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Predictive probability of success in
clinical drug development

Mauro Gasparini(”, Lilla Di Scala®, Frank Bretz(®), Amy Racine-Poon(®)

Predictive probability of success is a (subjective) Bayesian evaluation of the probability of
a future successful event in a given state of information. In the context of pharmaceutical
clinical drug development, successful events relate to the accrual of positive evidence on the
therapy which is being developed, like demonstration of superior efficacy or ascertainment of
safety. Positive evidence will usually be obtained via standard frequentist tools, according to
the regulations imposed in the world of pharmaceutical development. Within a single trial,
predictive probability of success can be identified with expected power, i.e. the evaluation
of the success probability of the trial. Success means, for example, obtaining a significant
result of a standard superiority test. Across trials, predictive probability of success can
be the probability of a successful completion of an entire part of clinical development, for
example a successful phase Ill development in the presence of phase Il data. Calculations
of predictive probability of success in the presence of normal data with known variance will
be illustrated, both for within-trial and across-trial predictions.
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1 INTRODUCTION

Predictive probability of success (PPS from now on), is a subjective Bayesian evaluation of the
probability of a successful event in a given state of information. In pharmaceutical clinical drug
development, successful events relate to the accrual of positive evidence related to the therapy
which is being developed. Clinical drug development is thought here as a series of logically
connected clinical trials aimed at building evidence in favor of an experimental therapy.

The world of clinical trials aimed at submission of a new drug application is highly regulated.
Standard practice often requires the sponsor (usually a pharmaceutical company) to analyse its
results according to the usual prescriptions of classical statistics. In particular, Neyman-Pearson
type tests, p-values and confidence intervals are standard tools. They provide the proper language
by which a sponsor communicates to Regulatory Agencies (RAs from now on) and agrees on
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Table 1. Success predictions under different states of information

Success prediction  states of information

about next trial before trial begins
about current trial at interim analysis
about phase II1 at the end of phase I1

planning relevant analyses. The general picture is therefore dominated by frequentist methods,
although there have been recent signs of interests on Bayesian methods by several RAs.

On the other hand, the sponsor is also a business operator and owns a rich background of
scientific and practical experience with similar trials. It is therefore reasonable for a sponsor
planning, predicting and conducting trials to make use of all relevant business and scientific
information. One available statistical technology devoted to that purpose is the Bayesian rea-
soning, which has two well known advantages. Firstly, it can model appropriately the updating
and the accumulation of knowledge and scientific experience from trial to trial in different states
of information. Secondly, the Bayesian mechanism can accomodate economical considerations
into statistical practice. The usual critique to Bayesianism, subjectivity, is not relevant here,
since what is being advocated is conducting trials according to the generally agreed frequentist
rules, but using all relevant information for decision making, regarding business plans and the
prediction of costs and benefits.

PPS is a quantification of the probability of an event that characterizes successful clinical
development as it unrolls. Predictions can be made at different states of information, depending
on which point of clinical development has been reached. Table 1 contains some examples,
explained in more detail in the following sections. We can distinguish PPS relative to a single trial
(within-trial success predictions) and PPS relative to an entire stage of clinical development, like
the sequence of two or more trials (across-trial success predictions). The former analysis has been
more formally developed in the literature, especially in [1|, where the term “assurance” is used
instead of PPS, and it overlaps with the rich literature on Bayesian monitoring of clinical trials,
see for example [2]|. Across-trial predictions are less common, but examples have already appeared
in the literature, especially regarding the phase II to phase III transition, where decisions have to
be made and several kinds of business and scientific risks have to be evaluated. See for example
[3] and the very detailed [4].

Section 2 is a review of within-trial PPS in the presence of normal observations for a variety
of designs typically encountered in clinical trials. In Section 3, consideration of interim analysis
is added and the relationship between PPS and the literature on Bayesian monitoring of interim
analysis is reviewed. In Section 4 the general concept of across-trial PPS is formalized and
illustrated within the context of transition from phase II to phase III.

2  WITHIN-TRIAL SUCCESS PREDICTIONS

The Bayesian setup considered in this section is the following: in a clinical trial, information
is collected about a treatment effect parameter d, which is also assigned a prior probability
law describing the uncertainty of the sponsor. Success of a trial is defined as rejecting a given
null hypothesis Hg involving §. From a Bayesian viewpoint, the usual power is the conditional
probability of success, a random variable function of the unknown §.

PPS is then, in this case, the unconditional, or ezpected power, i.e. the expectation of the
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random variable power with respect to the current distribution of . In the literature, PPS has
also been called predictive power, to emphasize that calculations are done with respect to the
predictive (marginal) distribution of the clinical data.

PPS as expected power was first introduced in [5] and [6], where it is exemplified in the
context of the interim analysis evaluation of a parallel design trial with Bernoulli outcomes.
Bernoulli outcomes were also studied by [7]. The concept is expanded in books [2] and [8] and
it has also been reviewed in [9]. The normal, parallel design, case was considered by [10] and
more thoroughly discussed by [11] and [1]. Critical positions are contained in [12], which takes a
more fundamentalist Bayesian viewpoint, and in the recent [13], which illustrates some practical
delicate issues.

2.1 Superiority trials with parallel design

A superiority trial with parallel groups is a basic and common design in clinical trials, and it
is intended to show superiority of a treatment against an active control (for example, the best
available treatment) or placebo. It is often the case that a very small number of superiority trials
with a sufficiently large number of patients is used by the sponsor for registration by the RAs.

Let two samples of sizes n (for treatment, TRT) and m (for control, CTR) be independent
normal random samples with unknown means purrT and pucrtr, respectively, and common known
variance o2. The unknown means are to be compared in terms of the sample mean difference D =
Xorr — Xore which is normally distributed with unknown mean treatment effect § = firgr — florn
and known variance s? = 02(1 + ). The resulting normal distribution of D, conditionally on
§, is written, in short, D|§ ~ N (4, s?).

Suppose the larger the better, for the sake of definiteness, that is, the higher the difference
the more beneficial the treatment appears. For example, such may be the case if the primary
endpoint were the CD4+ cell count per millilitre of blood in patients infected by HIV, or the FEV
(forced expiratory volume) in a respiratory trial. According to standard practice, the relevant
statistical technique is a test of the null hypothesis Hy : § < g, where &g, often equal to zero, is
a value of clinical indifference. Hj is going to be rejected if D > g + 2,5, where the cut-off point
notation has been adopted for z,, which is defined by P(Z > z,) = «, with Z standard normal.

Bayesian calculations simplify if ¢ is taken to be normally distributed, with mean 6 and
variance 72: in short, § ~ A (0, 7'2). This is the well known framework of a conjugate Bayesian
analysis and standard calculations show that, marginally,

D~ N(0,7%+ s%).
It is then easy to compute PPS in this first case of a superiority trial at the planning stage as
PPS = P(D > 8y + 245) = 1 — Fp (0o + 2as|0, 72 + 52), (1)

where, from now on, Fx (x|m,v?) indicates the normal distribution function of a random variable

X computed at z, with X normally distributed with mean m and variance v?.

2.2 First example: a superiority clinical trial

Suppose a study is being designed for a specific compound T RT, in which a well established
clinical endpoint Y, measured in minutes, is available. Suppose the between-patient variation
of Y is approximately 50 minutes, while a treatment difference of 10 minutes would imply that
TRT is considered as clinically better than the standard.
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The aim is to design an appropriate one-sided superiority trial with parallel groups to test
the null hypothesis Hy : 6 < 0 that TRT is not superior to CTR. The standard deviation is
o = 50, and suppose the level of the test is a = 0.05. Let the alternative value d4 = 10 be
the basis for standard power and sample size calculations. Imposing equal sample sizes n = m
for both TRT and CTR groups, in order to achieve at least 1 — 5 = 0.95 power at d4 = 10,
according to the usual formula,

2(za + 25)2(72

— 541
0%

n =

patients per arm would be required. Hy will then be rejected and the treatment demonstrated
superior to control if, after observing 541 patients per arm, the following event will be observed:
D > 69+ 248 =0+ 1.645 x 50 x 2/541 = 0.304.

With respect to the elicitation of the prior, suppose now the sponsor is fairly confident of
achieving the alternative value 4 = 10. In other words, a treatment effect 4 = 10 is not only
the smallest true difference worth detecting, but it also equals a value which the sponsor considers
most likely. On the basis of these considerations, the prior mean for § is taken to be 6 = 10. As
for the prior variance, assume the sponsor has some difficulty in choosing a particular value (in
these applied setups, it is easier to elicit location parameters from laypersons, whereas dispersion
parameters are harder to understand and identify). In the lack of a better understanding, a
prior variance is chosen so that the prior probability that ¢ < 0 equals 0.05. In other words,
the sponsor believes in the alternative, but is willing to allow for a 5% chance that this belief is
totally wrong. The uncertainty about the treatment difference ¢ is finally expressed as a normal
prior with mean § = 10 and standard deviation 7 = 6.08. Equation (1)) yields PPS=0.77.
Notice that this value deviates markedly from the power at d4, which is 0.95. The latter large
value may convey a false sense of security and induce the naive sponsor to be fairly optimistic
about the trial success. Such optimism is not granted, since a power statement is a hypothetical
statement about the chance of success given the alternative, and not a balanced evaluation of
the possibility of success. PPS, or expected probability, gives instead a more realistic perspective
by balancing high expectations from the new treatment and a more skeptical attitude. A naive
user of the power approach considers §4 as fixed, while neglecting the uncertainty about the
magnitude of the mean difference. Such a dichotomous approach (‘either dp or d4 is true’) might
lead to excessively high expectations regarding the results of experimentation.

2.3 Equivalence and noninferiority trials

An important problem in clinical trials is to establish either equivalence or noninferiority of
two treatments. In an equivalence trial the traditional roles of the null and the alternative
hypothesis are switched, since the sponsor wishes to “prove” similarity, for example, of two
means. The standard solution is a decision rule to accept equivalence if a confidence interval for
the difference of effects is fully contained within limits which are considered to have the same
therapeutic effect. The limits are often symmetric around the null effect. See [14] or a more
recent discussion in [15]. An equivalence trial with one of the equivalence limits set to 4+o0o or
—o0 is also called a noninferiority trial.

Let then L and U, possibly +o00, be the lower and upper equivalence limits agreed with RAs.
Two-sided equivalence at level « is claimed if the (1 —2a) level confidence interval for pirgr — fierr
is completely contained within the interval [L,UJ; i.e. if {L < D — 245N D + z4s < U} or,
equivalently, if {L + zo,5 < D < U — z,s}. PPS is the probability of success, evaluated before
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Table 2. Cell mean model for a standard 2x2 cross-over trial

Period
Sequence group 1 2
TREAT-CONTR p+7+6/2 p—m—46/2
CONTR-TREAT p+4+7—0/2 p—7n+5/2

trial begins, that is, the probability of eventually claiming equivalence:

PPS=P(L+ 248 <D <U — 249)
=Fp(U — zas\G,TQ + 82) — Fp(L + za5|0,7'2 + 52)

if U— 248 > L+ z48, 0 otherwise.

2.4 Cross-over trials

In clinical trials, a sometimes viable alternative to the parallel design is the cross-over design.
In the two-treatment two-period cross-over design, each patient receives both treatments in a
randomized sequence (treatment-control or control-treatment) in two different periods, separated
by a wash-out phase. Superiority, noninferiority and equivalence trials may all be conducted with
a cross-over design, which is used when there is hope to lower the variability of the statistics by
making each subject to be a control of oneself. For radical treatments like surgical, cross-over
trials are obviously not possible. For a thorough discussion of cross-over trials, see for example
[16].

Consider the classical model proposed by [17] about the two-treatment two-period cross-over
design for a clinical trial. In its simplest form, without carry-over effect and with the same
number n of observations in each group, the observation from the k-th period of the j-th patient,
to whom sequence 7 is administered, can be written

Yz‘jk:N‘f‘Wk‘FTl‘f‘??ij"‘ﬁijk i:1727 j:]-u"'7n7 k:1727 l:172

where p1, 7, 7y are overall mean, period and treatment effects, 7;; are random independent patient
effects with mean 0 and variance 0727 - the interpatient variance - and ¢;;, are independent nor-
mally distributed error effects with mean 0 and intrapatient variance o2
Reparameterizing with m# = 7 = —m9 and § = 27 = —27» the cell mean model contained in
Table 2 can be obtained.

The least square estimator of the treatment effect d is

, assumed to be known.

1, _ _ _
D.= 5(?/1.1 — Y12 — Y21 + Y2.2)

where 7; ;, = Zj Yijk/m. Since y;;1 — 452 are conditionally independent normal random variables

with variance 202, it can be seen that D.|6 ~ N (J,s?) where s> = o2 /n is the intrapatient

2 =
variance, divided by the number of patients per sequence group.
For superiority trials, the calculation of PPS is formally the same as for the parallel group

design, provided that the correct distribution above is used for the treatment effect estimate:

PPS = 1 — Fp, (80 + 2as¢|0, 7% + s2) (2)
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Table 3. PPS corresponding to three different prior distributions

type of prior prior mean 6 | PPS ‘
skeptical prior 0 0.40

conventional prior 1.5 0.71
optimistic prior 3 0.92 ‘

Similarly, for equivalence trials, if L and U are the lower and upper equivalence bounds, PPS
becomes
PPS = Fp, (U — z45:|0, 7% + 52) — Fp (L + 245.|0, 72 + 5°) (3)

if U — z48:. > L+ z45., 0 otherwise.

2.5 Second example: a cross-over trial with a variety of priors

Consider a new therapy meant to reduce diastolic blood pressure (DBP). Patients studied in
related clinical trials usually have DBP between 95 and 115 mm/hg. Suppose the standard
treatment reduces DBP from baseline by 7 mm/hg after eight weeks on the average (placebo
itself reduces it by about 2 mm/hg) with an intra-patient standard deviation of about 2 mm/hg.
The sponsor hopes the new therapy will lower average DBP by an extra 3 mm /hg.

The new therapy will be compared against standard therapy in a cross-over superiority trial
involving n = 200 patients per sequence. The value dy = 0 represents clinical indifference and
64 = 3 is the clinically relevant alternative. Suppose the choice o = 0.01 is declared in the
protocol.

For Bayesian calculations, three priors for ¢ are considered, as done systematically in [18]: a
skeptical one, centered around 6 = 0, an optimistic one, centered around 6 = 3, and a “middle of
the road” conventional third choice, centered around 6 = 1.5. All three priors are given the same
standard deviations, obtained by letting the prior probability that 6 > 3 under the skeptical prior
equal 0.05 or, symmetrically, by letting the prior probability that § < 0 under the optimistic prior
equal 0.05. The resulting prior standard deviation of ¢ is 7 = 3/2905 = 1.82. PPS calculations
(equation (2)) corresponding to the three priors are reported in Table 3.

The point of this example is that when the sponsor is faced with a Bayesian model and does
not want to commit to a single prior, the recommendation is to use “a community of priors”,
from pessimistic to optimistic ones. The different priors can reflect the different points of view
that can arise, internally or externally to the sponsor.

3 WITHIN-TRIAL SUCCESS PREDICTIONS WITH INTERIM ANALYSIS

In clinical trials, group sequential analysis implies one or more interim analyses, or preplanned
“looks” at the partial data, often included in a parallel design. In agreement with the RAs,
the sponsor plans for interim analyses in particularly sensitive situations when, from an ethical
and /or economical point of view, it is important to allow for early termination of a trial providing
particularly convincing results, in the positive or the negative direction. See for example [19]
and bibliography therein.

Berry in [20] promotes the conditional point of view in inferential statistics and uses interim
analysis in clinical trials as a particularly stringent example. In particular, he favors a complete
Bayesian approach to interim analysis, as also do the authors of [21]. According to the hybrid
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approach taken in this paper instead, it is assumed that an interim analysis is officially conducted
according to standard practice, but that it is also important for the sponsor to have an evaluation
of PPS which takes into account all the information available at the interim analysis stage.

When an interim analysis is included in a clinical trial protocol, PPS calculations can then
be done either at the planning stage, before trial begins, and at the interim evaluation stage,
when interim results become available and the probability of trial success has to be revised. For
the sake of simplicity, only one interim look is contemplated in the following sections.

3.1 Planning stage

Suppose one interim look is planned for the time a specified fraction of observations has been
sampled. At the planning stage, i.e. before the trial begins, the calculation of PPS has to take
into account the possibility of rejecting the null hypothesis either at the interim or at the final
stage.

Let ny be the planned number of treatment observations at the interim stage and m; the
number of control observations and suppose that, up to negligible rounding errors, ny/n = my/m.
Let D; be the sample mean difference at the interim stage and Ds be the sample mean difference
of the observations taken after interim analysis so that, at the end of the trial,

. Z?l Xorrr + Zzl-&-l Xrrr _ 271”1 Xerr + Z%H Xerr .

nlDl -+ HQDQ
n m n '

D

The statistics Dy and D5 are normally distributed and conditionally independent given §, with

standard errors

1 1
S; = 0'2(5—1—%), 121,2
1 i

Their joint marginal distribution, which is needed in order to calculate expected power, is bi-
variate normal with means

E(Dy) = E(Dy) = E(E (D2[6)) = 0,

Var (D) = Var (E (D16)) + E (Var (D16)) = Var (§) + E (s7) = 7% + s,
Var (D) = Var (E (Ds|d)) + E (Var (D2|6)) = Var (§) + E (s3) = 7% + s3

and covariance Cov (D1, Dy) = E (E (D1D5|6)) — E (D1) E (D2) = E (62) — 6% = 72, In short, Dy
and Dy have the bivariate normal marginal distribution

Dy 0 7‘2+5% 72
o (0] 7T 2L ])

from which the following conditional distribution is obtained

2 2 2.2
s7 T T°87 9
Dy | Di=2 ~N(m—— 5%, 55 T 52)-
TS+ 87 TF+ 87 TS+ s8]

Let (I3,u;) and ug be the interim and final boundaries, which means that the null hypothesis Hy
will be rejected (and superiority claimed) if the standardised difference observed at the interim
stage is greater than wuy or if the standardised final observed difference is greater than us, whereas
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the trial will be stopped if the standardised difference observed at the interim stage is smaller
than /. Formally, Hy will be rejected if either of the two disjoint events

{Dl > 0p + ulsl} or {(50 + 1151 <Dy <dg+us1ND >y + UQS},

occurs. The specific values of the boundaries [1,u; and us may be specified, for example, by
Pocock or O’Brien-Fleming rules (see for example [19]). PPS thus becomes

PPS = P(D; > dg +u1s1) + P(dp + l1s1 < D1 < dp + urs1 N D > §g + ugs)
= (1 — FD1 (50 + U151|9,7’2 + S%))—I—
do+u1sy
/ P(D > 6y + ups| Dy = x) dFp, (2|6, 7% + 57
6

o+l1s1

= (1~ Fp, (8o + w5110, 72 + )+

do+u1st n ny
/ P(Dy > — (69 + ugs) — —D1|Dy = x) dFp, (x\9,7'2 + s%)
) n2 ng

o+l1s1

= (1 — FD1 (50 + U151|977'2 + 3%))_‘_

do+u1s1 2 2 2.2

ni S T TS

1 1 2

/ <1 - FDQ( (00 + uas) — —x\ = 0+ 53—, 5—5+ 32)>
do+l11s1 ny n9 + 5 T + S1 T4 4+ 51

dFp, (x]0, 72 + s7).

PPS calculations are less explicit in this case, as they are in the great majority of designs slightly
more complicated than the vanilla case of “normal case with no interim analysis”. In general cases,
PPS is in general calculated approximately by simulation, as recommended in Spiegelhalter et
al. (1984, page 201), or by numerical integration.

3.2 Interim evaluation stage

Now suppose the trial has reached the interim stage and D; has been observed to lie within the
non-stopping region {dg +l1s1 < Dy < dp+u3s1}. The value of Dy is to be considered constant,
since it has been observed. At this interim evaluation stage, PPS is therefore

PPS = P(D > §p + ugs|D1)

72 723%

Dy,
’2+2+s+72 s? 472

=1- FDQ( (50 + ugs) — —D1 +52). (4)
Notice that the posterior on ¢ is still in the same normal class as the prior, due to the property
of conjugacy,

The special case of a diffuse prior is of particular interest. Consider a sequence of normal
priors with mean # and such that 72 — oo. In the limit, we obtain correspondingly

PPS =1— FDQ( (50 + ugs) — —Dl\Dl,s2

an expression which does not depend on the prior. This form of noninformative PPS is very
important in practice, since it gives the sponsor an “objective” evaluation of where the trial is
heading. Expression (4) is to be used not to take any formal decision, but only to guide the
behavior of the sponsor in the conduction of operations surrounding the trial itself. As pointed
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out by Spiegelhalter et al. (1984, page 213) “we follow Armitage (1991) in warning against
using this predictive procedure as any kind of formal stopping rule. It gives an undue weight to
“significance”, and makes strong assumptions about the direct compatibility of future data with
those data already observed”.

3.3 Third example: a superiority clinical trial with interim analysis

Reconsider the first example and suppose now that the sponsor plans for one interim analysis,
to possibly terminate the trial for early demonstration of efficacy. For example, the drug may
be a new chemical agent addressing a truly urgent need for patients and the RAs are willing to
grant an accelerated path to registration. At the interim stage the clinical trial may therefore be
terminated when it shows convincing positive evidence; but even if it does not, it is important
for the sponsor to have a prediction of the chances of final success, since parallel business plans
related to the novel aspects of the drug may be affected. When planning when and how the
interim analysis should be conducted, different scenarios can be compared with each other.

Assume, for example, that an interim look at 2/3 of information is plannned, i.e. when 361
patients per arm have been observed. An O’Brien-Fleming boundary rule is considered, giving
interim boundaries (via tables in [19], for example, or dedicated software) u; = 2.1351 and a
final boundary us = 1.6941 (I; = —o0 because early stopping is only allowed for demonstrated
efficacy).

First of all, notice that PPS at planning stage is again (.77, the same as it was in the first
example, because the O’Brien and Fleming boundaries are chosen in such a way to preserve the
probability of type I error.

Next, consider what may happen at evaluation stage. Suppose the observed difference at
interim is Dy = 3 minutes. PPS (equation (4)) equals 0.23, indicating a low chance of success.

On the non-Bayesian side, there does not exist a universally agreed quantitative measure for
monitoring a clinical trial at interim, but several authors (for example [22]) give recommendations
according to a “stochastic curtailment” concept. They propose as monitoring tool the interim
power at 64 = 10, defined as the probability that, having observed Dy = 3 at interim, the
final outcome of the trial will be a success, given the alternative value §4 = 10. Formally,
this is equivalent to PPS corresponding to a degenerate prior, which assigns probability 1 to the
alternative value 04 = 10. With the same computational tools it can therefore be calculated that
interim power equals w(d4|D; = 3) = 0.54, much greater than 0.23. The larger interim power
value may lead to an optimistic expectation about trial success, for the same reasons discussed
for power at the planning stage. The discrepancy between the two power values arises from the
fact that the interim power approach assumes the remaining 1/3 of information as coming from
64 = 10. PPS, instead, reflects our intuitive expectation of a low chance of success after having
observed a mean difference of only 3 minutes at 2/3 of the way.

A second scenario the sponsor might consider is an earlier interim analysis, say at 1/3 in-
formation, i.e. 180 patients per arm at interim look. The O’Brien-Fleming boundary rule gives
u1 = 3.2 and uy = 1.6471. If the observed difference were D7 = 3 minutes, the interim power
at 04 = 10 would then be 7(d4|D1 = 3) = 0.86. PPS would instead equal 0.50, thus reflecting
a high level of uncertainty induced by the somewhat low observed difference. Again, the larger
interim power may lead to unjustified optimism.
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Figure 1. Graphical representation of across-trial predictions

( past trials )
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C parameters )

present time

C nez§§ future trials
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\ ( success )
Y’

( remote future trials

4 ACROSS-TRIAL SUCCESS PREDICTIONS

Across trial PPS refers mainly to the prediction of success made at crucial points in clinical
development, for example after some critical recommendations by RAs or at the go/nogo decision
point between phase II and phase III. Good examples of the latter situation are [3| and especially
[4], which contains a detailed account of the simulated part of a clinical development process.

A trial is usually part of a larger development program involving all kinds of scientific and
economical plans. It is vital for a company to have the most up-to-date predictions on what are
the chances of success of an ongoing project and to prepare as soon as possible for corrective
actions, aimed at preventing risks, along the way. For example, building a new production plant
is a huge economical effort and has to be planned well in advance. Other business plans that can
be affected by the results of ongoing experimentation are the recruitment of additional centers
for planned multi-center trials or satellite marketing studies to position a new product in the
right market segment.

From a conceptual point of view, the Bayesian mechanism of updating knowledge about
crucial parameters by processing all available information is applicable in the across-trial situation
as well. The same parameters of interest may characterize both previous and future data, so
it is legitimate for a sponsor to try to quantify the probability of success through predictive
probability calculations.

Figure 1 a very general description of the approach in a pseudo-Bayesian graphical model.
Past trial data and future trial data are characterized by the same parameters of interest. Future
success is a (deterministic) function of future data, which may be separated into near and remote
ones. At the “present” time point, a prediction is need about how future trial will result in a
success or failure. The prediction will result in a PPS which will condition on past data and try
to find the (posterior marginal) probability of success.

All within-trial PPS calculations shown in the previous sections can be used as ingredients
to compute across-trial PPS calculations.

In practice, when trying to make predictions across trials which may be performed in very
different conditions and may have different sizes and populations, it may be wise not to rely
excessively on modeling and to apply some precautions, such as discounting for inter-trial uncer-
tainty and such. Moreover, predictions which are made at very distant points in time, such as
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predictions involving remote future trials, should be taken with a grain of salt, keeping in mind
that in any case predictions about a remote future will be updated in the light of new coming
data, in a continuously improving virtuous Bayesian cycle.

4.1 Two large confirmatory trials after phase Il

Consider, for example, a situation in which past data consists of the phase II data and future
success is equivalent to the successful completions of two confirmatory trials. To follow up with
the standard normal homoschedastic situations dealt with in the previous sections, suppose the
results from the two large trials (either parallel or cross over, superiority or noninferiority) can
be conveniently summarized by two normal sufficient statistics

Dy |6 ~N(5, 87 =cr0?)
Dy | 6 ~ N (6,55 = cp0?)

where D is the result of the next trial and Ds is the result of the following one. Suppose further
their distributions have mean equal to an unknown treatment effect § and known, but possibly
different, variances c102 and cy0? for some constants ¢; and c2,. A reasonable assumption is that
Dy and D5 are conditionally independent given §. As in the previous sections, suppose further
that 6 ~ N(,72). Following the same computations to Section 3.1, it can be verified that

Dq 0 7‘2+s% 72
o (0] 7T 2L ])

where now D; and D> refer not to two parts of the same trial but to two different trials. Suppose
success is equivalent to

{Dl > 5071 + zalsl} and {DQ > 50’2 + ZQQSQ}.

Then, we can compute PPS either by methods as in Section 3.1 or, equivalently, by marginalizing
on d:

PPS = /(1 — Fp, (So1 + zar51]d 52)) (1 — Fp (B2 + 20y 2/d, 52))dF5 (d]6, 7).
which can be done either by numerical integration or by simulation.

4.2 Fourth example: from phase Il to phase IlI

An example of the methods illustrated in Section 4.1 may be the transition to phase III based
on a definite dose finding trial run at the end of phase II. Dose finding trials often mark the
end of the explorative early drug development phases (I and II) and the totality of information
accumulated until that decision point has to be carefully evaluated before running the large and
costly pivotal phase III program.

Consider the phase IT dose finding trial described in |23], with a total of 100 patients allocated
equally to either placebo or one of four active dose levels. The response variable was assumed to
be normally distributed and larger values indicated a better outcome. Assume that this outcome
variable is to be used for a confirmatory phase III trial. One outcome of the phase II dose find-
ing trial is the selection of a designated dose level to be continued (and confirmed) in phase III.
The selection itself can rely on statistical reasonings (such as the MCP-Mod methodology de-
scribed in [23], or any other reasonable dose finding analysis method) and include non-statistical
considerations (marketing perspectives, regulatory requirements, etc. ).
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The results from phase II can be the basis for constructing a prior relevant for phase I11 in the
following way. Assume dose level 0.2 is selected for the phase IIT program. From Table 2 in [23], a
good value for the prior mean 0 of the treatment effect § can be taken as = 0.46. Choices of the
variances are most sensitive. Since from [23] we have MSE = 0.5, we can set 0> = MSE = 0.5,
while discounting the information from phase 11 to find a conservative value for 72. To do so, one
possibility is to take 72 = 2M SE /10, which would be very roughly equivalent to considering the
information for dose 0.2 to be provided by only 10 observations instead of 20 and ignoring that
parallel groups have been run. This way, some discounting is applied due to changing conditions
from phase II to phase 111, but on the other hand information coming from all four experimental
doses, of which only one is selected for phase 111, is exploited.

5 CONCLUSIONS

This paper presents some applications of Bayesian predictive calculations to the context of clinical
trials. Focus is on the PPS concept and calculations with normal data with known variance are
spelled out in detail.

In case the sampling variance is not known, the same formulas can be used together with
simulation methods, whereby many values for the unknwon variance are simulated from a prior,
then PPS is computed conditional on that variance and averaged over the simulated values. This
method is more efficient and realistic than using conjugate priors, which would result in Student’s
t-like calculations. The resulting Bayesian clinical trial simulation exercise has been described in
detail in [1]. Here, for the sake of simplicity, we have not elaborated further on the subject.

The same reference [1| deals with some of the same material as the present paper, but the
focus is mainly on single trials without interim analysis. In this paper we have rather focused
on a thorough use of the simple normal case with known variance to illustrate the logic of the
use of predictive probability within trials, at interim analysis and across trials. We therefore
think of this paper as a tutorial-style account of some principles which have guided some of our
experiences in pharmaceutical development, rather than a detailed account of case studies which
would not be possible to disseminate for confidentiality reasons.

The use Bayesian tools is getting more and more common even in the highly regulated world
of pharmaceutical development, as witnessed by the recent guideline [24]. Predictive probability
is an important Bayesian tool from the scientific and from the business point of view. It was
invented in the '80s but its literature is rich and growing, as shown by the list of references we
have tried to comment.
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