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SUMMARY

Case-control studies, a widely used observational study design, are essential for investigating the asso-
ciation between exposure and outcomes. In such studies, logistic regression is commonly employed to 
analyse the relationship between binary outcome and exposure, accounting for covariates, confounders, 
and effect modifiers. However, skewed exposure distributions, where the exposure is disproportionately 
distributed among cases and controls, pose significant challenges. In this case, the parameter estimates 
may be biased, leading to an over- or underestimation of the true effect size, and this can affect the inter-
pretability and reliability of the estimated coefficients.
This study aims to address these challenges by conducting a series of Monte Carlo simulation experiments 
to assess the impact of skewed exposure on the power of the Wald test and the bias in estimated logistic 
regression coefficients. The simulations focus on the role of continuous covariates in producing reliable 
estimates of exposure effects. The study highlights the importance of preliminary knowledge of exposure 
and covariate effects, as these factors play a crucial role in selecting an appropriate sample size. These 
simulations, which required significant computational time, highlight the robustness of the estimates with 
larger sample sizes and a greater number of covariates, eliminating the potential bias introduced by 
skewed exposure.
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INTRODUCTION

Case-Control study design, is a common observational 
study that involves researchers observing and measuring 
both exposure and outcome among participants to 
examine their association [1]. In this design, individuals 
with a particular outcome (cases) are compared to those 
without the outcome (controls), assessing the presence or 
absence of exposure in both groups to identify potential 
risk factors. Due to its speed and efficiency, the case-
control study is frequently the preferred design for 
research on the causes of disease [2]. 

In case-control studies, the odds ratio (OR) is often 
used as a measure of association between exposure and 
a binary outcome. Logistic regression is a widely used 
statistical technique for analyzing case-control data, as it 
allows researchers to account for the effects of covariates, 
confounders, and potential effect modifiers [3].

The logistic regression model to study the relationship 
between the binary outcome ( )Y  and exposure  ( )X , in the 
presence of p covariates/confounders/effect modifiers 

1 2 3, , pC C C C…  is given by,

	
1 1 2 2log

1 p p
p

X C C C
p

= α + β + β + β + … + β
−

Where ( )1 2, , ,.. pp E Y X C C C|=
By including covariates/confounders/effect 

modifiers in the logistic regression model, their 
effects are accounted for, but the researcher is 
particularly interested in coefficient β. A positive 
coefficient indicates a positive association between 
the exposure and the outcome, while a negative 
coefficient indicates a negative association. The 
magnitude of the coefficient represents the strength 
of the association. 
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A skewed exposure in case control studies is defined 
as an exposure which is disproportionately distributed 
among cases and controls. A binary skewed exposure 
is defined as a categorical variable with despaired 
marginal distribution. 

Foxman et al. [4] conducted a case-control study 
of contraceptives and Urinary Tract Infection among 
college women and the cross tabulation reported 
clearly indicated that Diaphragm usage as a skewed 
exposure with majority of the women not using it.

Table 1. Cross tabulation of Diaphragm usage and Urinary 
Tract Infection, Foxman et al [4]

Diaphragm 
usage

Urinary Tract Infection

Yes No

Yes 7 0

No 140 290

A skewed exposure may lead to one of two potential 
issues:

(i)	 Problem of Separation: This occurs when the maxi-
mum likelihood estimates do not converge, leading 
to what is known as complete or quasi-complete 
separation. In such cases, standard logistic regres-
sion fails to provide finite estimates [5,6,7]. 

(ii)	Biased Estimates with Wide Confidence Intervals: 
Even if the maximum likelihood estimates do con-
verge, they may be biased, resulting in wide confi-
dence intervals. This leads to underpowered infer-
ence regarding the exposure, making it difficult to 
draw reliable conclusions [8]. 

The exact logistic regression and Firth’s approach 
are two very well-known methods to handle the problem 
of separation. The exact logistic regression is regression 
technique that provides precise parameter estimates by 
conditioning on sufficient statistics, making it especially 
suitable for small or sparse datasets. However, it is 
often criticized for its computational cost and inability to 
handle large number of covariates and large sample size 
[9,10,11]. Firth’s approach is a bias-reduction method 
for logistic regression that applies a penalized likelihood 
function to improve parameter estimation. Also, there are 
other methods to handle the problem of separation and 
are discussed in detail by Mansournia et al [12].

But there are instances when the model does 
converge, the results obtained may be unreliable due 
to the skewness in the exposure distribution. This aspect 
is investigated by Alkhalaf and Zumbo (2017) [8] by 
considering only one covariate and they concluded 
that estimates are not reliable. However, the specific 
effects of skewed exposure on case-control studies, 
considering factors such as the degree of skewness, 
sample size, and covariate effect size, and number of 
covariates remain unexplored.

Thus, this paper aimed to conduct a series of Monte 
Carlo simulations to assess the power of the Wald test 
and the bias in estimated logistic regression coefficients, 
demonstrated the role of continuous covariates in 
producing the reliable estimates of exposure effect. 

Simulation Experiments

Six simulation experiments were conducted to 
evaluate the Wald test in logistic regression. Experiment I 
focused on the Type I error rate of the Wald test, varying 
sample sizes and skewness probabilities. Experiment II 
assessed the power of the Wald test, bias in exposure 
coefficient estimates, and confidence interval widths with 
a single covariate, considering different sample sizes, 
skewness probabilities, and effect sizes. Experiments 
III through VI extended this by examining the effects of 
increasing numbers of covariates (two to five) on the 
Wald test’s performance, following similar procedures 
to those in Experiment II. These simulation experiments 
help understand how the inclusion of multiple covariates 
affects the performance of logistic regression models 
in case of skewed exposure. In R (Version 4.4.0), user 
defined functions were specially developed to run 
different simulation experiments. 

Simulation Experiment I

This is a 22 10×  experimental design where Monte 
Carlo simulations were conducted, considering a 
response variable ( ),Y  a skewed binary exposure ( ),X  
and a covariate 1C . 

The simulations considered two experimental factors: 
the sample size, denoted as n, the probability of skewness 
(or prevalence) of exposure, denoted as ,sp  and there 
were 22 values for n ranging from 20 to 500, 10 
values for sp , ranging from 0.05 to 0.5. The simulation 
is executed for 1000 times for each cell of 22 10×  
experimental design. The ( ), thi j  cell of this experimental 
design represents the simulation corresponding to thi  
sample size and thj  probability of skewness.

The logistic regression model considered is

1 1log
1

p
X C

p
= α + β + β

−
This simulation experiment is carried out to estimate 

the type I error rate of Wald test used in logistic 
regression model to detect the impact of the exposure. 
The null and alternative hypothesis of interest are 

0 1 : 0   : 0H VsHβ = β ≠ .
The type I error rate is estimated only for skewed 

exposure as it is of primary interest in most of the 
epidemiological context. 

The simulation procedure for ( ), thi j  cell of the 
experimental design is as follows: 

	• The covariates are generated from a prespeci
fied probability distributions. ~ ( )sBernou li plX  and 

1 ~ (22,5)C Normal
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	• The regression coefficients are set to zero and the 
probability p is generated using logistic regression 
model. The predicted probability serves as the 
expected value for the Bernoulli distribution from 
which the data on outcome variable is drawn.

	• The logistic regression model is fitted to the simulat-
ed data, and the occurrence of type I error is noted 
down.

	• The procedure is repeated for 1000 simulations.

The empirical type I error rate for ( ), thi j  cell of the 
experimental design is computed as the number of 
times the true null hypothesis is rejected at the level of 
5% divided by 1000. 

The Bradley’s rule [13] was used to decide whether 
the type I error rate meets the criteria. The type I error 
rate between 0.025 and 0.075 was considered as the 
meeting the liberal criteria. In simulations if generated 
datasets fail to yield convergence with the maximum 
likelihood estimation method, such datasets are excluded. 

Simulation Experiment II

This is a 22 10 3 3× × ×  experimental design with 
four design factors: the sample size, denoted as n, the 
probability of skewness of exposure, denoted as ,sp  
and the regression coefficient of X  denoted as Xβ , the 
regression coefficient of covariate is Cβ . There were 22 
values for n ranging from 20 to 500, 10 values for sp ,  
ranging from 0.05 to 0.5, three distinct values for Xβ  
were considered, namely 0.683 (odds ratio = 1.98), 
1.1(odds ratio = 3), and 1.38 (odds ratio = 3.97), 
corresponding to small, moderate, and large effects of 
exposure, respectively [14]. There were 3 values for Cβ  
namely 0.683, 1.1 and 1.38 corresponding to small, 
moderate, and large effects of covariate.

In the ( ), , , thi j k l  simulation of this experiment, 1000 
datasets were generated according to the previously 
outlined procedure (as in simulation experiment I), 
considering thi  sample size, thj  probability of skewness, 

thk  value of Xβ  and  thl  value of Cβ . 
The power of Wald test to detect the effect of exposure 

is defined as the number of times the false null hypothesis 
is rejected during ( ), , , thi j k l  simulation divided by 1000. 
The bias of ( ), , , thi j k l  simulation is the difference between 
estimated regression coefficient and the actual value. The 
mean bias is the mean of all these differences. The mean 
squared error for ( ), , , thi j k l  simulation is the average 
squared deviation of these differences.

 ijklBias = β − β

( )
    

ijkl
Mean Bias

n

β − β
= ∑

 

( )2
     

ijkl
Mean Squared Error

n

β − β
= ∑

This simulation experiment was run for 9 scenarios 
depending on the strength of effects of exposure and 
covariates. These 9 scenarios are tabulated below:

Table 2. Combinations of exposure and covariate effects

Covariate effect
Small Moderate Large

Exposure 
effect

Small Scenario 1 Scenario 2 Scenario 3

Moderate Scenario 4 Scenario 5 Scenario 6
Large Scenario 7 Scenario 8 Scenario 9

For each of these nine scenarios, the mean bias and 
mean squared error of the regression coefficients are 
computed for various values of n and .sp  The percentage 

bias was calculated as 
( )

% 100ijklbias
β − β

= ×
β

 where 

ijklβ  is the average estimate of β for ( ), , , thi j k l  simulation. 
The estimator is unbiased if the percentage bias is 

0%. The percentage bias within 5± % was considered 
acceptable [15]. The 95% confidence interval for 
β during ( ), , , thi j k l  simulation was computed as  

[
1

2

 ( )ijkl ijklZ SEα−
β − β  

1
2

 ( )]ijkl ijklZ SEα−
β + β  where ( )ijklSE β  

is the square root of mean squared error. 
The width of the confidence interval in each 

simulation was calculated as 

1
2

 2   ( )ijklWidth Z SEα−
= × × β

Plots of sample size versus percentage bias for 
different probabilities of skewness, and plots of sample 
size versus width of the confidence interval for various 
probabilities of skewness, are generated. These plots 
help us understand how percentage bias decreases and 
the width of the confidence interval narrows as sample 
size increases. The optimal sample size is identified 
as the point where the percentage bias is within ±5%, 
and after which the width of the confidence interval 
reaches a minimum and then saturates.

Simulation Experiment III-VI

The simulation experiments III, IV, V and VI work 
similar to experiment II, with number of covariates 
increased. In all experiments, the values of Xβ  are fixed 
at 0.683, 1.1, and 1.38, corresponding to small, 
moderate, and large effect sizes of the exposure, 
respectively. The values of Cβ  correspond to the effect 
sizes of these covariates on the outcome, with different 
sets of values used to simulate small, moderate, and 
large effects. As the number of covariates increases 
across experiments III to VI, the values of Cβ  correspond 
to combinations of effect sizes for each covariate, 
reflecting various strength levels of their association 
with the outcome.
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In the ( ), , , thi j k l  simulation of this experiment, 1000 
datasets were generated according to the previously 
outlined procedure (as in simulation experiment I 
and II), considering thi  sample size, thj  probability 
of skewness, thk  value of Xβ  and  thl  row of  Cβ . For 
each scenario the plots of percentage bias and width 
of confidence interval are generated and the optimal 
sample size is decided.

RESULTS

The Monte Carlo simulations of this study took 
approximately 1874 minutes i.e., 31.23 hours of 

execution time. Even though these experiments were 
time-consuming, a pattern in percentage bias and the 
width of the confidence interval emerged, providing the 
sample size guidelines. The results of this experiment 
may not be particularly pleasing to researchers who 
wish to conduct case-control studies with limited small 
sample sizes. However, preliminary knowledge about 
exposure and covariate effect would help researchers 
choose the optimal sample size.

The results of simulation experiment I is presented in 
Table 4. The aim of this experiment was to estimate the 
type I error rate of Wald test used in logistic regression 
in the presence of skewed exposure. It is observed that 
as the sample size increases, the type I error rates tend 
to approach Bradley’s criteria more closely. However, 

Table 3. The Details of Simulation Experiments

Experiment III IV V VI

Design 22 10 3 3× × × 22 10 3 3× × × 22 10 3 3× × × 22 10 3 3× × ×

Values of Xβ

0.683
1.1

1.38

 
 
 
  

0.683
1.1

1.38

 
 
 
  

0.683
1.1

1.38

 
 
 
  

0.683
1.1

1.38

 
 
 
  

Cβ
0.683 0.683

1.1 1.1
1.38 1.38

 
 
 
  

0.683 0.683 0.683
1.1 1.1 1.1

1.38 1.38 1.38

 
 
 
  

0.683 1.1 1.38
0.683 1.1 1.38
0.683 1.1 1.38
0.683 1.1 1.38

T 
 
 
 
 
  

0.683 1.1 1.38
0.683 1.1 1.38
0.683 1.1 1.38  
0.683 1.1 1.38
0.683 1.1 1.38

T 
 
 
 
 
 
 
 

Covariates
1 ~ (22,5)C Normal

2 ~ (35,15)C Normal

1 ~ (22,5)C Normal

2 ~ (35,15) C Normal

3 ~ (80,15)C Gamma

1 ~ (22,5)C Normal

2 ~ (35,15) C Normal

3 ~ (80,15) C Gamma

4   ~ (3,4)C Beta

1 ~ (22,5)C Normal

2 ~ (35,15) C Normal

3 ~ (80,15) C Gamma

4   ~ (3,4)C Beta

5 ~ (5,1)C Normal

Table 4. Type I Error Rates by Sample Size and Probability of Skewness

  Probability of Skewness

Sa
m

p
le

 s
iz

e

  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
20 0.006 0.004 0.003 0.011 0.012 0.018 0.016 0.032 0.03 0.021
50 0.005 0.006 0.015 0.032 0.029 0.052 0.044 0.051 0.047 0.046
100 0.006 0.034 0.046 0.048 0.048 0.044 0.05 0.054 0.051 0.062
150 0.006 0.054 0.046 0.034 0.058 0.051 0.052 0.044 0.045 0.044
200 0.018 0.048 0.038 0.057 0.041 0.059 0.054 0.047 0.047 0.041
250 0.034 0.045 0.046 0.042 0.052 0.054 0.058 0.038 0.053 0.05
300 0.033 0.057 0.054 0.047 0.032 0.049 0.057 0.043 0.07 0.04
350 0.037 0.048 0.054 0.053 0.054 0.046 0.05 0.039 0.047 0.066
400 0.035 0.043 0.058 0.047 0.051 0.049 0.052 0.042 0.048 0.055
450 0.048 0.041 0.038 0.05 0.043 0.063 0.046 0.043 0.049 0.055
500 0.035 0.046 0.04 0.052 0.044 0.045 0.044 0.049 0.043 0.049
550 0.049 0.04 0.052 0.054 0.047 0.047 0.046 0.062 0.039 0.043
600 0.035 0.045 0.054 0.05 0.05 0.055 0.043 0.059 0.048 0.047

(continua)
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with smaller sample sizes, particularly when 20,n =  
there is a higher likelihood of deflated type I error rates.  

The plots of sample size versus percentage bias and 
plots of sample size versus width of confidence interval 
for all nine scenarios of simulation experiments II to VI 
are provided in the supplementary material.

The figure presents general guidelines for 
determining sample size, based on percentage 
bias and the width of the confidence interval. If the 
percentage bias is within  ±5% and the confidence 
interval is also narrower, that sample size is reported 
as the optimal one. However, several inputs, such as 
exposure effect size and covariate effect size, are 
required. This may seem challenging to researchers, 
as using these guidelines necessitates a significant 

amount of prior knowledge. However, this paper 
offers additional insights. In case-control studies, 
where numerous covariates are often present, it is 
safe to assume that there are at least five covariates. If 
this is the case, and the exposure effect is greater than 
the covariate effect, a sample size of 600 is sufficient. 
However, if the sample size is around 1,000, a 
skewed exposure does not significantly impact the 
estimates of the odds ratio, the power of the Wald 
test, or the width of the confidence interval if the 
number of covariates is at least five. Hence a larger 
sample size and an increased number of covariates 
contribute to more stable and reliable estimates, 
reducing the potential bias that might be introduced 
by a skewed exposure.

Table 4. Type I Error Rates by Sample Size and Probability of Skewness (continua)

Probability of Skewness
  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

650 0.045 0.049 0.05 0.037 0.054 0.054 0.049 0.042 0.043 0.039
700 0.035 0.05 0.046 0.041 0.05 0.044 0.057 0.051 0.07 0.045
750 0.037 0.041 0.052 0.039 0.043 0.072 0.053 0.052 0.044 0.045
800 0.044 0.055 0.045 0.042 0.04 0.042 0.062 0.046 0.047 0.052
850 0.05 0.046 0.051 0.043 0.051 0.053 0.064 0.051 0.055 0.059
900 0.045 0.049 0.039 0.049 0.039 0.052 0.041 0.059 0.056 0.058
1000 0.037 0.048 0.045 0.05 0.06 0.075 0.052 0.047 0.062 0.051
2500 0.063 0.055 0.062 0.056 0.039 0.044 0.046 0.05 0.047 0.058
5000 0.063 0.053 0.058 0.054 0.048 0.055 0.05 0.045 0.046 0.048

Figure 1. Flowchart of Optimal Sample Size Guidelines
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DISCUSSION

There are various approaches in the literature 
addressing case-control studies where logistic 
regression fails to provide finite estimates for the odds 
ratio of exposure. This paper investigates the reliability 
of these estimates when they are finite.

The patterns in both percentage bias and the width 
of the confidence interval, lead to the development of 
sample size guidelines. These guidelines are crucial for 
researchers, particularly those engaged in case-control 
studies. The results also emphasize the importance 
of preliminary knowledge regarding exposure and 
covariate effects. Such knowledge enables researchers 
to select an appropriate sample size from a range of 
options. 

The covariates considered in all the simulation 
experiments are continuous in nature, and hence 
simulated using continuous probability distributions.  
Further simulation can be conducted to study the 
impact of categorical covariates.

As the number of covariates increases, the impact 
of skewed exposure on the estimates of the exposure 
effect diminishes, particularly when the sample size is 
larger. This finding is significant because it suggests 
that, with sufficient sample size, the skewness of 
exposure does not substantially affect the exposure 
effect estimates, in studies with numerous covariates. 
The larger sample sizes and a greater number of 
covariates not only enhance the robustness of the 
estimates but also mitigate the potential bias introduced 
by skewed exposure.
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