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SUMMARY

This paper delves into the realm of advanced data analysis, focusing on two powerful dimensionality 
reduction methods: Disjoint Principal Component Analysis (DPCA) and Disjoint Multiple Correspondence 
Analysis (DMCA). Methodological marvels in their own right, these approaches are scrutinized for their 
unique properties and applications across diverse domains. We navigate through the intricacies of their 
algorithms and explore how they unveil patterns within complex datasets. The comparative analysis high-
lights the strengths and weaknesses of DPCA and DMCA, shedding light on their distinct contributions 
to the analytical landscape. This paper serves as a comprehensive guide for researchers and analysts 
seeking deeper insights into these cutting-edge techniques for dimensional reduction.
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INTRODUCTION

In the era of big data, large and massive data 
sets are increasingly common that often include a 
progressive increase of the measurements and the 
number of variables used is always bigger. For this 
reason, the research of new statistical approaches to 
reduce the number of variables considerably while 
still retaining much of the information in the original 
data set is always under way. We know that in the 
field of dimensionality reduction methods, a variety 
of very known techniques have been proposed [1]. 
The most used and cited methods are surely principal 
component analysis [2] and factorial analysis [3] 
for quantitative data, and multiple correspondence 
analysis [4] for categorical data. Nevertheless, one of 
the most crucial topics related to these methods is the 
interpretation of components (i.e., factors) that define 
the latent subspace. 

For example, in the case of PCA and FA, the 
main issue is related to the fact that each principal 
component (PC) typically is a linear combination of all 
manifest (i.e., observed) variables (MVs). In particular, 
for each PC all loadings are typically nonzero, even 
though only few MVs are relevant for the corresponding 
PC. This makes it often difficult to interpret the derived 
PCs, i.e., to understand what are the variables that 
really define each factor. In the specialized literature, 
several extensions of PCA have been proposed to 
specify subsets of MVs that most explain PCs. A very 
known approach consists to proceed is to artificially 
set the loadings with absolute values smaller than 
a threshold to zero, although Cadima and Jolliffe 
[5] consider this thresholding approach potentially 
misleading and subjective. Alternative and more 
statistically rigorous procedures for enhancing the 
interpretation are based on postprocessing methods 
such as rotations [6]. Nevertheless, the rotation 
procedures do not generate loadings exactly or 
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close to zero and, then, thresholding is still required. 
Although, we note that in the context of FA, standard 
errors of rotated loadings are available, and thus, 
the evaluation of small loadings can be facilitated by 
using this inferential information. In Tibshirani et al. 
[7], a regularization of PCA is proposed to solve the 
sparsity problem. This approach consists in shrinking 
loadings toward zero by maximizing the explained 
variance of PCs penalized to shrink and select nonzero 
loadings. Also, Jolliffe et al. [8], propose an example 
of sparse principal component analysis (SPCA), in 
which the sparse loading matrix (i.e., namely with 
very few nonzero loadings) is obtained by using a 
simple least absolute shrinkage and selection operator 
(LASSO)-based approach. A probabilistic formulation 
of the SPCA approach is proposed by Guan and 
Dy [9]. Moreover, Shen and Huang [10] propose a 
SPCA via a regularized singular value decomposition 
(SVD) approach. Conversely, d’Aspremont et al. [11] 
propose another extension of SPCA: the direct sparse 
PCA (DSPCA), which reformulates the problem directly 
incorporating a sparsity criterion in the PCA.

However, even though several extensions of PCA 
have been proposed, they do not necessarily provide 
a simpler PC interpretation, since some MVs may still 
load on several PCs leaving the problem unresolved. 

On the other hand, approaches similar to those 
used in PCA framework have been used in the FA. An 
example is confirmatory factor analysis (CFA) proposed 
by Jöreskog [12], where all the relationships between 
MVs and factors are studied and only few relationships 
between MVs and factors are specified by associating 
each MV to a single factor inducing disjoint classes 
of MVs. Obviously, in this way, the interpretation is 
greatly simplified since factors are exactly explained 
by a subset of MVs only. However, a drawback of CFA 
is that the assignment of a MV to a factor is based on 
the a priori knowledge of the researcher, which is not 
often guaranteed in the empirical cases.  

An important method to solve the interpretability 
problem is the disjoint principal component analysis 
(DPCA) model introduced by Ferrara et al. [13] which is 
a particular case of the clustering and disjoint principal 
component analysis (CDPCA) model proposed by Vichi 
and Saporta [14], focusing only on the classification of 
MVs. Note that here, components/factors are formed 
by disjoint classes of MVs automatically identified 
instead that a priori fixed. In the last work, Ferrara et 
al. [15] propose a probabilistic approach of DPCA, 
named probabilistic disjoint principal component 
analysis (PDPCA).

This work aims to explore from a methodological 
point of view how key factors emerge during the 
process of dimensionality reduction for categorical 
data in the medical field, influencing the final 
representation of crucial information for clinical 
research. By closely examining the selection and 
combination of categorical variables in our specific 
medical context, we aim to identify determining 
factors that can significantly impact the understanding 

of relationships between different medical conditions, 
treatments, or responses to therapies. This approach not 
only provides valuable support for scholars and data 
analysts but also contributes to enhancing confidence 
in the insights extracted from the data, fostering a 
clear and transparent understanding of information. In 
summary, our research aims to improve interpretability 
in the dimensionality reduction of categorical data in 
the field of clinical research, offering an analytical 
and methodological framework that can be applied 
in medical contexts to achieve clearer and more 
meaningful results.

BACKGROUND

Let X = [xij] (i = 1 ,…, n; j = 1,…, J) be a  n × J data 
matrix containing the measurements of J variables on 
n objects. Without loss of generality, after a location 
and scale transformation, we assume that all the 
variables are centred. For better understanding the 
algebraic proofs of the manuscript, the reader can 
refer Trefethen, L. N. and Bau, D. [16].

Principal component analysis 

Principal component analysis [2] is generally seen 
as the orthogonal linear transformation of a set of J 
correlated variables, in matrix X, into a set of H (where 
1 ≤ H ≤ J and n > J) principal components (PCs). 
Given a J × H loadings matrix A (i.e., factorial weights 
matrix), the n × H scores matrix Y can be written as

	 Y = XA	 (1)

such that maxA Ytr Σ( ){ }  subject to the constraint  
′ =A A IH  that implies ΣY = diag y yH

( , , )σ σ
1

2 2... . With 
standardized data PCs are such that ΣY I= H . 

Another formalization of PCA is the reconstruction 
of data matrix. In particular, the PCA model for 
reconstructing data is

	 X YA E= +′ 	 (2)

where E is the n × J error matrix. Substituting 
Equation (1) in Equation (2) we obtain        

 
	 X XAA E= +′ 	 (3)

Proof 1

It is proved that the LSE problem of model (3), i.e.,  
minA X XAA− ′ 2

 is equivalent to maximize tr(ΣY), i.e., 

	 tr tr n n nΣY Y Y Y XA( ) = ( ) = =′− − −1 1 2 1 2 	 (4)

therefore, it corresponds to compute PCs. Moreover, 
let us recall that the following decomposition holds for 
any orthogonal matrix A:
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	 X 2 2 2= +− ′ ′X XAA XAA  	 (5)

in fact, let start from X 2   then add and subtract 
XAA′, we obtain

     

	

X X XAA XAA

X XAA XAA

X XAA XAA

2 2= − +

=
−( ) +( )′
−( ) +( )















=

′ ′

′ ′

′ ′
tr

XX XAA XAA

X XAA XAA

− ′ + ′

+ −( )′ ( )′ ′

2 2

2tr ) 	 (6)

where the double product is null since 
tr tr′ ′ ′ ′ ′( ) − ( ) =X XAA AA X XAA 0,  because A is 
orthogonal. Therefore, minimising X XAA− ′ 2 
corresponds to maximise XAA′ 2  since X 2  is 
constant as the orthogonal matrix A varies. Now, it is 
easy to show that 

	

XAA AA X XAA A X XAA A

A X XA XA Y

′ = ( ) = ( )
= ( ) = = ( )

′ ′ ′ ′ ′ ′

′ ′

2

2

tr tr

tr ntr Σ  	 (7)

and therefore if XAA′ 2  is maximised also ntr ΣY( ) 
is maximised. In other words, minimize the error 
resulting in Equation 3 corresponds to maximize the 
variance of the principal components matrix Y. This is 
the objective function of the PCA algorithm. 

Probabilistic principal component analysis 

Probabilistic principal component analysis (PPCA) 
[17], is a probabilistic formulation of PCA. In particular, 
just recall the model formalization of PCA shown in 
Equation (2) and assume the following hypothesis:  

i. yi H~ ,N Y0 Σ( ) , where ΣY I= H ;
ii. ei J~ ,N E0 Σ( ) , where Σ σE I= 2

J ;
iii.Cov i ie y,( ) = =ΣEY 0

Thus, like factorial analysis (FA), PCs are defined 
independent, standardized, Gaussian, and a 
mutual independence between Y and E is assumed. 
Statistically, these hypotheses imply the following 
covariance matrix structure of X:

	
Σ

Σ Σ σ
X

Y E

X X AY YA E E

A A AA I

= = +

= + = +

′ ′ ′ ′

′ ′

− −n n

J

1 1

2 	 (8)

and, consequently, the Gaussian distribution of 

data xi J J~ ,N AA I0 2′ +( )σ . A similar form of the 
covariance matrix is specified in FA, which differs 
from PPCA only in the more general specification of 
Σ σ σE = …( )diag J1

2 2, , , which is not necessarily based 

on a isotropic error covariance as in PPCA. This 
modification leads to significant differences in the 
behavior of the two methods [18].

The ML estimate of ΣX (i.e., the estimation of A and  
σ2 can be obtained by the standard EM algorithm [19]. 
We can define the log-likelihood function as follows:

	 l
n

Jln

tr

J

J

A X
AA I

AA I S
, |

ln
σ

π σ

σ
2

2

2 12

2

( ) = −
( ) + +( )

+ +( )










′

′
−












	 (9)

where S = −( ) −( )′−
=∑n x xi ii

n1
1

µ µ  is the observed 
sample covariance matrix with µ  supposed known 
and estimated by the sample mean. 

Proof 2

It is proved that the ML estimators of A and σ2 
for the isotropic error model correspond to the PCA 
solution. A formal, short and easy proof depends on 
the two following results: 

a) AA I AA I′ ′+ = + = +( )−( ) −( )σ σ σ σ σ2 2 2 21J H
J H H J H ;

b) 
AA I I A I AA

A I AA

′ ′

′ ′

+( ) = − +( )





= − +

− −
−

−

σ σ σ σ

σ σ σ

2 1 2 2 2
1

2 2 2 1

J J H

J ( )(( )−1

thus substituting a) and b) in Equation (9), the log-
likelihood function can be written as:

l
n tr

H J H

A X

S

, |
ln

( )

σ
σ σ

σ

σ σ

2

2
2

2 22

1

1
( ) = −

+( )





+ 





− +( )

−( )

−11
tr

C

AA S′( )



















+

(10)
where C is a constant not depending on both  A 

and σ2. In this way, it can be directly observed that the 
ML estimate of  A (i.e., Â ) is equal to the LS estimate. 
In particular, to maximize (10), we need to maximize

	 tr AA S tr A SA( ) ( )′ = ′ 	 (11)

and considering the spectral decomposition of S 
show below: 

	 S ULU= ′ 	 (12)

where U is orthogonal matrix which columns are 
eigenvectors of S and L is diagonal matrix which 
elements are the corresponding eigenvalues. 

The solution is given by the H eigenvectors U(H)
corresponding to the largest H eigenvalues (reported 
in the diagonal matrix L(H)) of the covariance matrix S, 

i.e., Â U= ( )H . However, since ΣY I= H , to reconstruct 
the matrix X according model (2), PCs have to be 
scaled for their variance and the variance of the error 
term. Then, 
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	 Â U L I= −( )( ) ( )H H Hσ2
1
2 	 (13)

For estimating σ2 we need to set the derivative of 
the log-likelihood function with respect to σ2 equal to 
zero as shown in Equation (14)

 

∂
∂

= +( ) + −( ) +( )
− ( ) +( ) + +( ) ( ′

l
K J H

tr tr

σ
σ σ σ σ

σ σ

2
4 2 2 2 2

2 2 2

1 1

1 2 1S AA S)) = 0 	 (14)

Thus, the solution is given by

	 σ̂2 =
( ) − ( )

−( )
′tr tr

J H
S A SA

	 (15)

Disjoint principal component analysis 

The disjoint principal component analysis (DPCA) 
model can be formally written as the PCA model (2) 
where some constraints on the loading matrix A are 
imposed [14], following the idea of SEM, which allows 
researchers to model LVs through disjoint classes of 
correlated MVs [20]. In particular, the following 
constraints are defined:

iv. ajhj

J 2
1

1=
=∑ , 	 h = 1,…, H

v. a ajh jrj

J ( ) =
=∑ 2

1
0 ,	 h = 1,…, H – 1; r = h 

+1,…, H;

vi. ajhh

H 2
1

0>
=∑ ,	 j = 1,…,  J.		

The constraints iv-vi imply: 

c) A is column-orthonormal, i.e. A′A = I; 
d) each row of A has at most a single loading for a 

LV, i.e. a MV can contribute only to a single LV;
e) from (d) a partition of MVs is induced and each 

LV is represented as a linear combination of a single 
class of variables.

Moreover, the loading matrix A can be re-
parameterized as the product of two matrices as 
follows:

	 A = BV	 (16)

where V = [vjh] is a J × H binary and row stochastic 
matrix defining a partition of variables into H classes 
identifying H PCs, with vjh = 1, if the jth variable belong 
to hth class, vjh = 0, otherwise; B is a J × J diagonal 
matrix weighting MVs. In this way, constraints iv-vi 

become v b �jh jj

j 2
1

1=
=∑ ; v bjh jj

J

h

H
H2

11
=

== ∑∑ , and 

the DPCA is can be specified as follows:  

	 X = YV′B + E	 (17)

where Y is a linear combination defined as Y = 
XBV. Thus, model (14) can be expressed as

	 X = XBVV′B + E	 (18)

such that 

1) V = ∀ ∈{ }



v vjk jk: ,0 1 	 (binary);		

     		
 2) V1k = 1J			   (row stochastic);
 
 3) B = diag(b1, ...bJ)		 (diagonal);
 
 4) V′BBV = Ik		  (orthonormal);

Proof 3

Note that in FA framework the Bartlett’s weighted 
LS score, which takes the following form

	 Y X BV V B BVE E= ( )′− − −
Σ Σ1 1 1

 	 (19)

it is reduced to Y=XBV when an isotropic error is 
specified. In fact

           Y X I BV V B I BV

X BV V BBV

XBV V BBV

= ( ) =

= ( ) =

=

′

′

′

− − −

−

( ) ( )σ σ

σ σ

2 1 2 1 1

2 2 1

J J

(( ) =
=

−1

XBV

                         
                                         
                            
                                                                                                                           (20)

The LS estimators of the models (17) and (18) 
are the optimal solutions of the following quadratic 
problem with respect to unknown parameters B  
and V:

	 min ,B V X XBVV B− ′ 2 	 (21)

such that constraints 1) - 4) are satisfied. 
Proof 4

It is interesting to note the following decomposition: 

	 X X XBVV B XBVV B2 2 2= − ′ + ′ 	 (22)

The proof of the decomposition is given by	
                           

	

X X XBVV B XBVV B

X XBVV B XBVV B

2 2 2

2

= − ′ + ′

+ − ′( )′ ′( )





tr  	 (23)

thus, 

	 tr X XBVV B XBVV B− ′( )′ ′( )




 = 0	 (24)

In fact,
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tr

tr

X XBVV B XBVV B

X XBVV B BVV BX XBVV B

− ′( )′ ′( )





=

= ′( ) − ′ ′ ′(′ tr )) =

= ( ) − ′ ′( ) =′ ′ ′tr V BX XBV V BX XBVV BBVtr 0
	                                    
	                               
	                                                                (25)

since in the second member of the previous equation 
′ =V BBV Ik . From decomposition (22), by minimizing 

equation (21), the second term of the right-hand side 
of (22) is maximized. 

Moreover, the second term of the (22) can be 
written as

( )

XBVV B BVV BX XBVV B

V BX XBV V BBV

V BX XB

′

′

′

= ′ ′ ′( )
= ′ ′( ) =

= ′

2 tr

tr

tr VV XBV

V B v B Bv

Y

X

( ) =

= ( ) = ( ) =

= ( ) = ′

′

′
=

∑

2

1

n tr tr

tr k k

Σ

Σ Σ

Y

BVX

Y

k

K
	          

                                   
                                                                                           (26)
	
therefore, the minimization problem shown in 

Equation (21) corresponds to maximize the total 
variance of the PCs (26). Then, DPCA model is a 
constrained formulation of the PCA model, where 
the loading matrix has the form A=BV, with B and 
V satisfying constraints 1) - 4), and the solution 
of Equations (21) and (26) can be find through a 
constrained Alternating Least Squares (ALS) algorithm.

Probabilistic disjoint principal component analysis 

The probabilistic disjoint principal component 
analysis (PDPCA) is an isotropic error model that joins 
the features of PPCA and DPCA [15]. PDPCA model 
is defined by the DPCA model in shown in Equations 
(17) and (18), subject to the constraints defined in 1) 
- 4), in which we consider the PPCA assumptions i-iii. 
For these properties, the PDPCA model produces the 
following covariance matrix structure of X:

 
Σ Σ ΣX E YX X BV Y Y V B BV V B I= ′ = ′ ′ + = ′ +

1 1 2

n n J( ) σ
                                           	

(27)

with the related Gaussian distribution 
x BVV B Ii JN~ ( ,0 2′ + σ J , since ΣY I= H. Let (x1, ...xn) be 
a sample of i.i.d. J dimensional observations, where 
x BVV B Ii JN~ ,0 2′ +( )σ J , the corresponding log-
likelihood function can be formulated as

l
n

tr

J

J

JV B X

BV V B I

BV V B I S

Y

Y, , |

ln

σ

Σ σ

Σ σ2

2

2 1

2( ) = −

+

+ +( )





+

′

′
−

lln 2π( )



























  (28)

By the maximizing the log-likelihood function shown 
in Equation (28) through an expectation-maximization 
(EM) algorithm [21], subject to the constraints defined 
in 1) - 4) and under PPCA assumptions i-iii, we obtain 
the following ML estimator:

the ML estimator of bh is

	 ˆ /
b U L Ik h h H= −( )( ) ( )1 1

2
1 2

σ  	 (29)
 

where hU 1( )  and hL 1( )  respectively are the 
eigenvector and the corresponding largest eigenvalue 
of matrix ΣXh

. The estimates of V is obtained by 
assigning each variable to the class that most increases 
the log-likelihood, i.e., 

	 ˆ , ,

, , : , ,

v ifjh h

m

l

max l m H

= ( )
= ( ) = …{ }

1

1

2

2

V B

V B

σ

σ

	
(30)

	                  	

ˆ .v otherwisejh = 0

Finally, the ML estimator of σ2 is

	
ˆ ( )σ Σ2

1

1 1
=

−
− ′





=
∑J H

tr
n

h

H

hX y yh h 	 (31)

that is the average of the loss corresponding to the 
H classes.

Disjoint multiple correspondence analysis

The disjoint multiple correspondence analysis 
(DMCA) model is a particular case of the disjoint 
principal component analysis (DPCA) introduced 
in the subsection 2.3. In fact, the DMCA model can 
be considered as the DPCA applied to a categorical 

data matrix appropriately centred as X J L= J
1
2

1
2Ψ .  

Where J is the number of qualitative variables; 
Ψ Ψ Ψ= … 1, , J  is the binary block matrix formed by J 
indicator binary matrices Ψ J  with elements ψi jm, =1 if the 
ith observation has assumed category m for variable J, 
ψi jm, = 0  otherwise; L = ′( )diag NΨ 1 ; J I= − ′−

N N NN 11 1   
is the idempotent centring matrix with.

Therefore, to introduce the DMCA model we can 
consider PCA model shown in Equation (3) and the re-
parameterization of the loading matrix given by A = BV:

	 J J
1
2

1
2

1
2

1
2J L J L BVV B EΨ Ψ= ′ + 	 (32)

such that 

1) V = ∀ ∈{ }



v vjk jk: ,0 1 	 (binary);		

     		
 2) V1 1K J= 			   (row stochastic);
 3) B = …( )diag Jb b1, , 	 (diagonal);
 4) ′ =V BBV IK 		  (orthonormal).
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The LS estimators of the models (32) are the optimal 
solutions of the following quadratic problem with 
respect to unknown parameters B and V:

	 min ,B V J L J BVV BJ J
1
2

1
2

1
2

1
2

2

Ψ Ψ− ′L 	 (33)

such that constraints 1) - 4) are satisfied. Then, fixed 
the number of factor H, the maximization of (33) can 
be solved by using ALS algorithm. 

DISCUSSION

In this work we analysed the methodological 
properties of the dimensionality reduction approaches 
in the case of continuous and categorical data. The two 
approaches discussed in this work are Disjoint Principal 
Component Analysis (DPCA) and Disjoint Multiple 
Correspondence Analysis (DMCA), two statistical 
methods that could find interesting applications in the 
clinical field.

In clinical genetics, DPCA could be a valuable 
tool for delving into complex genetic data. It enables 
the identification of specific variance patterns within 
subsets of genes or genetic markers. This application 
is particularly beneficial for uncovering genetic 
associations related to specific clinical conditions or 
responses to various treatments. Similarly, in biomarker 
research, DPCA offers a means to separate the 
variance linked to different categories of biomarkers. 
This capability aids in identifying patterns that hold 
clinical significance, providing valuable insights for 
diagnostic and prognostic purposes. Medical imaging, 
such as data obtained from magnetic resonance or 
computed tomography scans, stands to benefit from 
DPCA. This method can assist in pinpointing specific 
patterns within different regions of medical images, 
contributing significantly to the early diagnosis of 
various pathologies.

Turning our attention to DMCA, its application in 
epidemiological analysis is noteworthy. When dealing 
with categorical clinical data, such as classifying 
diseases into distinct categories, DMCA proves useful. It 
helps in identifying specific risk factors associated with 
particular health conditions, aiding in the development 
of targeted preventive measures. Moreover, in lifestyle 
habits studies, DMCA serves as a valuable analytical 
tool. By examining the relationships between various 
categorical variables, such as tobacco consumption, 
physical activity, and diet, DMCA contributes to a 
more nuanced understanding of their impacts on 
health, providing crucial information for personalized 
interventions. In the assessment of patients’ quality of life, 
DMCA plays a significant role. Analysing data related 
to categorical variables like symptoms, emotional 
impact, and overall satisfaction, DMCA provides 
a comprehensive view of health status. This holistic 
understanding can guide healthcare professionals in 

tailoring treatment plans and interventions to improve 
patients’ overall well-being.

In conclusion, both DPCA and DMCA offer 
valuable insights for clinical research and analysis. 
Their applications in clinical genetics, biomarker 
research, medical imaging, epidemiological analysis, 
lifestyle habits studies, and quality of life assessment 
showcase their versatility in addressing diverse aspects 
of healthcare and medical research. The choice 
between these approaches depends on the specific 
characteristics of the data and the research goals in 
the clinical context.

REFERENCES

1.	 Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S. 
Graph Embedding and Extensions: A General 
Framework for Dimensionality Reduction. IEEE Trans 
Pattern Anal Mach Intell. 2007;29:40-51.

2.	 Pearson K. LIII. On lines and planes of closest fit to 
systems of points in space. The London, Edinburgh, 
and Dublin Philosophical Magazine and Journal of 
Science. 1901;2(11):559-72.

3.	 Spearman C. “General Intelligence,” Objectively 
Determined and Measured. The American Journal of 
Psychology. 1904;15(2):201-92.

4.	 Michael Greenacre JB. Multiple Correspondence 
Analysis and Related Methods (1st ed.): Chapman 
and Hall/CRC. ; 2006.

5.	 Cadima J, Jolliffe IT. Loading and correlations in the 
interpretation of principle compenents. Journal of 
Applied Statistics. 1995;22(2):203-14.

6.	 Widaman K. Common Factor Analysis Versus Princi-
pal Component Analysis: Differential Bias in Repre-
senting Model Parameters? Multivariate Behavioral 
Research. 1993;28:263-311.

7.	 Hastie T, Tibshirani R, Wainwright M. Statistical 
Learning with Sparsity: The Lasso and Generaliza-
tions2015. 1-337 p.

8.	 Jolliffe I, Trendafilov N, Uddin M. A Modified Prin-
cipal Component Technique Based on the LASSO. 
Journal of Computational and Graphical Statistics. 
2003;12.

9.	 Guan Y, Dy J. Sparse Probabilistic Principal Compo-
nent Analysis. Journal of Machine Learning Research 
- Proceedings Track. 2009;5:185-92.

10.	 Shen H, Huang JZ. Sparse principal component anal-
ysis via regularized low rank matrix approximation. 
Journal of Multivariate Analysis. 2008;99(6):1015-
34.

11.	 d’Aspremont A, El Ghaoui L, Jordan MI, Lanckriet 
GRG. A direct formulation for sparse PCA using sem-
idefinite programming. Siam Rev. 2007;49(3):434-
48.

12.	 Jöreskog K. A General Approach to Confirmatory 
Factor Analysis. Psychometrika. 1969;34:183-202.

13.	 Ferrara C, Martella F, Vichi M. Dimensions of 
Well-Being and Their Statistical Measurements. Stud 
Theor Appl Stat. 2016:85-99.



ISSN 2282-0930 • Epidemiology Biostatistics and Public Health - 2023, Volume 18, Issue 2ORIGINAL ARTICLES

The Dimensionality Reduction Problem 7

14.	 Vichi M, Saporta G. Clustering and Disjoint Princi-
pal Component Analysis. Computational Statistics & 
Data Analysis. 2009;53:3194-208.

15.	 Ferrara C, Martella F, Vichi M. Probabilistic Disjoint 
Principal Component Analysis. Multivariate Behavio-
ral Research. 2018;54:1-15.

16.	 16.	Lloyd N. Trefethen DB. Numerical linear alge-
bra: Society for Industrial and Applied Mathematics; 
2022. xvi + 370 p.

17.	 Tipping ME, Bishop CM. Probabilistic Principal Com-
ponent Analysis. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology). 1999;61.

18.	 Tipping ME, Bishop CM. Mixtures of Probabilistic 
Principal Component Analyzers. Neural Computa-
tion. 1999;11:443-82.

19.	 Meng X-L, van Dyk D. The EM Algorithm--An Old 
Folk-Song Sung to a Fast New Tune. Journal of the 
Royal Statistical Society Series B (Methodological). 
1997;59(3):511-67.

20.	 Fordellone M, Vichi M. Structural Equation Mode-
ling and simultaneous clustering through the Partial 
Least Squares algorithm2018.

21.	 Dempster AP, Laird NM, Rubin DB. Maximum Like-
lihood from Incomplete Data via the EM Algorithm. 
Journal of the Royal Statistical Society Series B 
(Methodological). 1977;39(1):1-38.


	_GoBack

