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Finding the right distribution for highly 
skewed zero-inflated clinical data

Resmi Gupta(1), Bradley S. Marino(1), James F. Cnota(1), Richard F. Ittenbach(1)

Discrete, highly skewed distributions with excess numbers of zeros often result in biased estimates 
and misleading inferences if the zeros are not properly addressed. A clinical example of children with 
electrophysiologic disorders in which many of the children are treated without surgery is provided. The 
purpose of the current study was to identify the optimal modeling strategy for highly skewed, zero-
inflated data often observed in the clinical setting by: (a) simulating skewed, zero-inflated count data; 
(b) fitting simulated data with Poisson, Negative Binomial, Zero-Inflated Poisson (ZIP) and Zero-inflated 
Negative Binomial (ZINB) models; and, (c) applying the aforementioned models to actual, highly 
skewed, clinical data of children with an EP disorder. The ZIP model was observed to be the optimal 
model based on traditional fit statistics as well as estimates of bias, mean-squared error, and coverage.
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INTRODUCTION

Modeling discrete data in the health sciences continues to pose a challenge even for the 
most experienced researchers. For discrete outcomes, common methods of data analysis typically 
involve Poisson and negative binomial modeling strategies. However, these seemingly simple and 
straightforward approaches to modeling may not be appropriate when observations include large 
numbers of zeros. Researchers must then consider a new class of models that provides a more flexible 
way to address the discrete data with large numbers of zeros in the dependent variable [1]. 

Data obtained in clinic settings very often yield distributions that are anything but normal. For 
example, in pediatric cardiovascular research, length of hospital stay (in total or in the intensive 
care unit), number of outpatient visits during a given period of time, and children presenting with a 
certain condition, with and without surgery, offer examples in this regard. Given the characteristics 
of many of these distributions, simply using traditional parametric techniques which fail to meet the 
assumptions is likely to produce misleading inferences and conclusions. As a result, zero-inflated 
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models appear to be gaining favor amongst statisticians. For example, Bohning et al. [2] have applied 
zero-inflated models when evaluating intervention effects for decayed, missing and filled teeth in 
dental epidemiology, while Cheung [3] has reported using them in inquiries involving early growth 
and development studies.

This manuscript uses data from pediatric cardiovascular clinical care to illustrate the problem. 
In order to maximize the accuracy and utility of researchers’ findings for modeling the number of 
surgeries for children with electrophysiological (EP) disorders, the use of zero-inflated models may 
be a more appropriate way to avoid bias and a more efficient way of fitting models. To assess the 
effects of covariates on the aforementioned outcome, zero-inflated models will be used to estimate 
parameters and help accommodate violations of underlying model assumptions.

The purpose of this paper is to identify the optimal modeling strategy for highly skewed, 
discrete clinical data with excess numbers of zeros using the following three-step approach. First, by 
simulating a distribution of skewed, zero-inflated count data; second, by fitting simulated data with 
Poisson, Negative Binomial, Zero-Inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) 
models; and third, by applying the aforementioned models to actual, highly skewed, clinical data of 
children with an EP disorder.

METHODS

Study population

The records of 286 children ranging from 8 to 18 years of age at the time of their outpatient 
cardiology visit were used for the clinical portion of this study. All children in the sample were 
diagnosed with an EP disorder, a form of cardiac disease that primarily affects heart rhythm. These 
non-transplant EP children had structurally normal hearts but have undergone heart surgery in 
the form of a catheter-based intervention or implantation of a pacemaker. This study population 
consisted of 147 males and 139 females.

Clinical variables

Data from four variables were used to model the clinic data: cardiac related hospitalization, 
heart block, prematurity, and time. Heart block was characterized as the presence or absence of a 
heart block. Children with heart block had either second-degree atrioventricular block (type 1 or 
type 2), or congenital  or acquired form of complete heart block. Cardiac related hospitalization 
was defined as a binary variable (0 = 2 or fewer visits per year; 1 = more than 2 visits per year). 
Prematurity was defined as any child born prior to 37 weeks gestation. Time was defined simply 
as “time in months” since last hospitalization. Except for time, which was treated as a continuous 
variable, the other three variables were treated as binary variables. This study was a part of a 
larger study for which the approval was obtained from the Institutional Review Board at Cincinnati 
Children’s Hospital Medical Center.

Statistical Analyses

Data analysis proceeded in three discrete stages: (a) simulation phase, which involved simulating 
distributions of highly skewed data that would mimic data observed in the clinical setting; (b) 
modeling phase, which consisted of modeling the simulated data using four different regression-
based techniques (Poisson, Negative Binomial, Zero-inflated Poisson and Zero-inflated Negative 
Binomial); and (c) application phase, which involved modeling actual clinical data using the same 
four regression-based techniques and evaluating model performance in an effort to identify the 
optimal analytical technique for clinicians and applied biomedical researchers. All data were analyzed 
using SAS v9.2.
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Simulation Phase

Data were generated within a mixture distribution framework involving two-step process. In order 
to estimate the zero-part and positive part of the distribution separately, a binomial (n, p

0
) distribution 

was used to estimate the probability of zeros in the data, and a poisson (μ) distribution was used to 
estimate the count part of the data in the simulation process. To determine the estimates for the zero 
part, the probability (p

0
) was generated using a logistic distribution based on zero-inflated covariates. The 

conditional mean of the Poisson distribution was generated by fitting a Poisson distribution based on the 
covariates from the positive count portion of the distribution. To reflect the data, 3 covariates, an intercept, 
a categorical surrogate and a continuous surrogate variable were used for both parts of the mixture model. 
The true values of the estimable parameters for both parts of the mixture distribution were based on the 
estimates obtained from real data. While the categorical covariate was used to mimic heart block (Y/N), 
the continuous covariate was used to mimic time since last hospitalization for children with EP disorders. 
A total of three sets of simulations were conducted with n=1 000 000 for each set.

Modeling Phase

In the modeling phase, the simulated data were fit using Poisson, Negative Binomial, Zero-inflated 
Poisson, and Zero-inflated Negative Binomial probability distributions (see appendix A for the probability 
distribution functions). Model performance and estimates of precision for each of the aforementioned 
models were calculated using bias, mean squared error (MSE) and coverage probability [4].

Application Phase

In the application phase, analyses proceeded in a two-step sequence: first, descriptive statistics 
were computed to describe the basic features of the data and second, the four models discussed 
previously were then applied to the clinical data. A Poissonness plot [5] was generated to determine 
if the data were likely to have come from a Poisson distribution while a Lagrange multiplier (LM) [6, 
7] test was used to check for model over-dispersion. Introduced by Hoaglin, a Poissonness plot is a 
graphical measure based on the Poisson distribution. If the data came from a Poisson distribution, 
then a plot of the sum of the natural logarithm of a frequency of y, and the natural logarithm of 
y! against y should form a straight line. See appendix B for the mathematical derivation of the 
Poissonness plot. Cameron and Trivedi proposed a LM statistic for overdispersion in the Poisson 
model versus the negative binomial regression model. Under the null hypothesis of the Poisson 
model with no overdispersion, the limiting distribution of the LM statistic would follow a chi-square 
distribution with 1 degree of freedom. See appendix C for the functional form of the LM statistic. 
Van den Broek score tests [8]  were used to formally test for zero inflation in the data. The Van den 
Broek statistic is based on a comparison of actual zeros to those predicted by the model to test for 
zero-inflation relative to a Poisson distribution. Under the null hypothesis of no zero-inflation, the test 
follows a chi-square distribution with 1 degree of freedom. See appendix D for the score test formula.

Each of the four models was compared using log-likelihood estimates as a measure of model performance. 
In addition, the Vuong test statistic [9] was used to compare non-nested models (e.g. Poisson versus Zero-
inflated Poisson). The Vuong test (see appendix E) is based on a comparison of the predicted probabilities 
of two non-nested models. We examined model fit by comparing the Akaike information criterion [10] (AIC) 
and predicted and observed probabilities of each count outcome for each probability distribution individually.

RESULTS

Simulation Phase

The purpose of the simulation phase of the study was to generate samples of data similar to 
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that frequently observed in the clinical setting, specifically, skewed data with large numbers of 
zeros. The initial set of true values for the intercept and covariates were based on a Pediatric Cardiac 
Quality of Life Inventory data set in order to represent as closely as possible data obtained in clinical 
practice. In the first set of simulations, six parameters were estimated by using an intercept (α

00
=1.56), 

covariate 1 (α
01
= -1.37) to mimic heart block(s), and covariate 2 (α

02
=-0.04) to mimic time since last 

hospitalization for the zero portion of the distribution, and then an intercept (α
10
=0.21), covariate 1 

(α
11
=0.72) and covariate 2 (α

12
= - 0.02) for the zero portion of the distribution (Table 1). To increase 

the generalizability of the simulation results, two additional sets of simulations were conducted for 
the same six parameters. True values for the second and third sets of simulations were derived by 
adding increments of 0.10 to the true values of the previous sets for intercepts (α

00, 
α

10
) and covariate 

1 (α
01, 

α
11
), and by adding 0.01 to the true values of the previous sets for covariate 2 (α

02, 
α

12
). See 

Table 1 for a list of true values used in this simulation.

Modeling phase for the simulated data 

Once the data were simulated, four different modeling strategies were used to evaluate model fit: 
Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial. Zero-inflated 
Poisson and zero-inflated negative binomial distributions had binary and continuous covariates 

TABLE 1

“True” Values used to generate simulated data
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along with intercept terms for both the zero and positive portions of the model. Table 2 reflects 
the estimated mean and empirical standard error for each parameter of interest in the three sets of 
simulations. The empirical standard error and the average of the within simulation standard errors 
were almost the same for zero-inflated Poisson and zero-inflated negative binomial models, which 
is not the case for standard Poisson or negative binomial models. Consequently, both Poisson and 
negative binomial models would be problematic in making accurate inferences about the parameters 
as well as obtaining correct coverage. 

Table 3 reflects the criteria for evaluating the performances of each modeling technique in terms 
of comparison between the simulated results and true values used to simulate the data for three sets 
of simulation. Estimates of bias, mean squared error and coverage probabilities are reported in Table 
3. For each coefficient, bias appeared to be much larger for both Poisson and negative binomial 
models compared to the zero-inflated Poisson and zero-inflated negative binomial models in all three 
sets of simulations. This finding suggests greater accuracy for zero-inflated Poisson and zero-inflated 
negative binomial models compared to standard Poisson and negative binomial models. For all three 
sets of simulations, MSEs were much smaller for zero-inflated Poisson and zero-inflated negative 
binomial models compared to standard Poisson and negative binomial models. The criterion for 
acceptability of coverage was set such that the coverage should fall within two standard errors of the 
nominal coverage probability [4]. The average length of the 95% confidence interval for the parameter 
estimate was considered as a tool for assessment of coverage. Both zero-inflated Poisson and zero-
inflated negative binomial models maintained correct coverage probability compared to the Poisson 
and negative binomial models.           

In summary, these results suggest that for zero-inflated discrete distributions, fitting with a 
standard Poisson or negative binomial model are likely to lead to misleading inferences about 
parameters. The increased accuracy and precision for the zero-inflated Poisson and zero-inflated 
negative binomial models suggest improvements in efficiency and power compared to standard 
Poisson or negative binomial models.

Application to Clinical Data

The records of 286 non-transplanted children with EP disorders were used for this portion of the 
study. Of this number, 87% (n = 249) had no reported surgical procedures, resulting in an unusually 
high number of zeros for the current sample. See Figure 1 for an illustration of number of surgeries. 
The mean age for this population is 13.2 years (SD = 3.0 years). The maximum number of surgeries 
reported in the sample was five with 6.3% (n = 18) of children having one surgery and 3.85% (n = 
11) of children reporting 2 surgeries. Children with 3, 4 or 5 surgeries accounted for 1.4% (n = 4), 
0.35% (n = 1) and 0.35 %(n = 1) of the data, respectively. Roughly 70% of the children had no more 
than two cardiac related hospitalizations (n = 202). Moreover, in this non-transplant EP population, 
children born prematurely accounted for 15.7% of the sample (n = 45). Approximately 18.5% of the 
children included in the study had heart block (n = 53) and 18 children (34%) with heart block were 
born prematurely. The average time since last hospitalization was 45.19 months (SD = 46.62 months). 

With respect to model diagnostics, a Poissonness plot [5] was used to determine graphically 
whether the Poisson distribution was an appropriate model for this sample. 

The clear curvature of this relationship (Figure 2) suggested that the Poisson distribution did 
not provide a good fit to these data. The Lagrange multiplier (LM) test [6, 7] statistic was 4.48 (p= 
0.03), suggesting the existence of overdispersion due to heterogeneity in the sample and violating the 
Poisson assumption of equidispersion. The Van den Broek score test statistic [8] was used and yielded 
a statistically significant result suggesting existence of overdispersion due to extra zeros [11, 12, 13].

With respect to model performance, the log-likelihood (LL) was used as a measure of each 
model’s performance. Table 4 clearly shows an improvement in model fitting from Poisson (LL = 
-108.64) and negative binomial (LL = -105.10) to zero-inflated Poisson (LL = -90.63), and zero-inflated 
negative binomial (LL = -90.65) models. The Vuong test statistic [9] result reflected that zero-inflated 
Poisson performed better than standard Poisson (3.54, p<0.01), which also holds for zero-inflated 
negative binomial vs. negative binomial (3.85, p<0.01). 
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TABLE 2

Simulation results for each set of “True” Values

Note: NB, Negative Binomial; ZIP, Zero-inflated Poisson; ZINB, Zero-inflated Negative Binomial; M(SD), Mean(Standard Deviation); 
M(eSE), Mean of Estimated Standard Error 
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TABLE 3

Accuracy and precision of simulation results for each set of True Values
for the positive part of the distribution fitted by four models

Note: NB, Negative Binomial; ZIP, Zero-inflated Poisson; ZINB, Zero-inflated Negative Binomial; B, Bias; MSE, Mean Squared Error; C, 
Coverage Probability

TABLE 4

Clinical data: model selection 

Note: NB, Negative Binomial;  ZIP, Zero-inflated Poisson;  ZINB, Zero-inflated Negative Binomial
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Next, predicted and observed probabilities of each outcome were compared. The AIC values for 
zero-inflated Poisson (AIC=205.27) and zero-inflated negative binomial (AIC=205.28) models were 
smaller compared to standard Poisson (AIC=231.28) and standard negative binomial (AIC=220.20) 
models and, hence, suggested better fit for the data using zero-inflated regression. The zero-inflated 
Poisson and zero-inflated negative binomial models predicted each count outcome very close to the 
observed counts, suggesting better fit than standard Poisson and negative binomial models. Based 
on the above mentioned criteria for model selection and evaluation, we opted for the zero-inflated 
Poisson model for fitting the clinical data.

Count portion of the model 

In the count (Poisson) portion of the model, hospitalization, presence of heart block, time 
from last hospitalization, prematurity and interaction between heart block and prematurity were 
all observed to be statistically significant predictors of number of surgeries. For the children with 
more than two hospitalizations for cardiac related issues, the risk of an additional cardiac related 
surgery was six times greater than for children who had two or fewer hospitalizations for cardiac 
related issues. With respect to the statistically significant interaction term, when we conditioned on 
heart block specifically, premature children had approximately 1.5 times greater risk of having a 
subsequent surgery than children who were not born prematurely (RR = 1.48, 95% CI (0.84, 2.11)). 
The statistically significant time variable indicated that for each one unit increase in time since last 
hospitalization there was a 1.1% decrease in expected number of surgeries. 

Binary portion of the model  

In the binary (logistic) portion of the model, three variables emerged as statistically significant 
predictors of number of surgeries: time (p = 0.01), prematurity (p = 0.05), and heart block×prematurity 
interaction effect (p = 0.05). Although two of the variables sit squarely on the cusp of statistical 

TABLE 5

Clinical data: results from zero-inflated Poisson model

Note:  The logistic portion of the table provides results for the portion of the data that consist of always 
zero while the Poisson portion of the table consists of the sampling zeroes as well as positive integer 
portion of the data
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significance (i.e., heart block and heart block prematurity interaction), we elected to treat them as 

truly significant predictors given the instructional nature of the example. It must be kept in mind 
that the interpretation of the binary portion of the model is different from the interpretation of the 
count portion. Although we are still trying to estimate the relationship between each of the clinical 
variables and a binary outcome, here the two levels of the binary variable consist of either structural 
(or true) zeroes or sampling zeroes that follow the Poisson distribution. 

Consequently, the negative relationship between time since last hospitalization and the “no 
surgeries” portion of our outcome indicates an inverse relationship between time and “true” zeroes. 

FIGURE 1

Number of surgeries for non transplant children diagnosed with electrophysiological disorder 
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Poissonness plot of the clinical data 
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That is, as time increases (measured in months), there is a greater likelihood of a positive number 
of surgeries in the future. (OR = 0.92, 95% CI (0.87, 0.97)). The presence of a statistically significant 
interaction term indicates that premature children with heart block have a 60% higher odds of having 
surgery compared to non-premature children with heart block in this study population.

DISCUSSION

Appropriate modeling for number of surgeries in children diagnosed with EP disorders has 
some very obvious and important implications for clinicians and health service researchers. Most 
importantly, the presence of excess numbers of zeros in a dependent variable (i.e., number of 
surgeries) makes it extremely difficult to model using traditional parametric techniques. 

This paper examines the utility of zero-inflated models, which are suitable when the excess 
number of zeros exceeds the number predicted by regular Poisson or negative binomial models. 
Hence, use of the more traditional Poisson or negative binomial models may actually lead to 
misleading inferences when interpreting the covariates of interest. Another clear advantage of zero-
inflated modeling techniques is the ability to simultaneously examine the effects of covariates in 
both the zero and Poisson/negative binomial components of the model. When the zero-inflated 
Poisson model was applied to the clinical data, an interesting pattern emerged. A mixture model of 
two discrete distributions, logistic and Poisson, was deemed to be not only necessary, but crucial for 
analysis due to the complex nature of the distribution. Two of the most defining characteristics of 
this sample included an excessively high number of zeros (children without surgery) as well as a very 
skewed pattern to the discrete distribution (some children with as many as 2 through 5 surgeries). 
The characteristics of two very different distributions required the use of two different probability 
distributions for understanding the true nature of the sample data.

The process of choosing the best model is a trade-off between accuracy and simplicity. In this 
clinical example, while the Poisson modeling is the simplest model analytically, it underestimates 
the number of children who have not had any surgery. This is likely due to overdispersion, resulting 
from an excess number of zeros and a single Poisson parameter that is not sufficient to describe the 
population. A major assumption of the Poisson model is that the variance is equal to the mean. This 
assumption is violated in the presence of excess zeros in the data. To model the clinical data involving 
number of surgeries for children with EP disorders who have not had a heart transplant, the zero-
inflated model was the clear choice based on the Vuong statistic discussed in the previous section. 
Both zero-inflated Poisson and zero-inflated negative binomial approaches resulted in many identical 
estimates, suggesting that once overdispersion has been accounted for, there were no other forms 
of heterogeneity in the sample data. Because zero-inflated Poisson was simpler than zero-inflated 
negative binomial model, we opted for the former.

There remain several notable limitations to this study. First, zero-inflated models involve 
complicated techniques not easily accessible to the clinicians. Second, they require estimation of 
a relatively large number of parameters. Third, there is no readily available software to assist the 
clinicians in analyzing this type of modeling technique, requiring outside assistance from a trained 
statistician.

Zero-inflated regression techniques were first introduced in the early 1990s’ and continue to be 
used with increasing frequency in statistical methodology but have yet to gain a foothold in clinical 
sciences, especially in pediatric research. As zero-inflated modeling techniques become more widely 
used in medical research, clinicians will have more analytical tools at their disposal. Clinical science, 
by extension, will evolve beyond the existing set of general linear modeling techniques used today. 
The nature of mixture distributions will provide much more compelling and accurate results to all 
researchers, instead of those available through simple linear or log-linear modeling techniques. 

An earlier version of this paper was presented at the 2010 Joint Statistical Meeting, Vancouver, BC.  
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APPENDIX A

The probability distribution of Poisson distribution is given by:
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The probability density function of the Zero-inflated Poisson is given by:
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The probability density function of the Zero-inflated Negative Binomial is given by:
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APPENDIX B

Poissonness plot

For a sample of N, the expected frequency from Poisson distribution can be written as:
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APPENDIX C

The Lagrange Multiplier test statistic for overdispersion can be written as:
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APPENDIX D

Van den Broek score test is based on the comparison of actual zeros to those predicted by 
the model. The test statistic can be written as :
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I(y

i
=0) is an indicator function with values equal to 1 if a given observation equals 0. Under 

the assumed poisson probability distribution, π
0i
  denotes the probability of observing zero for 

the ith observation in the sample. The probability is allowed to vary by observation.

 

APPENDIX E

Sas code for Vuong test for Model fitting 

proc nlmixed data=pcqli;

  parms   bll_0=0 bll_1=0 bll_2=0 bll_3=0 bll_4=0 bll_5=0   ;

  eta_lambda = bll_0 + bll_1*cbohoscr+ bll_2*hb +bll_3*prem 
              + bll_4*timehosm +bll_5*hbprem ;

  lambda = exp(eta_lambda);
  loglike = hcs*log(lambda) -lambda - lgamma(hcs+1);

  model hcs ~ general(loglike);  predict _ll out=LL_1;

estimate "lambda " lambda;
predict lambda out = poi_out (rename = (pred = Yhat));

run;

proc nlmixed data=pcqli;
 
  parms bp_0=0 bp_1=0 bp_2=0 bp_3=0 bp_4=0 bp_5=0

        bll_0=0 bll_1=0 bll_2=0 bll_3=0 bll_4=0 bll_5=0;

  eta_prob = bp_0 + bp_1*cbohoscr+ bp_2*hb +bp_3*prem
             + bp_4*timehosm + bp_5*hbprem ;

  p_0 = exp(eta_prob)/(1 + exp(eta_prob));

  eta_lambda =bll_0 + bll_1*cbohoscr + bll_2*hb +bll_3*prem + 
              bll_4*timehosm +bll_5*hbprem ;
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lambda = exp(eta_lambda);
 
  if hcs=0 then prob = p_0 + (1-p_0)*exp(-lambda);
  if hcs=0 then loglike = log(prob);
  else loglike = log(1-p_0) + hcs*log(lambda) -lambda - lgamma(hcs+1);
  model hcs ~ general(loglike);

predict eta_lambda out = zip_out1 (keep = pred ahci rename = (pred = Yhat));
predict p_0 out = zip_out2 (keep = pred rename = (pred = p_0));
predict _ll out=LL_2;

run;

/*  Vuong Test : ZIP VS. Poisson *********/

title1 'Vuong test for ZIP vs. poisson';
title2 'H0 = no improvement of ZIP over poisson';
data ll_diff;
  merge ll_1 (rename= (pred=ll_poisson))
	 ll_2 (rename= (pred=ll_zip)); 
run;
data ll_diff;
  set ll_diff;
  lr_i = ll_zip - ll_poisson;
  keep ll_poisson ll_zip lr_i;
run;
proc means data=ll_diff vardef=n;
  var lr_i;
  output out=vuong_stats mean=LR var=V_lr_i n=n;
run;
data vuong_stats;
  set vuong_stats;
  Vuong = (LR /sqrt(V_lr_i/n));
  p = 2*(1-probnorm(vuong));
  put vuong= p=;
run;
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