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This paper reviews the concept of Reproducibility Probability and makes a brief introduction
to RP-testing. The RP-based version of some common parametric tests is provided. More-
over, particular attention is devoted to the well-known nonparametric Wilcoxon Rank-Sum
test. A comparison between the properties of the RP and the p-value is made in order to
evaluate the practical utility of these stability indicators. It turns out that the use of the RP
to perform statistical tests and to interpret their results, requires more technical analysis,
but it provides more interpretable direct information on the stability of the test results.
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1 INTRODUCTION

The reproducibility of a given experiment is a pillar of the Galilean method. Roughly speaking,
a scientific theory can be supported by the empirical evidence provided by an experiment only
when the latter is reproducible, i.e. if the experiment can be replicated under the same conditions
every time it is desired. This requirement is very intuitive: a single, non-reproducible experiment
cannot validate a conjecture or a theory. This is due to the fact that all experiments are affected
by casualty and it is necessary to be sure that randomness has not played a substantial role in
producing the particular observed result. Indeed, if an experiment is reproducible, the impact
of randomness vanishes, because previous results can be confirmed or confuted in subsequent
identical experiments.

In many situations of practical interest, it is not possible to repeat a particular reproducible
experiment many times. For example, a clinical trial performed to assess the benefit of a new
drug can be, in theory, replicated, but, is performed only once, or at most, twice since it is
very cost-prohibitive both in money and time. In such a situation, a methodology to asses the
reproducibility of a single experimental result is essential. A precise methodology can be provided
if experiments are evaluated by means of a statistical test. In this case, the reproducibility of the
experimental results should be interpreted as the reproducibility of statistical significance, which
can be evaluated by computing the Reproducibility Probability (RP) of the test (see [1] and [2]).
The RP of a test coincides with the probability of obtaining a rejection of the null hypothesis Hy
(a statistically significant result); its name is due to the fact that it is usually computed when
a first experiment produces a significant result, in order to evaluate the probability of obtaining
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statistical significance also in a second, identical, experiment. Naturally, the RP of a test is
unknown since, for example, it depends on the true effect of the drug studied in a clinical trial:
the greater the effect of the new drug, the greater the probability of obtaining a statistically
significant result. Nevertheless, as we will show in detail later, the RP can be estimated using
observed data, providing direct information on the stability of the test outcome. Moreover, the
RP estimate not only evaluates how much a significant result is reproducible, but it can also play
the role of a test statistic. In detail, there exists a general threshold for the statistical significance
based on the RP-estimate, that is 1/2. The decision rule is, therefore: "the null hypothesis is
rejected when it is estimated that there is more inclination to reject it than to accept it". This
testing technique, hereafter called RP-testing, has been introduced in [8] and it is quite general.
The testing rule holds, indeed, for the most commonly used parametric tests, such as the test
on one proportion, those on the mean and the variance with normally distributed data, those
comparing two proportions, or two means and two variances with normal data. Moreover, it
holds, approximately, on some nonparametric tests (one sample Wilcoxon test, Wilcoxon Rank-
Sum test, Kendall test). These results make the RP a direct competitor of the p-value. The
latter is commonly used in order to perform a test and, at the same time, to evaluate the conflict
of the data with the null hypothesis. Moreover, it is commonly thought that a very small p-
value corresponds to a highly reproducible significant result but, as clearly explained in [1], the
conclusion taken on the base of the p-value is, in general, too optimistic. This is due to the fact
that p-value measures how strongly the data contradict the null hypothesis, and not directly the
reproducibility of statistical significance.

The aim of this paper is to provide a brief introduction to RP-testing, making also a com-
parison between the use of RP and p-value. In detail, the paper is organized as follows. In
Section 2 we recall some preliminary concepts concerning the general theory of statistical tests.
In Section 3 we introduce the concept of Reproducibility Probability and we show how the later
can be estimated and used in order to test statistical hypotheses. Section 4 is devoted to the
exact RP-testing for some common parametric tests while Section 5 concerns the approximated
RP-testing with special emphasis on the Wilconon Rank-Sum test. In Section 6 we compare the
RP and the p-value in order to explain why it is advisable to perform and evaluate the stability
of a statistical test using the RP-estimates. Finally, Section 7 is devoted to the conclusions.

2 DEFINITION AND PRELIMINARY CONCEMPTS

Let X be the random variable (or the random vector) describing a particular feature of a given
population and let F' denote the probability distribution function of X. A statistical hypothesis
is an assertion concerning the distribution F' of X. In practice, it is usually of interest to discuss
two different statistical hypotheses, the null hypothesis Hy and the alternative hypothesis Hj.
The comparison of these two hypotheses gives rise to a testing problem that can be solved by
means of a statistical test. In detail, a statistical test is a rule or procedure, based on a random
sample (X1, ..., X;,) drawn from F, for deciding whether to reject Hy and, eventually, to accept
Hy. In more detail, let X denote the sample space of observations; that is:

X ={(z1,...,xn) € R" : (z1,...,,) is a possible value of (X1,..., X,,)} .

A statistical test is built by defining a subset C of X, named critical region, which leads to the
following rule: accept Hj if, and only if, (Xi,...,X,,) € C. Such a decision rule implies two
kinds of errors. In detail, the rejection of Hy when it is true is called a Type-I error, and the
acceptance of Hy when it is false is called a Type-II error. The definition of the Type-I and Type-
IT errors provides a useful instrument in order to choose a particular critical region. In detail it
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is common practice to pre-specify a “desired” level of the Type-I error, usually denoted by «, and
then searching an “optimal” critical region among them of level a. A natural optimality criterion
is the following: let C, and C/, be two level-a critical regions and let 8 and 8’ be the probability
of a Type-II error associated to C, and C,, respectively. If § > [’ then the critical region C/, is
better than the critical region C,. The above criterion leads to the notion of most powerful test
or, more generally, to the notion of Uniformly Most Powerful (UMP), Uniformly Most Powerful-
Invariant (UMPI), and Uniformly Most Powerful-Unbiased (UMPU) test. A detailed discussion
of these topics goes far beyond the scope of the work objectives. We refer the interested reader
to [4]. Here, it is worthwhile to note that the above optimality criterion introduces a hierarchy
between the compared statistical hypotheses. In particular, the criterion just described puts the
null hypothesis on a higher level, since the prescribed level o controls the probability of a false
rejection of Hy, while the value of 5, even if it is minimized, remains unspecified.

It is common practice to represent a statistical test by means of the so called critical function:

\Ila(Xla aXn) =

{ 1 if (Xl, ,Xn) S Ca (1)

0 otherwise

The above representation highlights that a statistical test is a Bernoulli random variable and,
then, it underlines the random nature of the statistical test results.

The statistical tests are generally divided into two main groups: parametric tests and non-
parametric tests, where the former are the most widely applied in medical statistics. In the
parametric context it is assumed that the random variable X has a parametric distributional
model described by the density f(-;6). The distributional model is known, but the true value of
0 is unknown, and it is of interest to test the following one-sided hypotheses:

Hy: 0<6 VS Hy:0>0q . (2)

Let 6 = h(Xjy, ..., X)) be an estimator of the unknown parameter 6 and let Ky be the distribution
function of 6:

Koly) =Py(0 <) .

Usually, the estimator 6 can be used as test statistic. In detail, let us assume that 0 is stochas-
tically increasing in ¢ and that the null distribution Ky, is known. Moreover, denote by k, the
g-quantile of Ky,. Under this assumption, it is possible to define the level-a critical region

Co = {(azl,...,xn) EX:é>k‘1,a} (3)

which corresponds to the decision rule: “Hj is rejected if, and only if, the estimate of 0 is greater
than ki_,”. It is easy to verify that the maximum probability of a Type-I error associated to
the above critical region is a. Indeed, the probability of Type II error associated to the critical
region C, depends on # and it coincides with

B(O) = Py > k1—a) - (4)

It is worthwhile to note that, in order to define the critical region C,, it is only necessary to
know the null distribution Kjy,, that is, the knowledge of the non-null distribution is not an
essential element in order to define a statistical test. However, if the distribution Kj is known
for all values of 0, it is possible to evaluate, through (4), the magnitude of the probability of the
Type-1I error and, then, it is possible to evaluate “how good” the test is. In order to evaluate the
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performance of a statistical test, it is unusual to refer directly to (), and it is more common
to use the concept of power function of the test:

(@) =1—-p5(9) .

Naturally, the greater the power the better the test. Moreover, it is well-known that, the power
function coincides with the expectation of the critical function of the test as a function of 6. In
other words, it is the expectation of the test in function of 0:

7(0) = g (X1, ..., Xn)] - (5)

3 RP ESTIMATION AND TESTING

From (1) and (5) it follows that the statistical test is a Bernoulli random variable with unknown
parameter 7(f). This fact highlights that the random nature of the test is completely described by
the unknown value of 7(6) and, then, the power is a perfect tool in order to evaluate the variability
of the test results. Moreover, the evaluation of the true power of a test is particularly important,
since it can be interpreted as RP. Roughly speaking, once a statistical test is computed referring
to data from a particular experiment, the true power is the probability of obtaining the same test
result in a second, identical experiment. In detail, if we accept Hy in the first experiment, the
probability to accept Hy even in the second experiment coincides with 1 minus the true power.
Otherwise, if we reject Hy in the first experiment, the probability of a further rejection is the
true power itself. The interpretation of the true power in terms of RP is particularly meaningful
and clearly shows that the power is not only a technical concept useful in order to define an
optimality criterion.

In the following, in order to avoid confusion between the concept of power function and the
concept of true power, we will use the terminology used in [1] and we will refer to the true power
as the Reproducibility Probability of the test. In detail, let 6* denote the true value of 8. The
Reproducibility Probability of the test is RP = 7(6*). Naturally, the value RP is unknown since
0* is unknown too. So, a natural question is: how to estimate it? Since the RP coincides with
the parameter of a Bernoulli random variable, it seems natural to estimate it as the proportion
of rejections of Hy in a sequence of repeated tests. However this solution is unfeasible since, in
practice, only one test is performed. Another solution (see [2] or [3]) is to start from an estimator
of # and, then, plugging it into the power function. For example, a very natural RP-estimator is

~

RPo =n(6") (6)

where 0 is such that P [é' < 0*} = 0.5. In [3], the RP-estimator (6) is referred to as “50%-lower
bound for the RP” since it can be interpreted as the lower bound of a unidirectional confidence
interval for the RP at 50% confidence level. However, note that, it is a point estimator since,
rougly speaking, it equals the 50%-upper bound. Recently, [3| showed that the reproducibility
probability estimators ]/%]\Da can also be used for testing hypotheses (2). In particular, under
some mild regularity conditions, it is shown that }/EI\DQ > 1/2 if and only if the null hypothesis is
rejected. It then follows that the statistical test described by the critical function

1 if RPy>1/2

i 7
0 if RP,<1/2 0

U (X, Xy) = {

is equivalent to the statistical test defined by the critical region (3). In the following we will use
the expression “ RP-testing” to indicate the usage of the critical function (7) in order to test the
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hypotheses (2). Moreover, it is well-known that a statistical test can be performed by means of
the p-value, denoted by PV, which induces the following critical function

1 if PV <«

\I/a(Xl""vXn) = { 0 if PV >« : (8)

So, under some mild regularity conditions, there are three equivalent ways to perform a para-
metric statistical test and, in the following, we will discuss the strengths and weaknesses of each
one.

For the nonparametric tests, it is harder to demonstrate that it is possible to test one-
sided statistical hypotheses through the reproducibility probability estimates. This is due to the
fact that it is not possible to define the power function without making some kind of parametric
assumptions. A detailed discussion of this topic goes far beyond the scope of the work objectives.
However, we will analyze in Section 5.2 the case of the Wilcoxon Rank-Sum test showing that
—for this test— it is possible to perform RP-testing, at least asymptotically.

4 EXACT RP-TESTING FOR SOME COMMON PARAMETRIC TESTS

A common problem arising in the analysis of clinical trials is the comparison between two different
drugs or treatments. If the effect size of the two treatments is measured by the mean of the
variable of interest and it is assumed that the effect of both treatments is normally distributed,
then the well-known “Z” and “t” tests for the comparison of two means can be used to detect the
most effective treatment. In the following, we briefly recall these two tests with special emphasis
on their RP-based version.

4.1 The “Z" test for the comparison of two means when sampling from two normal pop-
ulations with known variances

Let X and Y be the random variables describing the efficacy of the two treatments. Assume that
X and Y are independent normally distributed with (unknown) expected values and variances
given by px, py, 03(, and 012,, respectively. Moreover, in the following we assume that the
variances Jg( and 032/ are known. To ease the exposition, hereafter we will refer to the treatment
described by X as the placebo. So, let X1, ..., X,, be the random variables describing the effect
of the placebo on m patients. Similarly, let Y7, ..., Y,, be the random variables for the n patients
under treatment. If px and py represent, respectively, the effect sizes of the placebo and the

treatment, then the statistical hypotheses of interest are
Hy: py <px vs  Hy: py >px . (9)

Under the assumptions previously specified, the hypotheses (9) can be verified using the following
test

_ _ 2 2
1 if V-X>z_,/X4+X
U (X1 o X3 V1, .Yy) = ' Ao\ 5t (10)

- _ _ 2 2
0 if V-X<z o2+

where a denotes the pre-specified level of the Type-I error probability, X = %Z:’;l X,
Y = %Z?:l Y;, and z1_4 is the (1 — «) quantile of the standard normal distribution, that
is: 214 = ®1(1 — a), where ® denotes the standard normal distribution function. As it is
well-known, the above test can be performed using the p-value which, in this context coincides
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with
Yy - X
PV=1-9® (11)
ay_i_i

and the test (10) is equivalent to

1 if PV<a«a

0 if PV >a (12)

\I’a(le "'aXm;Yla Yn) = {

In order to introduce the RP-based version of the test (10) it is necessary to define the power
function of the same test. Being k = uy — pux, the power function of the test (10) is

o o2 o2
m(k;m,n,o,0%,0%) = Pp|Y =X > 21 0\ ~ + X
n m
k
= 1-0 Zl—a — TS . (13)
g g
%+ %

In the following we will denote the power function m(k;m,n, a, 0%, 0% ) simply with 7 (k).

Now, it is worthwhile to observe that the estimator k= (Y — X) is unbiased for k= py —px
and it is symmetrically distributed (in detail, it is normally distributed). Then k* = k and,
following 3|, the RP estimator

RPy=1-® | 210 — i (14)
A
can be used to define the following test
Uo(Xp oo X Vi, Yy) = {1 1T BP0 > 1/2 (15)
0 if RP,<1/2

which is equivalent to test (10) and (12). To clearly see that the test (15) is equivalent to test (10)
observe that, as shown in Figure 1, the power function 7 (k) is strictly increasing in k. Moreover,

2 2
when k is equal to the critical value 21_o\/ 2 + ZX 7(k) equals 1/2:

2 2
F(Zl_a %—FU—X) =1/2 .

m

— _ _ o2 g2
Therefore, RP, > 1/2 if, and only if, Y — X > 21 4\/ " + .
It is worthwhile to note that between the p-value and the RP of the test (10) there exists a
1 to 1 correspondence. In detail, from definition (11) it follows that:

A~

k
Y =371 -PV) . (16)
N 1
Consequently: -
RPa=1-®[z1_o—-® ' (1-PV)] . (17)

In Figure 2 the plot of @ as a function of p is shown. Moreover, in Figure 3 the difference
between the p-value and RP, is graphically displayed.
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Figure 1. Power function of the test (10) when m =n = 10, 0% = 0% = 1 and a = 0.05.
The plot emphasizes that the test (15) is equivalent to the test (10) since it clearly shows that

é]\-’a >1/2ifandonly if Y — X > 21,4/ % + % Moreover, the plot illustrates how the
estimator P/Eﬁa is defined by the simple plug-in method.

(k)

A
Py

0.5

0 zi_go2/n+c2/m Y-X K=Hy = Hx

4.2 The “t" test for the comparison of two means when sampling from two normal
populations with common unknown variance

Let X and Y be two independent and normally distributed random variables with (unknown)
expected value and (unknown) common variance given by px, py, o2, respectively. In order to
test hypotheses (9), it is possible to use the well-known “t” test:

1 if V=X >t o(m+n—2)/52 (%)

Uo(Xpy oy X3 Y1, 0, Yy) = o o (18)
0 if ¥ =X <tj o(m+n—2),/52(2tn)

where t1_,(v) denotes the (1 — a)-quantile of the Student’s ¢ distribution with v degrees of
freedom and Sg denotes the pooled estimator of the common variance:

g _ (m-1)S% +(n-1)5¢ S (X = X2+ 300 (Y - Y)?
P m+n—2 a m+n—2
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Figure 2. Behavior of the RP estimator (14) as a function of the p-value.

A
1o
1
0.5
0 o 1 pv
In this context the p-value coincides with
Y - X
PV =1—"Timin—2 T (19)
SP ( mn )

where 7, denotes the Student’s ¢ distribution function with v degrees of freedom. Naturally,
the p-value defined above, can be used to define a test equivalent to (18) using the well-known
decision rule defined in (8). In order to define the power function of the test (18), we recall that

(20)

follows the non-central ¢ distribution with (m 4+ n — 2) degrees of freedom and non-centrality
parameter given by

mn 1/2 Hy — X
( > k with k=——"— .
m—+n o

Let 7;5 denote the non-central t distribution with v degrees of freedom and non-centrality pa-
rameter d. Then, the power function is given by:

mn )1/2

(k) = 1= T\m5) e mtn —2)) (21)

m—+n—
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Figure 3. Graphical representation of the pv value and 7p,,. The solid curve represents the
null distribution while the dotted curve coincides with the density of Y — X when

1y — pix = 3§ — T. The estimates of the RP is the light gray area while the p-value coincides
with the dark gray one. In the graph, ¢, denotes the critical value and the dashed area equals
Q.

Co Y—X

The non-central ¢ distribution is not symmetric and, consequently, the RP-estimator él\Da is
not defined by the simple plug-in method as in the previous section. In detail, to calculate the
estimator RPa it is necessary to obtain the point estimator k* which is implicitly defined as the
solution of the equation

pe () ke _(mn V2
k Pty (m+n-—2)= - k

where tg(y) denotes the g-quantile of the non-central ¢ distribution with v degrees of freedom and
non-centrality parameter §. The above equation can not be solved analytically but it is easily
solved numerically. Again, starting from the estimator ]/%J\Da = ﬂ(l%.) it is possible to define the
test (7) which, following the results in [3], turns out to be equivalent to test (18).

5 SOME EXAMPLE OF APPROXIMATED RP-TESTING

In several applications, the assumption of normality of the parent distributions would be inap-
propriate. Furthermore, there are situations of practical relevance where it is not possible to
advance any assumption on the distributional model for X and Y. In these cases, the problem of
comparing the effects of the treatments described by X and Y, can be solved using, among oth-
ers, the well-known asymptotic “Z” test for the comparison of two means, or the widely applied
nonparametric Wilcoxon Rank-Sum (WRS) test. In the following two subsections, we will show
how to define the RP-hased version of these two tests. Tt is worthwhile to note that. in these
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two cases, the RP-based test is not exact (i.e. its level is only approximately «). In detail, it is
possible to replicate the asymptotic “Z” test for the comparison of two means with an RP-based
test but the latter is not exact since also the first is approximate. A different scenario arises
when analyzing the WRS test. In fact, in this case the exact WRS test is well defined since
the null distribution of the WRS statistic is well-known. On the contrary, the exact distribu-
tion of the WRS statistic can not be, in general, derived under the alternative hypothesis and,
consequently, the exact power of the test can not be defined. As a consequence, it is possible to
perform the exact WRS using the critical value or the p-value, but no exact RP-based test can
be defined. However, as outlined in section 4.2, the WRS test can be approximately replicated
using an RP-estimator. Moreover, in Section 4.2 we will show that the asymptotic RP-based
test approximates the exact WRS test very well.

5.1 The asymptotic “Z” test for the comparison of two means when sampling from two
arbitrary distributions with unknown, finite, variances

If X and Y can not be retained Gaussian and it is not realistic to assume that (T%( = 052/, the
testing problem (9) is usually solved assuming that 0% and o% are finite and, then, using the
following result: o

(V= X) = (uy — pix) o

Sy L 5%
T

N(0,1) . (22)

In the previous expression ~ stands for “asymptotically distributed”. Then, if n and m are large
enough to justify the application of the asymptotic approximation (22), the following asymptotic
test can be used:

1 if VY=X>z2_,\/X
R . (23)
0 if V=X <z g/

n

Wo(X1, oo Xons Vi, oY) =

n n
o

+ |+
3|>§?c 3|><(’J

Naturally, the actual level o* of the above test is different from the nominal level a. However,
the difference between a and o* decreases as n and m increases and it becomes negligible if n
and m are sufficiently large (it is common practice to retain that the test (23) can be applied
when n > 50 and m > 50).
In analogy with Section 4.1, it is possible to define the RP-estimator
— Y- X
Rpazl—q) Zl_a—ﬁ (24)
5T, 5%
n m

which defines, through (15), a test equivalent to (23).

5.2 Approximated RP-testing for the Wilcoxon Rank-Sum test

The WRS test is a very widely used nonparametric test for comparing the distributions F' and
G of the continuous random variables X and Y, respectively. The testing problem solved by the
WRS test is often presented as follows (see, e.g. [4]):

Ho:YLX vs H:YV>uX, (25)
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”

where “2” means “equality in distribution”, and “>” stands for “stochastically strictly larger
in the sense of the usual stochastic ordering”. Starting from the independent random samples
(X1,...,Xm) and (Y1, ...,Y},), the test statistic is:

m n
W = Z I;; where

{1 if X; <Y
Iij =
1

0 otherwise
=17
Note that W is strictly related to the following estimator of p; = Prg(X <Y):

. w
p1=—".
mn
Moreover, it is worth noting that this is not a test on the difference between the medians of two
populations, although sometimes it is referred to in this way.
Let « be the Type-I error probability and let w;_, denote the (1 — «)-quantile of the exact
null distribution of W, which can be exactly calculated. Then, the WRS test is:

1 if W >wi_,

0 if W S W] —q (26)

\I’Q(Xl, ...,Xm; Yl, ,Yn) = {

The power of the test is, hence:
W(F7 Ga m,n, a) = PF,G(W > U)]_,a) .

We recently showed that (see [5]), under certain quite general conditions on the distributions
F and G and under the knowledge of F', there exists an RP-estimator assuring that the RP-
based test is equivalent to the classical WRS test (26). Since this result is merely theoretical
(because in practice F' is unknown) applied RP-testing needs an approximation of the power
function to derive, through the plug-in principle, the related RP-estimator.

An approximation for the power is derived from the asymptotic normality of W. In detail,
being po = P(X <Y AX <Y') (Y and YV ii.d.), and p3 = P(X <Y A X' <Y) (X' and X
i.i.d.), in [4] it is shown that, when n and m diverge together, we have:

W — mnp;

V(p1,p2,p3) b N(O, D =0

where V (p1, p2, p3) = mnp1 (1 —p1) +mn(n—1)(ps — p?) +mn(m — 1)(p3 — p?) is the variance of
W. The limit distribution (27) can be used to define several estimators of 7(F, G;m,n,a), that,
in practice, represent RP-estimators that might be adopted to perform RP-testing. Some of
these estimators have been recently presented in [6] and they have been applied to RP-testing,
showing very good performances. In more detail, directly from (27) it turns out that

1 mn(N+1)
mn (p1 — 3) — Z1—a\/ g
m(F,G;m,n,a) ~ ® ( 2) ° 12 (28)
V(p17p27p3)
From expression (28) the following RP-estimator can be introduced:
A 1 mn(N+1)
— mn (P — 35) — 21—a\/ —5—
RP, — & ( 7) o 12 (29)

V(ﬁl?ﬁ?:ﬁ?))
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where

1 m n n 1 m m n
ﬁQZ%ZZZL’inka ﬁ3:WZZZIijij .
i=1 j=1 k=1 i=1 k=1 j=1
Several RP-estimators can be obtained from particular simplifications of (28). The latter lead
to power approximations that depend only on p;. The most known simplification is due to [7],
where it is assumed that the difference between F' and G is quite small, so that the variance of
W can be approximated by its value under Hy, i.e. V(p1,p2,p3) = mn(m +n+ 1)/12. Being
N = m + n, the resulting power approximation is:

12mn 1
v (m-g) - zla] (30

Tna(F,G) =~ ®

and the related RP-estimator becomes:

Vo (e g) -aee] 3

Another RP-estimator performing well is derived from a result provided by [8], who obtained
bounds for the variance of W in function of p;. In particular, they showed that V' (p1,p2,p3) <
Vu(p1), where

—

RP, =@

_ U(pl7m7n) Zf % S p1 S 1
VU(pl)_{ Ul —-pi,n,m) if 0§p1<%

and

U(p,m,n) = mn [v (g— (1—p)2> b (—é—k—kl—pZ) +§—p(1—p)]

with u = min(m,n), v = maz(m,n) and k = 1 — (2p — 1)3/2. The related estimator is, hence:

~ 1 mn(N+1)
_ mn (p1 — 3) — Z1-a
RP, =& (b1~ 5) _ 2 . (32)
Vi (p1)

Other RP-estimators can be found in [6]. When these RP-estimators are adopted for RP-
testing, the resulting RP-based test (15) does not exactly correspond to the classical, exact,
WRS test. In order to evaluate the discrepancy between these two tests, it is useful to introduce
the contingency table described in Table 1, which represents the joint distribution of the WRS
test W, (W) and its RP-based version ¥, (ﬁ]\Ja>

The outcomes (1,0) and (0,1) represent the possible disagreement between the tests, and
have probability €; and €9, respectively. Note that, under the alternative hypothesis, the powers
of the classical WRS test and of the RP-based test are E[V,(W)] = 7 and E[Wa(ﬁa)] =7,
respectively. On the contrary, under the null hypothesis, 7 and 7’ coincides with the actual
level of ¥, (W) and ¥, <}/21\3a> In [6] a wide simulation study is performed to evaluate the

performances of several RP-estimators obtaining that the RP-estimator that performs better,
both in terms of disagreement and Mean Square Error (MSE), is (32). In order to give an idea
of the possible disagreement between the WRS test and the RP-based test build starting from
estimator (32), let us consider the following scenario:
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Table 1. Joint distribution of the WRS test U, (W) and its RP-based version U, (EI\DQ>

v, (ETD(X)
Uo (W) 0 |
0 1—7m—¢€ €1 1—m
1 €9 T — €9 T
1—x 7

Table 2. Joint distribution of ¥, (W) and ¥, (}/%?’a) when k = 1. In this scenario the
percentage disagreement is 0.046%

v, (RP.)
T.(W)| 0 1
0 0.95050 0.00046 | 0.95096
1 0.00000 0.04904 | 0.04904
0.95050 0.04950 | 1.00000

e X follows the exponential distribution with parameter 8 = 1 while Y follows the exponential
distribution with parameter § = k£ > 1. In this case we have that Y 4 EX.

e we choose the following 3 different values for k: k& = 1, which correspond to the null
hypothesis of equality in distribution; k = 1.45; k = 1.9;

e m =n = 60;
e o= 0.05

In a Monte-Carlo study with 100.000 replications we obtain the contingency tables reported in
Table 2-4 which describe the simulated joint distribution of W, (Eﬁa) and U, (W) for the 3
different values of k.

As it can be observed from the above tables, the probability of disagreement is low enough
to be considered negligible. A very similar result can be found considering different scenarios
as demonstrated by the simulations performed in [6], where the overall percentage disagreement
turns out to be 0.15%.

Table 3. Joint distribution of U, (W) and ¥, (Epa> when k = 1.45. In this scenario the
percentage disagreement is 0.207%

v, (RP.)
U, (W) 0 1
0 0.46395 0.00207 | 0.46602
1 0.00000 0.53398 | 0.53398
0.46395 0.53605 | 1.00000
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Table 4. Joint distribution of U, (W) and U, (R]\-’a) when k = 1.90. In this scenario the
percentage disagreement is 0.085%

v, (ER)
v.(W)| 0 1
0.08958 0.00085 | 0.09043
1 ] 0.00000 0.90957 | 0.90957
0.08958 0.91042 | 1.00000

6 DISCUSSION: PROS AND COS OF P-VALUE AND RP

As mentioned in Section 1 and Section 2, a statistical test is a Bernoulli random variable with
parameter equals to the RP. This observation is relevant for two reasons:

1. it underlines that the results obtained from a statistical test are random;

2. it explains that the probabilistic features of a statistical test are governed entirely by
the RP, which is the only parameter of the Bernoulli random variable. For example, the
expected value of the test coincides with the RP while its variance is given by RP(1—RP).

From observation 1. it turns out that, when evaluating the results of an experiment by means
of a statistical test, it would be desirable to join the test result with a stability indicator which
reflects the variability of the test itself. This is the reason why tests are usually performed using
the p-value instead of the test statistic. In fact, the p-value measures the evidence against or
in favor to Hy and is, then, useful to understand how stable the test result is. Moreover, from
observation 2., it is clear that the RP is the natural tool for evaluating the stability of the test
results, since it is the only parameter of the test. Furthermore, as shown in the previous sections,
the RP can be also used to perform the test as well as the p-value.

If possible, we advise using the RP in place of the p-value both to perform the statistical test
and to interpret its results. To thoroughly motivate our point of view, in the following we give
a point by point description of the pros and cons of the p-value and the RP.

Pros of the p-value

e The test based on it is equivalent to the original, both in the parametric and in the non-
parametric contexts.

e [t is easy to compute, since its calculation refers to the null distribution of the test statistic,
which is known.

Cons of the p-value

e [t is hard to interpret, and this leads to many misinterpretations; mainly, it is often confused
with the Type-I error probability or with an estimate of the latter.

e It reports only indirectly the stability of the statistical test outcome; moreover, it can lead
to overly optimistic interpretations of the stability (see Goodman,1992). For example, from
the relation (17) it turns out that for the “Z” test described in Section 4.1 a p-value of 3%
towards an « of 5% corresponds to an estimate of the RP of, just, 59%.
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Pros of the RP

It directly reports the stability of the test outcome (i.e. the estimate of the reproducibility
probability).

e It is easy to interpret.

e The adoption of the RP-estimate implies that the Type-I error probability « should be set
before analyzing data, discouraging ex-post adjustments of «.

e The RP-estimate allows to discriminate significant results more than the p-value as clearly
shown in Figure 2.

e In addition to pointwise estimate of the RP, confidence interval for the RP can be com-
puted. Then, the adoption of the RP perspective brings naturally the possibility of evaluat-
ing if only plausible values of the RP are statistically significant, this is a sort of confidence
interval on the statistically significant results.

Cos of the RP

e The test based on the RP estimate is, in the nonparametric context, just an approximated
version of the original one. Nevertheless, the results obtained in the context of the WRS
test show that, for the latter test, the approximation is very good.

e In order to obtain the RP estimate, in the parametric framework it is necessary to refer
to the estimated distribution of the test statistic under the alternative hypothesis (e.g. a
non-central Student’s t) and to its inverse, making the RP-computation more complicated
than that of the p-value.

e In order to obtain the RP estimate in the nonparametric framework it is necessary to resort
to asymptotic approximation of the distribution of the test statistic under the alternative
hypothesis, or, perhaps more simply, to resort to computationally intensive methods, such
as the Monte Carlo method (see [6], for details).

The above arguments emphasize that the adoption of the RP to perform and evaluate the
stability of a statistical test, requires, undoubtedly, more technical analysis with respect to that
required for the usage of the p-value, especially in the nonparametric context. However, it is
clear that the RP is much better interpretable than the p-value and it gives to the researcher a
direct and excellent instrument to evaluate the stability of the test results. In our opinion, this
fully justifies the technical effort required for handling the RP.

7 CONCLUSIONS

The estimation of the reproducibility probability of a test is a key concept in the theory of
statistical testing, since it is a useful instrument to perform the test itself and, moreover, to
interpret its results. The RP is very interpretable and it sheds light on the stability of the test
directly, in contrast to the p-value, which assesses the stability only indirectly and is so difficult
to interpret. Moreover, the RP defines a user-friendly decision rule such as the p-value. The use
of the RP requires more technicalities with respect to the use of the p-value but the information
provided by the first indicator is quite better than those given by the latter. In the parametric
context, the RP-based version of almost all the commonly used tests can be obtained with little
effort. The non-parametric context requires more attention since, in general, it is not possible to
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perform RP-testing exactly but only asymptotically. However, the results obtained for the WRS
test, are encouraging since simulations show that the disagreement between the exact WRS test
and the (asymptotic) RP-based test is negligible even for small sample sizes.
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