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Confounding adjustment through
front-door blocking in longitudinal
studies

Arvid Sjélander(l), Rino Bellocco(?

A common aim of epidemiological research is to estimate the causal effect of a particu-
lar exposure on a particular outcome. Towards this end, observed associations are often
‘adjusted’ for potential confounding variables. When the potential confounders are unmea-
sured, explicit adjustment becomes unfeasible. It has been demonstrated that causal effects
can be estimated even in the presence of umeasured confounding, utilizing a method called
‘front-door blocking’. In this paper we generalize this method to longitudinal studies. We
demonstrate that the method of front-door blocking poses a number of challenging statisti-
cal problems, analogous to the famous problems associated with the method of ‘back-door
blocking’.
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1 INTRODUCTION

A common aim of epidemiological research is to estimate the causal effect of a particular exposure
on a particular outcome. In observational (i.e. nonrandomized) studies, the exposure-outcome
association is often confounded by extraneous factors, and cannot be given a causal interpretation
unless the confounding factors have been properly adjusted for. For stationary exposures (i.e.
exposures which do not vary over time), adjustments can be made using standard methods, e.g.
stratification or parametric regression modeling.

When the exposure and confounders vary over time, adjustments require special techniques.
Robins [1] showed that if there are time-varying confounders that are affected by previous expo-
sure levels, and have an effect on later exposure levels, then standard methods will produce biased
estimates, even if all confounders are observed and adjusted for in the analysis. He derived an
expression for the causal exposure effect, in the presence of observed time-varying confounding,
as a function of the observed data distribution. This expression was called ‘the G-functional’.
Later, Pearl [2] gave a graphical interpretation to the G-functional. He demonstrated that the
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G-functional produces the causal exposure effect when the observed confounders block all ‘back-
door paths’ between the exposure and the outcome in the underlying Directed Acyclic Graph
(DAG).

A straightforward way to estimate the G-functional from finite data is to fit a parametric
regression model for each of its separate components. However, as shown by Robins [1], this
explicit modeling strategy is problematic for two reasons. 1) the model parameters will not in
general have simple interpretations in terms of the causal exposure effect, and 2) the joint model
will most likely be incompatible will the null hypothesis of no causal effect, thus having the
feature of ruling out the causal null hypothesis a priori. This non-attractive feature was called
‘the G-null paradox’ by Robins [1]. The paper by Robins [1] triggered an intensive research
effort, which has last for over two decades. To bypass the problems which are associated with
the explicit modeling strategy, a variety of novel statistical methods have been developed (e.g.
[3] -[9]). All these methods rely on the assumption of no unmeasured confounding.

Often, the assumption of no unmeasured confounding is not tenable. In rare occasions though,
it may be possible to identify the causal exposure effect, even in the presence of unmeasured
confounding. Pearl [2| considered a stationary scenario involving an exposure, an outcome, and
an arbitrary set of unmeasured confounders. He showed that if a variable can be found which
a) completely mediates the effect of the exposure on the outcome, and b) is not affected by the
unmeasured confounders, then the causal exposure effect can be identified using data on this
variable. When a variable satisfies criteria a) and b), the variable is said to ‘block the front-door’
between exposure and outcome. Estimating causal effects through the blocking of front-doors is
principally different from estimating causal effects through the blocking of back-doors; whereas
the former strategy allows for unmeasured confounding, the latter strategy does not.

In this paper we generalize the results by Pearl [2] to longitudinal scenarios. We derive an
expression for the causal exposure effect, in the presence of unobserved time-varying confounding,
utilizing the blocking of front-doors. In analogy with the G-functional, we call this expression
‘the F-functional’. We demonstrate that the F-functional shares the same statistical challenges
as the G-functional. That is, by explicitly modeling each separate component of the F-functional,
we run into problems of interpretation and incompatibilities with the causal null hypothesis.

The paper is organized as follows. In Section 2 we establish notation and definitions. In
Section 3 we review the G-functional, and the statistical challenges associated with its estimation.
In Section 4 we derive the F-functional and demonstrate that it is associated with the same
estimation challenges as the G-functional. To illustrate causal structures, and to motivate our
arguments, we will use DAGs. We refer the readers to Pearl [2] for a thorough review of the
methods and concepts associated with DAGs.

2 Notation and definitions

We consider a longitudinal scenario, where an exposure of interest, A, and a (set of) potential
confounder(s), L, have been measured on repeated occasions t € (0,1,...,T). Let A; and L,
denote the exposure and confounder variables at time ¢, respectively. We use the convention
that A; = L; = 0 if t < 0. We define the temporal order so that L; is realized just before A;.
The outcome of interest, Y, is measured after the end of follow-up (t = T"). We use p(-) generically
for both probability distributions and density functions, and we use integral signs generically for
both integrations and summations. We use F(-) for expected values (population averages). We
assume that the observed data consists of n iid observations from p(Lg, Ao, L1, 41, ..., L7, Ap,Y).
We define A; = (Ag, A1, ..., A¢) and Ly = (Lo, L1, ..., L;) as the observed exposure history and
confounder history up to ¢, respectively.
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We use the potential outcome framework Rubin [10] to define causal effects. Let Y% denote
the potential outcome for a given individual under the exposure history A; = a;. If the individual
factually attains levels A; = @, then Y is trivially observed and equal to the factual outcome
Y,ie.

At =a; = Yat =Y Vt. (1)

The statement in equation (1) relates the potential outcomes to the observed variables, and it is
often referred to as the ‘consistency assumption’ [2]. If the individual factually attains some other
exposure levels than a;, then Y2 is unobserved or ‘counterfactual’ - it corresponds to a scenario
that is contrary to fact. Let E(Y?) denote the average value of Y under the counterfactual
scenario when the whole study population attains A; = @;. The joint causal effect of a shift in
exposure from Ap = ar to A = @/ on Y is defined as some comparison between F(Y ) and
E(Y), e.g. BE(Y®) — E(Y®). When A is binary (0/1), we may for instance wish to compare
the mean outcome when the population is unexposed at all times, E(Y%=07)  with the mean
outcome when the population is exposed at all times F(Y97=17).

3 The G-functional

The G-functional applies to scenarios in which each observed variable may be causally affected
by each preceding variable. There may be an arbitrary set of unmeasured variables U which has
a causal effect on L7 and Y. However, it is assumed that U has no causal effect on A;, apart
from any effect mediated through L;. The DAG in Figure 1 displays the scenario for 7' = 1.
In the setup depicted in Figure 1 there is no unmeasured confounding. Specifically, adjusting

Figure 1. A DAG in which (L;, A;_1) blocks all back-door paths between A; and Y.

LON

for (Et, flt_l) is sufficient to give the association between A; and Y a causal interpretation. In
graphical jargong we say that (L, A;_1) blocks all back-door paths between A; and Y. In terms
of potential outcomes, Figure 1 implies

YO 11 ALy, Ay WA, 2)

which is often refered to as ‘sequential exchangeability’.
Robins [1] showed that under consistency (equation (1)) and sequential exchangeability (equa-
tion (2)), E(YT) is identifiable and equal to
— — T — —
E(Y)= [ E(Yl|ar,Ir) [ p(las-1,le1)dir. (3)
lr t=0
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He referred to the right handside of equation (3) as the ‘G-functional’. In practical scenarios,
it is typically not feasible to estimate the G-functional non-parametrically, at a reasonable level
of efficiency. A straightforward way to gain efficiency is to fit a parametric model for each
component of the right handside of equation (3). The integration can be carried out using
numerical techniques. However, this explicit modeling strategy is problematic for two reasons:
1) the model parameters will not in general have simple interpretations in terms of the causal
exposure effect, and 2) the joint model will most likely not be compatible will the null hypothesis
of no causal effect, thus having the non-attractive feature of ruling out the causal null hypothesis
a priori. This feature was called ‘the G-null paradox’ by Robins [1].

To appreciate the first problem, consider the following example.

Example 1. Suppose that Y is binary (0/1), that L; is continuous and unrestricted, and
that we use the standard models

T T
Y|Ar, Ly ~ Ber {eXpit (50 + B ZAt + B2 ZM) } ; (4)

=0 =0
and
o -1 t—1
Ly|Ai—1,Ly—1 ~ N (a0+alek+a22Lk702> , (5)
k=0 k=0

with expit(z) = /(1 + €”). Replacing equation (4) and equation (5) into equation (3) gives

T exp 202

T T
E(Y) = /ZT expit (50 + 5 ;at +ﬁ2;lt> g) N dir. (6)

In equation (6), E(Y") depends on ar through the model parameters (o, a1, ag, Bo, f1, B2) in
a rather complex fashion. Thus, to determine the causal effect of A7 on Y under the models
in equation (4) and equation (5), we would have to carry out the integration for each possible
value of ar. This makes the explicit modeling strategy numerically untractable and highly non-
transparent. [J

To appreciate the second problem, consider the following example.

Example 2. Suppose that the true causal structure is given by the DAG in Figure 2. In

[_ {t—(a0tar Db antas T2 1)}

Figure 2. A DAG in which (L;, A;_1) blocks all back-door paths between A; and Y, and
the causal null hypothesis holds.

Figure 2, A7 has no causal effect on Y, so that E(Y?7) is not a function of ar; we say that
the causal null hypothesis holds. Nevertheless, L; is conditionally associated with A; 1, given
Li—q, due to the paths Ay — Ly, k € (0,1,...,t — 1). Furthermore, Y is conditionally associated
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with Ap, given Ly, due to the paths Ay — Ly + U — Y, t € (0,1,....T), k € (0,1,...,t — 1)
being open by conditioning on L; [2|. Thus, each component on the right handside of equation
(3) depends on ar, even though the whole function does not. To specify parametric models for
each component which satisfies this restriction is a very difficult task. Thus, ‘working models’
such as those in equation (4) and equation (5) are most likely misspecified so that the obtained
parameter estimates are such that the estimated G-functional depends on ar, even though the
causal null hypothesis in Figure 2 holds. [J

To bypass the problems which are associated with the explicit modeling strategy, a variety
of novel statistical methods have been developed, including G-estimation and structural nested
models [3], inverse probability weighting (IPW) and marginal structural models (MSMs) [4]-]7],
and special techniques for the estimation of dynamic treatment regimes [8, 9]. All these methods
rely on the assumption of no unmeasured confounding, or equivalently, on the assumption of
sequential exchangeability.

4 The F-functional

Pearl [2] considered the stationary scenario depicted in Figure 3. In Figure 3, there is unmeasured

Figure 3. A DAG where L blocks the front-door between A and Y.

U
A—=L—Y
confounding for A and Y, through the common cause U. The covariate L satisfies the following
important properties: a) it completely mediates the effect of A on Y, and b) it is not affected

by U. When a) and b) hold, we say that L blocks the front-door between A and Y. Under the
assumptions encoded in Figure 3, Pearl [2] showed that E(Y®) can be expressed as

Br) = [ole) [ BVl Dp(aDdda (7)

Since the right handside of equation (7) only contains components which are directly computable
from Pr(Y, L, A), it follows that the causal effect of A on Y is identifiable by observations on
(Y,L,A).

As a practical example, Pearl |2] considered a fictitious scenario where A, Y and L represent
‘smoking’, ‘lung cancer’, and the amount of tar deposited in a person’s lungs, respectively. Using
hypothetical numbers, he demonstrated that smoking and lung cancer can be strongly associated,
even in the absence of a causal effect, as computed through equation (7).

In reality, both exposure and covariates are often time-varying. For instance, both smoking
habits and the amount of tar in the lungs are likely to vary over time. Thus, it is useful to extend
Pearl’s method for time-varying data. Below, we generalize the identifying expression in equation
(7) to longitudinal scenarios, analogously to the G-functional. We will call this generalized
expression the ‘F-functional’. We show that the F-functional poses the same statistical challenges
as the G-formula. For convenience, we will swap the temporal order so that A; is realized before
Ly.

We consider a longitudinal scenario where each observed variable may be causally influenced
by any preceding variable. There may be an arbitrary set of unmeasured variables U which
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has a causal effect on A7 and Y. Thus, we allow for unmeasured confounding. We make two
assumptions: a) all effect of A; on Y is mediated through (L, Li41, ..., L7), and b) U has no
causal effect on L;, apart from any effect mediated through A;. The DAG in Figure 4 displays
the scenario for 7= 1. When a) and b) hold, we say that (L, Ly41, ..., L7) completely blocks

Figure 4. A DAG where (L, Li41, ..., L7) completely blocks the front-door between A; on
Y.

the front-door between A; on Y. Assumptions a) and b) are clearly quite restrictive; in Section 5
we provide a discussion on practical scenarios where these assumptions can be expected to hold.
We now show that E(Y?7) is identifiable by observations on (Y, Ly, A7), and given by

T

T
E(y')= [ Hp(lt!atvlt—l)/ E(Y|ay, Ir) [ [ paflat_y, Ti-1)dardlr. (8)
Ir 1= arp t=0

Proof. Using standard graphical methods [2] it can be shown that Figure 4 implies the following
conditional independencies:

LiNMU|Ay, L1 Vt, (9)
Y I AU L WVt (10)
YO 1L AU, Ay—1, Ly—1 V2. (11)

We have that
B(yr) - / BV [u)p(u)du

equati)n (11) /E(Y“T]u, ao)p(u)du

u

= /z E(Y|u, ag,lo)p(lo|u, ao)p(u)du
Uu,lo

T
_ / B, Ir) [ (e, an, b )p(u)dudiy
u,lr t=0
equation (1) L
WO B, ar, i) Tl a0, lpta)dudiy
wlr t=0
equation (9) T
anati [T pttlan i) [ B ar.dnptdudiy, (12)
lT +=0 u
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We can write p(u) as

= [ plulaga(eh)day
g
equation (9)
PO plulab, W)pla)da
g
= -, _
= [ pluldr I [ p(aile; 1B, (13)
ar =0
We can now write [ E(Y|u,ar, lp)p(u)du as
= equation (13) - - _
/E(Y|U, ar, lp)p(u)du =  E(Y|u,ar, Ip)p(ular, Ir) | [ platlai_, li-1)duday
u u, @l 1—0
equation (10) - - _
= E(Y’ua a{Ta lT)p(u’a/Tv ZT) Hp(aﬂa;f—l: lt—l)dUdagF
u,ap t=0
— T —
- | B0 [ el Dnda,
ar t=0

(14)

Combining equation (12) and equation (14) concludes the proof. [J

A straightforward way to estimate the F-functional from finite samples is to fit a regression
model for each component on the right handside of equation (8), and carry out the integration
numerically. However, this approach suffers from the same problems when applied to the F-
functional as when applied to the G-functional. To see that the model parameters will not in
general have simple interpretations in terms of the causal exposure effect, consider the following
example.

Example 3. Suppose that Y and A, are binary (0/1), that L, is continuous and unrestricted,
and that we use the standard models

T T
Y|Ap, Ly ~ Ber {expit (50 FBY At B Lt> } : (15)
t=0 t=0

t—1 -1
Ay|Apy, Ly—y ~ Ber {expit <70 +m ZAt + 72 Z Lt) } ; (16)

k=0 k=0
and
o t t—1
LAy, Li_y ~ N <ag+a12Ak+aQZLk,02>. (17)
k=0 k=0

Replacing equation (15), equation (16), and equation (17) into equation (8) gives

_ {u—(aoter f g artaz i} lk)}T

o L

i V2mo?
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ot

| expit (ﬁo + 61 Z a; + B2 Z lt)

alp =0 t=0
T -1 t—1
HI(CLQ =1) {expit (70 +m E:Oﬁc + Yo ZM) }
=0 k=0 k=0
t—1 t—1 )
I(a; = 0) {1 — expit (70 +m Z aj, + Yo Z lk) } ] da'pdly.
k=0 k=0

(18)

In equation (18), E(Y?7) depends on ag through the model parameters (g, a1, a2, Bo, 81, 82,70, V1, 72)
in a rather complex fashion. Thus, to determine the causal effect of Ar on Y under the models
in equation (4) and equation (5), we would have to carry out the integration for each possi-
ble value of ar. This makes the explicit modeling strategy numerically untractable and highly
non-transparent. [J

To see that the approach will suffer from a problem similar to the G-null paradox, consider
the following example.

Example 4. Suppose that the true causal structure is given by the DAG in Figure 5. In

Figure 5. (L;, Liy1, ..., LT) completely blocks the front-door between A; on Y, and the
causal null hypothesis holds.

Figure 5, A7 has no causal effect on Y, so that F(Y%T) is not a function of ar. Nevertheless, L; is
conditionally associated with Ay, given L;_1, due to the open paths Ay — Ly, k € (0,1,...,1). Yis
conditionally associated with A, given Ly, due to the open paths A; < U — Y, t € (0,1,...,7T).
Finally, A; is conditionally associated with A;_;, given L;_1, due to the open paths A, — Ay,
k € (0,1,...,t). Thus, each component on the right handside of equation (8) depends on ar, even
though the whole function does not. [

5 CONCLUSIONS

In this paper we have extended the method of ‘front-door blocking’ to longitudinal scenarios.
We have derived an analytic expression for the causal exposure effect which we have called the
‘F-functional’. We have shown that although the F-functional can be used for non-parametric
identification, several challenging problems remain to be solved to estimate the F-functional
from finite data. The analogs to these problems for the G-functional have been the target of
intense research, which has generated a variety of novel statistical methods. We believe that the
F-functional has the potential of triggering a similar development.

A difference between back-door blocking and front-door blocking is that whereas it is easy
to come up with realistic scenarios for which the former method can be used (e.g. [3]-[9]), it is
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much more difficult to find scenarios for which the latter would be applicable. In particular, it
is difficult to find variables which completely blocks the front-door between the exposure and
the outcome. Pearl [2] considered a fictitious example involving smoking, lung cancer and tar
deposited in the lungs. Another possible example could arise in nutrition epidemiology, where it
has been established that diets rich in fruits and vegetables have a protective effect on several
cardiovascular and cancer diseases. Among a number of mechanistic hypotheses, compounds
with antioxidant properties have been proposed to explain these findings. For instance, it has
been postulated that antioxidants, with additive and synergistic effects, completely mediates the
protective effect of plant food intake on gastric cancer [11|. Furthermore, it may be reasonable to
asssume that any factors affecting the individual propensity towards a "healthy diet” and gastric
cancer (e.g. education and socioeconomic status), have no effect on the antioxidant levels in the
body. Thus, the F-functional could potentially be used to estimate the causal protective effect of
plant food intake on gastric cancer, with antioxidant levels blocking all intermediate front-doors.
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