exposure misclassification

•	 Choose concurrent, active comparators 
from the same source population (or justify 
use of no treatment comparisons/historical 
comparators/different data sources)

•	 Discuss potential bias associated 
with comparator choice and meth-
ods to minimise such bias, when 
possible

•	 Define outcome(s) of interest
•	 Propose primary and secondary 

outcomes that directly correspond 
to research questions

•	 Provide clear and objective defini-
tions of clinical outcomes

•	 Provide evidence of sensitivity, spec-
ificity, and positive predictive value 
of the outcome, when possible

•	 Address issues of differential and 
non-differential misclassification 
related to the outcome and pro-
pose strategies for reducing bias, 
where possible

•	 Define key covariates and their potential 
for confounding (or other action on the 
relationship of interest)

•	 Conduct a thorough literature 
review to identify all potential 
confounding factors that influence 
treatment selection and outcome. 
Create a table detailing the expect-
ed associations

•	 When measuring comorbidity, 
select a measure that has been vali-
dated in a population most similar 
to the study and for the outcome 
under investigation, where possible

•	 Provide information about data 
source(s) for exposure, outcome 
and key covariates, acknowledging 
the strengths and weaknesses of 
the data source for measuring each 
type of variable

6.4. Statistical issues

•	 Describe the key variables of interest with 
regard to factors that determine appropri-
ate statistical analysis

•	 Independent variables (when are 
they measured, fixed or time-vary-
ing; e.g., exposures, confounders, 
effect modifiers)

•	 Dependent variables or outcomes 
(continuous or categorical, single 
or repeated measure, time-to-event)

•	 State if there will be a “multi-level” 
analysis (e.g., looking at effects 
of both practice level and patient 
level characteristics on outcome)

•	 Propose descriptive analysis according to 
study groups (e.g., treated with the com-
pared drugs)

•	 Should include the available inde-
pendent variables (e.g., exposure, 
confounders, effect modifiers, 
etc….)

•	 Conduct a stratified analysis prior to 
undertaking a more complex analy-
sis because of its potential to pro-
vide important information on rel-
evant covariates and how they could 
be optimally included in a model

•	 Propose the model that will be used for 
primary and secondary analysis objectives

•	 The functional form of the model 
should take into account study 
objectives, study design (indepen-
dent vs. dependent observations, 
matched, repeated measurement); 
nature of outcome measure (e.g., 
continuous, categorical, repeated 
measures, time to event), fixed and 
time-varying exposure and other 
covariates, assessment of effect 
modification/heterogeneity, cen-
sored data, and the degree of rarity 
of outcome and exposure

•	 Include variables that are only weakly 
related to treatment selection because 
they may potentially reduce bias 
more than they increase variance
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•	 All factors that are theoretical-
ly related to outcome or treat-
ment selection should be included 
despite statistical significance at 
traditional levels of significance

•	 Check the assumptions of the 
model before fitting it; if assump-
tions are violated, alternative tech-
niques should be implemented.

•	 Performance measures (R2, area 
under ROC curve) should be 
reported and a qualitative assess-
ment of these measures should be 
discussed regarding the explana-
tion of variance or discrimination 
of the model in predicting outcome

•	 Regression diagnostics including 
goodness of fit should be conduct-
ed and reported

•	 Consider presenting the final 
regression model, not only the 
adjusted treatment effects. If jour-
nal or other publications limit the 
amount of information that can be 
presented, the complete regres-
sion should be made available 
to reviewers and readers in an 
appendix.

•	 Propose and describe planned sensitivity 
analyses

•	 Consider the effect of changing expo-
sure, outcome, confounder, or covari-
ate definitions or classifications

•	 Assess expected impact of unmea-
sured confounders on key mea-
sures of association

•	 If sensitivity analyses are per-

formed for different assumptions 
regarding the confounding struc-
ture, report directed acyclic graphs 
representing the assumptions of 
the respective sensitivity analyses

•	 Report considerations concerning the study 
size under several potential scenarios that 
vary the baseline risk of the outcome, 
the minimum clinically relevant treatment 
effect (i.e., the size of the smallest potential 
treatment effect that would be of clinical 
relevance), and the required power

•	 Justify the choice of a given magnitude of 
first type error, and propose and describe 
planned methods for overcoming the prob-
lem of multiple comparisons, when suitable

•	 In presenting and discussing the results, 
the greatest emphasis should be placed on 
bias and confounding, rather than on the 
role of chance

•	 Confidence intervals, rather than 
p-values, should be relegated to a 
small part of both the results and dis-
cussion sections as an indication, but 
no more, of the possible influence of 
chance imbalance on the result
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