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SUMMARY

Case-control studies, a widely used observational study design, are essential for investigating the asso-
ciation between exposure and outcomes. In such studies, logistic regression is commonly employed to
analyse the relationship between binary outcome and exposure, accounting for covariates, confounders,
and effect modifiers. However, skewed exposure distributions, where the exposure is disproportionately
distributed among cases and controls, pose significant challenges. In this case, the parameter estimates
may be biased, leading to an over- or underestimation of the true effect size, and this can affect the inter-
pretability and reliability of the estimated coefficients.

This study aims to address these challenges by conducting a series of Monte Carlo simulation experiments
to assess the impact of skewed exposure on the power of the Wald test and the bias in estimated logistic
regression coefficients. The simulations focus on the role of continuous covariates in producing reliable
estimates of exposure effects. The study highlights the importance of preliminary knowledge of exposure
and covariate effects, as these factors play a crucial role in selecting an appropriate sample size. These
simulations, which required significant computational time, highlight the robustness of the estimates with
larger sample sizes and a greater number of covariates, eliminating the potential bias introduced by

skewed exposure.
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INTRODUCTION

Case-Control study design, is a common observational
study that involves researchers observing and measuring
both exposure and outcome among participants fo
examine their association [1]. In this design, individuals
with a particular outcome (cases) are compared to those
without the outcome (controls), assessing the presence or
absence of exposure in both groups to identify potential
risk factors. Due to its speed and efficiency, the case-
control study is frequently the preferred design for
research on the causes of disease [2].

In case-control studies, the odds ratio (OR) is often
used as a measure of association between exposure and
a binary outcome. Logistic regression is a widely used
statistical technique for analyzing case<ontrol data, as it
allows researchers to account for the effects of covariates,
confounders, and potential effect modifiers [3].
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The logistic regression model to study the relationship
between the binary outcome (Y) and exposure (X), in the
presence of p covariates/confounders/effect modifiers

C.C,,C5...C, is given by,

=o+BX+B,C+B,Co+...+B,C

P
log pCr

Where p=E(Y1X,C,,C,,.C,)

By including  covariates/confounders/effect
modifiers in the logistic regression model, their
effects are accounted for, but the researcher is
particularly interested in coefficient B. A positive
coefficient indicates a positive association between
the exposure and the outcome, while a negative
coefficient indicates a negative association. The
magnitude of the coefficient represents the strength
of the association.
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A skewed exposure in case control studies is defined
as an exposure which is disproportionately distributed
among cases and controls. A binary skewed exposure
is defined as a categorical variable with despaired
marginal distribution.

Foxman et al. [4] conducted a case-control study
of contraceptives and Urinary Tract Infection among
college women and the cross tabulation reported
clearly indicated that Diaphragm usage as a skewed
exposure with majority of the women not using it.

Table 1. Cross tabulation of Diaphragm usage and Urinary
Tract Infection, Foxman et al [4]

Diaphragm Urinary Tract Infection
usage Yes No
Yes 7 0
No 140 290

A skewed exposure may lead to one of two potential
issues:

(i) Problem of Separation: This occurs when the maxi-
mum likelihood estimates do not converge, leading
to what is known as complete or quasi-complete
separation. In such cases, standard logistic regres-
sion fails to provide finite estimates [5,6,7].

(i) Biased Estimates with Wide Confidence Intervals:
Even if the maximum likelihood estimates do con-
verge, they may be biased, resulting in wide confi-
dence intervals. This leads to underpowered infer-
ence regarding the exposure, making it difficult to
draw reliable conclusions [8].

The exact logistic regression and Firth’s approach
are two very well-known methods to handle the problem
of separation. The exact logistic regression is regression
technique that provides precise parameter estimates by
conditioning on sufficient statistics, making it especially
suitable for small or sparse datasets. However, it is
often criticized for its computational cost and inability to
handle large number of covariates and large sample size
[9,10,11]. Firth’s approach is a biasreduction method
for logistic regression that applies a penalized likelihood
function to improve parameter estimation. Also, there are
other methods to handle the problem of separation and
are discussed in detail by Mansournia et al [12].

But there are instances when the model does
converge, the results obtained may be unreliable due
to the skewness in the exposure distribution. This aspect
is investigated by Alkhalaf and Zumbo (2017) [8] by
considering only one covariate and they concluded
that estimates are not reliable. However, the specific
effects of skewed exposure on case-control studies,
considering factors such as the degree of skewness,
sample size, and covariate effect size, and number of
covariates remain unexplored.

Thus, this paper aimed to conduct a series of Monte
Carlo simulations to assess the power of the Wald test
and the bias in estimated logistic regression coefficients,
demonstrated the role of continuous covariates in
producing the reliable estimates of exposure effect.

Simulation Experiments

Six simulation experiments were conducted to
evaluate the Wald test in logistic regression. Experiment |
focused on the Type | error rate of the Wald test, varying
sample sizes and skewness probabilities. Experiment |l
assessed the power of the Wald test, bias in exposure
coefficient estimates, and confidence interval widths with
a single covariate, considering different sample sizes,
skewness probabilities, and effect sizes. Experiments
Il through VI extended this by examining the effects of
increasing numbers of covariates (two to five) on the
Wald test'’s performance, following similar procedures
to those in Experiment Il. These simulation experiments
help understand how the inclusion of multiple covariates
affects the performance of logistic regression models
in case of skewed exposure. In R (Version 4.4.0), user
defined functions were specially developed to run
different simulation experiments.

Simulation Experiment |

This is a 22 x 10 experimental design where Monte
Carlo simulations were conducted, considering a
response variable (Y), a skewed binary exposure (X),
and a covariate C;.

The simulations considered two experimental factors:
the sample size, denoted as n, the probability of skewness
(or prevalence) of exposure, denoted as p,, and there
were 22 values for n ranging from 20 to 500, 10
values for p,, ranging from 0.05 to 0.5. The simulation
is executed for 1000 times for each cell of 22x10

experimental design. The (i, [)'h cell of this experimental
design represents the simulation corresponding to i
sample size and ™ probability of skewness.

The logistic regression model considered is

log P =o+BX+B,C
1-p

This simulation experiment is carried out fo estimate
the type | error rate of Wald test used in logistic
regression model to detect the impact of the exposure.
The null and alternative hypothesis of interest are
Hy :B=0 VsH,:B=0.

The type | error rate is estimated only for skewed
exposure as it is of primary interest in most of the
epidemiological context. ,

The simulation procedure for (i, /)' cell of the
experimental design is as follows:

* The covariates are generated from a prespeci-
fied probability distributions. X ~ Bernoulli(p,) and
C, ~ Normal(22, 5)
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* The regression coefficients are set to zero and the
probability p is generated using logistic regression
model. The predicted probability serves as the
expected value for the Bernoulli distribution from
which the data on outcome variable is drawn.

* The logistic regression model is fitted to the simulat-
ed data, and the occurrence of type | error is noted
down.

* The procedure is repeated for 1000 simulations.

The empirical type | error rate for (i, [)'h cell of the
experimental design is computed as the number of
times the true null hypothesis is rejected at the level of
5% divided by 1000.

The Bradley’s rule [13] was used to decide whether
the type | error rate meets the criteria. The type | error
rate between 0.025 and 0.075 was considered as the
meeting the liberal criteria. In simulations if generated
datasets fail to yield convergence with the maximum
likelihood estimation method, such datasets are excluded.

Simulation Experiment |

This is a 22x10x 3 x 3 experimental design with
four design factors: the sample size, denoted as n, the
probability of skewness of exposure, denoted as p,,
and the regression coefficient of X denoted as By, the
regression coefficient of covariate is B. There were 22
values for n ranging from 20 to 500, 10 values for p,,
ranging from 0.05 to 0.5, three distinct values for B
were considered, namely 0.683 (odds ratio=1.98),
1.1(odds ratio=3), and 1.38 (odds ratio=3.97),
corresponding to small, moderate, and large effects of
exposure, respectively [14]. There were 3 values for B
namely 0.683, 1.1 and 1.38 corresponding to small,
moderate, and large effects of covariate.

.. h . . . .

In the (l,/,k, /)r simulation of this experiment, 1000
datasets were generated according to the previously
outlined procedure (as in simulation experiment 1),

.d . .th I . .th b b.l. f k
considering i sample size, [ probability of skewness,
k™ value of B and I" value of B

The power of Wald test to detect the effect of exposure

is defined as the number of times the false null hypothesis
is rejected during (i, j, k, /)rh simulation divided by 1000.
The bias of (i, ik, I)'h simulation is the difference between
estimated regression coefficient and the actual value. The
mean bias is the mean of all these differences. The mean

.. h . . .
squared error for (i, j,k, I)’ simulation is the average
squared deviation of these differences.

Bias = Bijkl -B

> B —B)

D (Bi,‘k/ - B)Q

n

Mean Bias =

Mean Squared Error =
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This simulation experiment was run for 9 scenarios
depending on the strength of effects of exposure and
covariates. These 9 scenarios are tabulated below:

Table 2. Combinations of exposure and covariate effects

Covariate effect

Small |Moderate| Large
Small |Scenario 1| Scenario 2 | Scenario 3
Ex:f?:;re Moderate|Scenario 4| Scenario 5 | Scenario 6
Large (Scenario 7| Scenario 8 | Scenario 9

For each of these nine scenarios, the mean bias and
mean squared error of the regression coefficients are

computed for various values of nand p,. The percentage

M x 100 where

bias was calculated as %bias =

~ . . .. h . .
B is the average estimate of B for (i,i k, I)' simulation.

The estimator is unbiased if the percentage bias is
0%. The percentage bias within £5% was considered
acceptable [15]. The 95% confidence interval for

B during (i,jk, /)rh simulation was computed as

[Bijkl - Zl_g SE (Eijkl) Bi[k/ + Zl_ﬁ SE (Bi,‘kl)] where SE (Bijkl)
2 2

is the square root of mean squared error.

The width of the confidence interval
simulation was calculated as

in each

Width=2xZ x SE(By)
2

Plots of sample size versus percentage bias for
different probabilities of skewness, and plots of sample
size versus width of the confidence interval for various
probabilities of skewness, are generated. These plots
help us understand how percentage bias decreases and
the width of the confidence interval narrows as sample
size increases. The optimal sample size is identified
as the point where the percentage bias is within £5%,
and after which the width of the confidence interval
reaches a minimum and then saturates.

Simulation Experiment IlI-VI

The simulation experiments Ill, IV, V and VI work
similar to experiment Il, with number of covariates
increased. In all experiments, the values of B, are fixed
at 0.683, 1.1, and 1.38, corresponding to small,
moderate, and large effect sizes of the exposure,
respectively. The values of B correspond to the effect
sizes of these covariates on the outcome, with different
sets of values used to simulate small, moderate, and
large effects. As the number of covariates increases
across experiments lll to VI, the values of B correspond
to combinations of effect sizes for each covariate,
reflecting various strength levels of their association
with the outcome.
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Table 3. The Details of Simulation Experiments

Experiment [} v \ Vi
Design 22x10x3x3 22x10%x3x%x3 22x10x3x%x3 22x10%x3x%x3
0.683 0.683 0.683 0.683
Values of By 1.1 1.1 1.1 1.1
1.38 1.38 1.38 1.38
r 0683 1.1 1.38]
0.683 0.683 0.683 0.683 0.683 0.683 1.1 1.38 0683 1.1 138
0.683 1.1 1.38
Bc 1.1 1.1 1.1 1.1 1.1 0683 1.1 138 0.683 1.1 1.38
1.38  1.38 1.38 1.38 1.38 0.683 ]'] ]'38 0.683 1.1 1.38
’ ’ ’ 0.683 1.1 1.38
C; ~Normal(22, 5)
C; ~Normal(22, 5)
C; ~Normal(22, 5) C, ~Normal(35,15)
C; ~Normal(22,5) C, ~Normal(35,15)
Covariates C, ~Normal(35,15) C3 ~Gamma(80,15)
C, ~Normal(35,15) C;3 ~Gamma(80,15)
C3 ~Gamma(80,15) C, ~Beta(3, 4)
C, ~Beta(3, 4)
Cs ~Normal(5,1)

In the (i, ik, /)rh simulation of this experiment, 1000
datasets were generated according to the previously
outlined procedure (as in simulation experiment |
and Il), considering i sample size, j probability
of skewness, k" value of By and I" row of B.. For
each scenario the plots of percentage bias and width
of confidence interval are generated and the optimal
sample size is decided.

RESULTS

The Monte Carlo simulations of this study took
approximately 1874 minutes i.e., 31.23 hours of

execution time. Even though these experiments were
time-consuming, a pattern in percentage bias and the
width of the confidence interval emerged, providing the
sample size guidelines. The results of this experiment
may not be particularly pleasing to researchers who
wish to conduct case-control studies with limited small
sample sizes. However, preliminary knowledge about
exposure and covariate effect would help researchers
choose the optimal sample size.

The results of simulation experiment | is presented in
Table 4. The aim of this experiment was to estimate the
type | error rate of Wald test used in logistic regression
in the presence of skewed exposure. It is observed that
as the sample size increases, the type | error rates tend
to approach Bradley’s criteria more closely. However,

Table 4. Type | Error Rates by Sample Size and Probability of Skewness

Probability of Skewness

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

20 0.006 | 0.004 | 0.003 | 0.011 0.012 | 0.018 | 0.016 | 0.032 0.03 0.021

50 0.005 | 0.006 | 0.015 | 0.032 | 0.029 | 0.052 | 0.044 | 0.051 0.047 | 0.046

100 0.006 | 0.034 | 0.046 | 0.048 | 0.048 | 0.044 0.05 0.054 | 0.051 0.062

150 0.006 | 0.054 | 0.046 | 0.034 | 0.058 | 0.051 0.052 | 0.044 | 0.045 | 0.044

200 0.018 | 0.048 | 0.038 | 0.057 | 0.041 0.059 | 0.054 | 0.047 | 0.047 | 0.041

250 0.034 | 0.045 | 0.046 | 0.042 | 0.052 | 0.054 | 0.058 | 0.038 | 0.053 0.05

300 0.033 | 0.057 | 0.054 | 0.047 | 0.032 | 0.049 | 0.057 | 0.043 0.07 0.04

350 0.037 | 0.048 | 0.054 | 0.053 | 0.054 | 0.046 0.05 0.039 | 0.047 | 0.066

o 400 0.035 | 0.043 | 0.058 | 0.047 | 0.051 0.049 | 0.052 | 0.042 | 0.048 | 0.055

E, 450 0.048 | 0.041 0.038 0.05 0.043 | 0.063 | 0.046 | 0.043 | 0.049 | 0.055

;:_ 500 0.035 | 0.046 | 0.04 | 0.052 | 0.044 | 0.045 | 0.044 | 0.049 | 0.043 | 0.049

£ 550 0.049 | 0.04 | 0.052 | 0.054 | 0.047 | 0.047 | 0.046 | 0.062 | 0.039 | 0.043

a 600 0.035 | 0.045 | 0.054 | 0.05 0.05 | 0.055 | 0.043 | 0.059 | 0.048 | 0.047
(continua)
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Table 4. Type | Error Rates by Sample Size and Probability of Skewness (continua)

Probability of Skewness
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
650 0.045 0.049 0.05 0.037 | 0.054 | 0.054 0.049 0.042 0.043 0.039
700 0.035 0.05 0.046 0.041 0.05 0.044 0.057 | 0.051 0.07 0.045
750 0.037 | 0.041 0.052 0.039 0.043 0.072 0.053 0.052 0.044 | 0.045
800 0.044 | 0.055 0.045 0.042 0.04 0.042 0.062 0.046 0.047 | 0.052
850 0.05 0.046 | 0.051 | 0.043 | 0.051 | 0.053 | 0.064 | 0.051 | 0.055 | 0.059
900 0.045 0.049 0.039 0.049 0.039 0.052 0.041 0.059 0.056 | 0.058
1000 0.037 | 0.048 0.045 0.05 0.06 0.075 0.052 0.047 | 0.062 0.051
2500 0.063 0.055 0.062 0.056 0.039 0.044 0.046 0.05 0.047 | 0.058
5000 0.063 0.053 0.058 0.054 | 0.048 0.055 0.05 0.045 0.046 | 0.048

with smaller sample sizes, particularly when n =20,
there is a higher likelihood of deflated type | error rates.

The plots of sample size versus percentage bias and
plots of sample size versus width of confidence interval
for all nine scenarios of simulation experiments Il to VI
are provided in the supplementary material.

The figure presents general guidelines for
determining sample size, based on percentage
bias and the width of the confidence interval. If the
percentage bias is within £5% and the confidence
interval is also narrower, that sample size is reported
as the optimal one. However, several inputs, such as
exposure effect size and covariate effect size, are
required. This may seem challenging to researchers,
as using these guidelines necessitates a significant

amount of prior knowledge. However, this paper
offers additional insights. In case-control studies,
where numerous covariates are often present, it is
safe to assume that there are at least five covariates. If
this is the case, and the exposure effect is greater than
the covariate effect, a sample size of 600 is sufficient.
However, if the sample size is around 1,000, a
skewed exposure does not significantly impact the
estimates of the odds ratio, the power of the Wald
test, or the width of the confidence interval if the
number of covariates is at least five. Hence a larger
sample size and an increased number of covariates
contribute to more stable and reliable estimates,
reducing the potential bias that might be introduced
by a skewed exposure.

Figure 1. Flowchart of Optimal Sample Size Guidelines

n=5000

@ Exposure
Effect

n=5000

n=2500

If covariate effect 1¢ small n=750, otherwise n=2500

)
)
)
)

Exposure
Effect

If covariate effect 1g small n=700, if covariate effect is moderate n=2500, if]

covariate effect is large n=5000

If covariate effect is small n=700, otherwise n=2500 ]

If covariate effect is small n>800, otherwise n=2500 l

Exposure
Number of 1
. s Effect
Covariates

If covariate effect is small n=600, if covariate effect is moderate n=900,if

covariate effect is large n=1000

If covariate effect is small n>2500, if covariate effect is moderate n=850, if|

covariate effect is large n>1000

@ Exposure
Effect

If covariate effect is small n=600, otherwise n=1000

If covariate effect is small n=600, if covariate effect is moderate n=900,if

covariate effect is large n=1000

If covariate effect is small n=1000, otherwisen=850

Exposure
Effect

If covariate effect i small or moderate n=600, otherwise n=1000

00000000000

If covariate effect ig small or moderate n>600, otherwise n=1000
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DISCUSSION

There are various approaches in the literature
addressing  case-control  studies where logistic
regression fails fo provide finite estimates for the odds
ratio of exposure. This paper investigates the reliability
of these estimates when they are finite.

The patterns in both percentage bias and the width
of the confidence interval, lead to the development of
sample size guidelines. These guidelines are crucial for
researchers, particularly those engaged in case-control
studies. The results also emphasize the importance
of preliminary knowledge regarding exposure and
covariate effects. Such knowledge enables researchers
to select an appropriate sample size from a range of
options.

The covariates considered in all the simulation
experiments are continuous in nature, and hence
simulated using continuous probability distributions.
Further simulation can be conducted to study the
impact of categorical covariates.

As the number of covariates increases, the impact
of skewed exposure on the estimates of the exposure
effect diminishes, particularly when the sample size is
larger. This finding is significant because it suggests
that, with sufficient sample size, the skewness of
exposure does not substantially affect the exposure
effect estimates, in studies with numerous covariates.
The larger sample sizes and a greater number of
covariates not only enhance the robustness of the
estimates but also mitigate the potential bias introduced
by skewed exposure.
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