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Pinpointing outliers in experimental 
data: the Hat matrix in Anova for fixed 
and mixed effects models
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The Hat (H) matrix and in particular the elements of its principal diagonal (leverages) have a paramount 
importance in multiple regression analysis in order to pinpoint possible outliers and/or influential points 
as components of several regression diagnostics. 
This note presents some features of the H matrix and residuals for ANOVA models of experimental designs.
For fixed effects models, the values of the elements of H are discussed in completely randomized, 
randomized complete block and Latin squares designs. The increasing complexity of the design structure 
leads to different patterns, with increasing values of the corresponding leverages (hii). For mixed effects 
models, developments on leverage and residuals for marginal and conditional estimates are illustrated.
The application of H matrix and residuals in fixed effects and mixed effects model is shown in a worked 
example. It is concluded that for H matrix in mixed models, an important role is played by the values of 
the variances of the random effects and the error term, and, consequently, by their method of estimation. 
Marginal and conditional studentized residuals provide different information about the data, and thus 
should be both used for model checking. 
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INTRODUCTION

In regression analysis attention is focused 
on assessing the role of each observation 
in determining values of estimators and test 
statistics (e.g.Weisberg (1)). The careful study 
of each observation is necessary to pinpoint 
possible outliers and/or influential points. 
The Hat (H) matrix and in particular the 

elements of its principal diagonal (leverages) 
have a paramount importance in this context as 
components of several regression diagnostics. 
The role of such a matrix in linear models 
underling the analysis of variance (ANOVA) 
has been less studied. This note tries to fill this 
gap by presenting some features of H matrix 
pertinent to both fixed effects and mixed effects 
models of ANOVA for balanced data layouts. 
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The scenario presented here will deal 
with a two-way (factorial) experiment with 
an equal number of replications arranged 
in a completely randomized design, in a 
randomized complete block design and in a 
Latin square design. It shows the influence 
of the design structure increasing complexity 
on the H matrix. Moreover the parallelism 
between diagnostics in fixed effects models and 
mixed effects models is developed.

BASIC NOTATIONS AND TERMINOLOGY

Fixed effects model

In matrix notation the standard linear 
model is:

 y = Xb + e [1]
where: y (nx1), response vector, X (nxp), 

fixed-effects design matrix, b (px1) vector 
of fixed parameters to be estimated, e (nx1) 
unknown vector of random errors, which are 
assumed to be: e∼N (0,σ2I). Letter n specifies 
the number of observations and p the number 
of regressors (including the intercept).

In the Ordinary Least Squares (OLS) 
analysis the parameter estimate vector b  of b 
is obtained by minimising, with respect to b, 
the Error Sum of Squares (ESS): ESS = e' e.
b = (X'Z)-1X'y

The predicted values vector (ŷ) of y is: 
y = X b  = X(X'X)-1 X'y = Hy [2], where: 

X'X)X(X'H 1=  

is the )( nn  projection or leverage matrix (Hat 
matrix), being ijh  its generic term (i,j=1,2,…,n).

From [2] it appears that iŷ  is a linear 
combination of the observed values jy  , having  

ijh  as coefficients: 
ˆ y i = hi1y1 + hi2y2 + ...+ hin yn [3]

“The element ijh  of H has a direct interpretation 
as the amount of leverage or influence exerted on 

iŷ  by jy  (regardless of the actual value of jy , since 
H depends only on X)” (2).

It is easy to see that H is idempotent 
( HHH = ), symmetrical ( H'H = ) and 
orthogonal ( 1HH'=  ). Furthermore it may 
be shown that: 1
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Moreover it may be shown that: 

Hy 2)ˆvar( = 	 [4] 
so that: iii hy 2)ˆvar( = .
The error estimate vector (ê) of e is: 

H)y(Iyye == ˆˆ  and H)(Ie = 2)ˆvar(  ; hence:
)1()ˆ(var 2

iii he =  [5]
from the idempotency property: 10 iih .
Note that the effect of the factor ( iih1 ) 

in [5] consists in down-weighting the random 
error variance 2 so that: )var()ˆvar( ii ee

The estimate 2ˆ  of 2 is obtained from the 
Residual Sum of Squares (RSS) as: 

 		

pn
RSS

=2ˆ  [6]

where: e'e ˆˆ=RSS  .
It is worth recalling that (1-h

ii
) is a 

component of diagnostics suitable for 
pinpointing outlier observations:

studentized residual= ii

i

h
e
1ˆ
ˆ

 [7]

Mixed effects model

Mixed effects models are used in 
experimental designs involving both fixed and 
random effects, for example, in Randomized 
Block designs the levels of the blocking factors 
are often considered as a random sample from 
a population of levels. 

The standard linear mixed model is an 
extension of [1], namely:

y = Xb + Zu + e
where: Z )( gn  random-effects design 

matrix, U )1(g  vector of random effects to 
be estimated. Letter g specifies the number of 
random effects. The remaining terms have the 
same meaning as in [1].

A further assumption is that u is normally 
distributed ),(~ G0u N  and independent of the 
random error vector e.

As a consequence: Vy 2)var( = , where:

 
IZDZ'I

ó
ZGZ'V 2 +=+=

It is important to realize that in mixed 
effects models the values of σ2 and the elements 
of G (i.e. the variance components) are needed 
to derive all the estimates shown below, since 
the matrix V enters in all the expressions 
defining each estimate. 

In the following expressions elements of 
V are assumed to be known, according to the 
theoretical results on predictions, residuals and 

σ2
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leverage presented here.
For V known, the parameter estimate 

vectors are:
yVX'X)V(X'â 111=ˆ  [8]

which is the Best Linear Unbiased Estimator 
for fixed effects and:
û = DZ'V-1(y-X b ) [9]

which is the Best Linear Unbiased Predictor 
for random effects.

From these the vectors of predicted values 
are derived:
ŷ

M
 = X b  (marginal predictions);

ŷ
C
 = X b + Zû (conditional predictions).

The terms marginal and conditional are 
justified by the fact that Mŷ  and Cŷ  are estimates 
of the marginal and conditional means of the 
response vector: )E(y  and )ˆ |E( u  uy =  respectively. 
Accordingly, two kinds of residuals and 
leverages are defined.

For marginal predictions, different 
expressions of the H matrix were developed in 
literature (3); here we consider the one which 
has the advantage of expressing how unusual 
an observation is in the regression space (3):

 111
1 VX'X)VX(X'H =

The expressions for marginal predictions 
and residuals according to Martin (4) are:

 
 

yHy 1M =ˆ

)yH(Iyye 1MM == ˆˆ

)VH(I)evar( 1M = 2ˆ

 

studentized marginal residual= 
ii 1

i M

1ˆ
ˆ

hv
e

ii

	
[10]

where iiv  is the i-th element on the principal 
diagonal of V. It can be shown that for most 
designs, b  obtained for the mixed effects model 
[8] converges to b  obtained for the fixed effects 
model as the sample size increases (5).

For conditional predictions we refer to the 
development of Zewotir and Galpin (6). The H 
matrix has the form:

 	
11111

2 VX'X)VX(X'VVIH +=   [11]

Accordingly, the expressions for conditional 
predictions and residuals are:

 
 

yHy 2C =ˆ

)yH(Iyye 2CC == ˆˆ

)H(I)evar( 2C = 2ˆ ó

studentized conditional residual=
ii 2

i C

1ˆ
ˆ

h
e

	
[12]

It is worth noticing that conditional 
residuals are obtained by subtracting fixed 
and random effect estimates from the response 
vector, thus they may be thought of as an 
estimate of the random error component e . 
On the other hand, marginal residuals include 
also the estimates of the random component u.

In practice, matrix V is unknown and 
must be estimated. Among the methods 
available to estimate σ2 and the elements 
of G and thus obtaining V̂, the three most 
frequently implemented in statistical software 
are mentioned here.

The Method of Moments implies two steps: 
in the first one the ANOVA table is computed, 
and the estimates of variance components are 
obtained by equating the relative mean squares 
to their expectations; this enables estimating  σ2 

and the elements of G, and thus obtaining V̂. In 
the second step b  and û are estimated according 
to [8] and [9] after substituting V with V̂. This 
method is appropriate in balanced designs. 

Maximum Likelihood (ML) and Restricted 
Maximum Likelihood (REML) methods are 
more effective in complex designs; they are 
routinely implemented in statistical software, 
and, therefore, are most widely used nowadays. 
For both methods, the estimates are based on 
the values maximizing a likelihood function 
(namely, a restricted likelihood function in 
REML), under the assumption of normal 
distribution of residuals and random effects.

In ML the estimates of variance components 
and fixed effects are obtained jointly. In REML 
the likelihood is expressed as the product of 
two terms: the first including only variance 
components, and the second with both 
fixed effects and variance components. The 
estimation procedure starts maximizing the 
first term; this generates variance components 
estimates, which are used in the second term 
to obtain the estimates of the fixed effects (7). 

It is known that ML method estimates of the 
variance components may be biased downward; 
this is a side-effect of the maximization of the 
likelihood function, in which the degrees 
of freedom of the variance components are 
calculated treating the fixed effects as known 
values, and are therefore over-estimated. 
The bias of variance components affects the 
estimates of the standard errors of the fixed 
effects, and hence the inherent inference. On 
the contrary, the REML method recognizes 
that fixed effects are estimated and gives 
correct estimates of their standard errors. In 

b

σ2
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balanced designs REML estimates of variance 
components overlap those obtained with the 
Method of Moments.

SCENARIO

3.1 Completely randomized design

The standard presentation of a 22  factorial 
experiment (7) is shown in Figure 1.

Capital letters specify the factors (A,B); 
each of them has two levels (-, +). Factor A and 
B are fixed, that is the levels explored in the 
experiment consist of the entire population of 
possible levels. The four treatment combinations 
are indicated by small letters. The highest level 
of each factor is indicated by the presence of 
the corresponding small letter, whereas the 
lowest level is indicated by the absence of the 
corresponding small letter. Conventionally (1) 
indicates both factors at lowest level. 

According to Milliken and Johnson (5) the 
treatment combinations define the “treatment 
structure” which, combined via randomization 
with the “design structure”, enables the 
experimenter to specify the experiment design. 
When the experimental units are homogeneous 
the design structure is that of a completely 
randomized (CR) design.

The model pertinent to a 22  factorial 
experiment arranged in a completely 
randomized design is:

ijrijjiijr ey ++++= )(μ 	
for i, j=1,2 and r=1,2,..,R
where μ : overall mean; i : effect of factor 

A i-th level; j : effect of factor B j-th level; ij)(  
: interaction effect; with the conditions:

0==
j ji i  and =

ij ij 0)(  .
Furthermore it is assumed that the random 

error component ),0(~ 2
CRijr Ne  .

In this presentation we take R (number of 
replications per cell)=4.

Table 1 reports the X matrix of the 
experimental design.

We note that:
 

R
yyyy

yy ijijijij
ijijjiijr

4321ˆˆˆˆ
+++

==+++= μ  

To implement the H matrix according to [3], 
it is convenient to take two preparatory actions; 
firstly the notation referring to the treatment 
combinations is simplified by adopting the 
suffix k (instead of the couple ij) which takes 
the values 1, 2, 3, 4, to indicate the treatment 
combinations (1), a, b, ab respectively and 
secondly two couples of suffixes are introduced 
for h: kr referring to ŷ and ''rk  referring to y.

Then, for instance:	
44211414,111313,111212,111111,1111 0....0ˆ yyyhyhyhyhy ++++++=  

[13]
In general:

=
=

rk' k

rk' k
h rkkr

every for   and  for        0

every for   and  for       
R
1

'',

Table 2 gives the H matrix for the 
completely randomized 22  factorial design. 
Note that the linear model is saturated since 
rank (X)=4=number of the design cells. As 
the number of replications is constant the 
corresponding H matrix is a block diagonal 

figure 1

Standard presentation
of a 2x2 factorial experiment

A

- +

B
- (1) a

+ b ab

TABLE 1

X matrix of 2x2 factorial experiment 
arranged in a completely randomized design

μ α β αβ
[1,] 1 -1 -1 1

[2,] 1 -1 -1 1

[3,] 1 -1 -1 1

[4,] 1 -1 -1 1

[5,] 1 1 -1 -1

[6,] 1 1 -1 -1

[7,] 1 1 -1 -1

[8,] 1 1 -1 -1

[9,] 1 -1 1 -1

[10,] 1 -1 1 -1

[11,] 1 -1 1 -1

[12,] 1 -1 1 -1

[13,] 1 1 1 1

[14,] 1 1 1 1

[15,] 1 1 1 1

[16,] 1 1 1 1
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one with all blocks of the same size )44(  and  

krkrh
RpR

p
n
ph ,4

11
=====  for k, r=1, 2, 3, 4.

So that:
 	 ( ( 222

, 75.025.011ˆvar( CRCRCRkrkrCRkr h)e ===

[14]
Alternatively, according to [4], the elements 

of H can be obtained in terms of )ˆvar( kry  and 
)ˆ,ˆcov( **rkkr yy .

Be 1y  , 2y  , 3y  and 4y  the averages of the 
observations in cell (1), a, b and ab respectively. 
It is peculiar of any saturated model to capture 
all information regarding the relationship 
“between” the responses of the design cells, so 
that kkr yy =ˆ  for r=1, 2, 3, 4. Consider the first 
block: we know that 

4
)var(

2

1 =y . 

On the other hand, from [4], krkrkr hy ,
2)ˆvar( =  

thus 25.0
4
1

, ==krkrh  

As regards the terms outside the principal 
diagonal of the first 4x4 block we observe from 
[4] that *1,1

2
*11 )ˆ,ˆcov( rrrr hyy = . However for r=1, 

2, 3, 4,
 == *1*111*11 ˆˆˆˆ)ˆ,ˆcov( yEyyEyEyy rrrrrr

== 2
111111 yEyEyEyyEyE  

4
)var(

2

1 == y

Therefore 4
1

*1,1 =rrh  for all r=1, 2, 3, 4. The 
same considerations apply to the remaining 
three blocks.

Let’s now consider the value of h for 
two predicted values ŷ belonging to different 
blocks; for instance: 

ˆˆˆˆˆ,ˆ 24241414241424,14 === yEyyEyEyyh

02211 =yEyyEyE , owing to the 
independence of the two deviations from the mean 
as result of the random allocation of experimental 
units to the different cells of the design. 

Following [5]

==
R

he krkrkr
111)ˆvar( 2

,
2 . 

For R , 2)ˆvar( kre , this is coherent 
with the observation that for R  b→b, and 

eê  . 
For R=1, 0)ˆvar( =kre  , meaning that only 

one replication of the design does not imply 
residual variability. In such a case the H matrix 
corresponds to a pp  identity matrix.

The variance 2 is estimated by 2ˆ  as given 
in equation [6]. As a consequence:

 
npRR

R
RpR

R
pnR

ekr
e'ee'ee'ee'e ˆˆˆˆ1

)1(
ˆˆ1ˆˆ11ˆˆâv 2 =====

TABLE 2

H matrix of 2 x 2 factorial experiment arranged in a completely randomized design

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0 0 0 0 0

[2,] 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0 0 0 0 0

[3,] 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0 0 0 0 0

[4,] 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0 0 0 0 0

[5,] 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0

[8,] 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0 0 0 0 0

[9,] 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0

[10,] 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0

[11,] 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0

[12,] 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25 0 0 0 0

[13,] 0 0 0 0 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25

[14,] 0 0 0 0 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25

[15,] 0 0 0 0 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25

[16,] 0 0 0 0 0 0 0 0 0 0 0 0 0,25 0,25 0,25 0,25

e 8 6 6 3 - 5



I T A L I A N   J O U R N A L   O F   P U B L I C   H E A L T H

IJPH - 2012, Volume 9, Number 4

Pinpointing outliers in experimental data

Randomized complete blocks design

When the experimental units are 
heterogeneous the previous design is no longer 
appropriate; as an alternative a randomized 
complete blocks (RCB) design could be adopted 
if the number of experimental units per block 
is equal to the number of treatments (t) to be 
investigated. It is assumed that experimental 
units within each block are homogeneous 
whereas they differ from block to block. Two 
further assumptions are that (i) there is no 
interaction between treatments and blocks and 
(ii) the blocks effects are fixed.

As in this scenario four treatments are 
considered, we need four homogeneous units 
per block and four blocks are necessary to get 
four replications of the design. 

The four treatments are randomly allocated to 
each of the four units belonging to a given block.

The pertinent model is now:
 	

ijllijjiijl ey +++++= μ )(

for i, j=1,2 and l=1,2,3,4
where μ, i , j , ij)(  have already been 

specified in previous model; l is the effect 
of the l-th block; with the further condition: 

0=
l l  . Moreover it is assumed that the 

random error component ),0(~ 2
RCBijl Ne  .

Table 3 reports the X matrix of this 
experiment.

Note that: 

......ˆˆˆˆˆ yyyy lijlijjiijl +=++++= μ

As previously, to implement the H matrix the suffix 
k substitutes the couple ij, so that ....ˆ yyyy lkkl += . 
Then, according to [3], for example:

 
2423222114131211

,4131211114131211..1..111

16
1

16
1

16
1

16
1

4
1

16
1

4
1

16
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4
1

16
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1ˆ

yyyyyyyy

yyyyyyyyyyyyy
lk kl

+++++=
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	 4443424134333231 16
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16
1

16
1

16
1

4
1

16
1

16
1

16
1

16
1

4
1 yyyyyyyy ++

	 [15]
In general:

 

=

=

==+

=

l'lk' k
KL

l'lk' k
KLK

l'lk' k
KLL

l'lk' k
KLLK

h lkkl

 and  for                 1

 and  for            11

 and  for             11

 and  for      111

'',

Table 4 reports the pertinent H matrix, 
which is no more a block diagonal matrix; 
however all the elements of its principal diagonal 
have the same value: 4375.0

16
7

, === hh klkl
 for k, 

l=1, 2, 3, 4. 
Coherently:
 	 222

, 5625.04375.011ˆ RCBRCBRCBklklRCBkl he ===

[16]
At a glance to the X matrices reported in 

Table 1 and Table 3, we note that the latter 
corresponds to the former augmented of the 
vectors allowing for the block effects. The three 
vectors 1 , 2 , 3 are orthogonal to the four 
vectors that span the treatment space (saturated 
model). Thus the estimates of the treatment 
effects are expected to remain invariant. On 
the contrary the blocking effect reduces the 
residual sum of squares by introducing non 
null correlation terms between klŷ  pertaining to 
different treatments. This is evident comparing 
the H matrices in Tables 2 and 4 and it is 
the result of the difference between the two 
linear combinations of y , generating the two 
corresponding ŷ with the same suffixes as, for 
example, it may be seen comparing equations 
[13] to [15]. The mentioned reduction is “paid” 
in terms of 12-9=3 d.f. of RSS.

TABLE 3

X matrix of 2x2 factorial experimentarranged 
in a randomized complete block design

μ α β αβ π
1

π
2

π
3

[1,] 1 -1 -1 1 1 0 0
[2,] 1 -1 -1 1 0 1 0
[3,] 1 -1 -1 1 0 0 1
[4,] 1 -1 -1 1 -1 -1 -1
[5,] 1 1 -1 -1 1 0 0
[6,] 1 1 -1 -1 0 1 0
[7,] 1 1 -1 -1 0 0 1
[8,] 1 1 -1 -1 -1 -1 -1
[9,] 1 -1 1 -1 1 0 0

[10,] 1 -1 1 -1 0 1 0
[11,] 1 -1 1 -1 0 0 1
[12,] 1 -1 1 -1 -1 -1 -1
[13,] 1 1 1 1 1 0 0
[14,] 1 1 1 1 0 1 0
[15,] 1 1 1 1 0 0 1

[16,] 1 1 1 1 -1 -1 -1
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Latin squares design

So far blocking was postulated in one 
direction, for example forming blocks in terms 
of inbreeding lines of rats (units). However the 
experimenter could be interested in blocking in 
a second direction, irrespective of the first, for 
example age of rats. In this case the 4 treatment 
combinations of 4x4 factorial experiment could 
be arranged in a  Latin square (LS) design like 
the one shown in Figure 2. It is the first 4x4 
Latin square given in Table XV by Fisher and 
Yates (8).

The 4X4 arrangement of experimental units 
is blocked in two directions: rows (inbreeding 
lines) and columns (age classes). To implement 
a Latin square design, the treatments are 
randomly allocated to experimental units in the 
square such that each treatment occurs once 
and only once in each row and once and only 
once in each column. This structure assures that 
the vectors corresponding to the row effects 
are orthogonal to those corresponding to the 
column effects and all of them are orthogonal 
to the vectors specifying the treatment effects.

The standard model for Latin square 
designs reported in literature (9) is:

 klmmlklmklm ey ++++= μ 	 for 
k, l, m=1, 2, 3, 4
Where: μ is the overall true mean; klm is 

the effect of the k-th treatment combination; 
l is the effect of the l-th row; m is the 

effect of the m-th column. Further conditions: 
0==

m ml l  and ),0(~ 2
LSklm Ne  .

Table 5 reports the X matrix of this model.

TABLE 4

H matrix of 2x2 factorial experiment arranged in a complete block design

  [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] ,4375 ,1875 ,1875 ,1875 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625

[2,] ,1875 ,4375 ,1875 ,1875 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625

[3,] ,1875 ,1875 ,4375 ,1875 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625

[4,] ,1875 ,1875 ,1875 ,4375 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875

[5,] ,1875 -,0625 -,0625 -,0625 ,4375 ,1875 ,1875 ,1875 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625

[6,] -,0625 ,1875 -,0625 -,0625 ,1875 ,4375 ,1875 ,1875 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625

[7,] -,0625 -,0625 ,1875 -,0625 ,1875 ,1875 ,4375 ,1875 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625

[8,] -,0625 -,0625 -,0625 ,1875 ,1875 ,1875 ,1875 ,4375 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875

[9,] ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,4375 ,1875 ,1875 ,1875 ,1875 -,0625 -,0625 -,0625

[10,] -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 ,1875 ,4375 ,1875 ,1875 -,0625 ,1875 -,0625 -,0625

[11,] -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 ,1875 ,1875 ,4375 ,1875 -,0625 -,0625 ,1875 -,0625

[12,] -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 ,1875 ,1875 ,1875 ,4375 -,0625 -,0625 -,0625 ,1875

[13,] ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,4375 ,1875 ,1875 ,1875

[14,] -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 ,1875 ,4375 ,1875 ,1875

[15,] -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 ,1875 ,1875 ,4375 ,1875

[16,] -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 -,0625 -,0625 -,0625 ,1875 ,1875 ,1875 ,1875 ,4375

figure 2

Arrangement of a 2x2 factorial design
in a 4x4 Latin square structure

(1) a b ab

a (1) ab b

b ab a (1)

ab b (1) a
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Note that: 

......... 2ˆˆˆˆˆ yyyyy mlkmlkklm ++=+++= μ

As previously done the suffix k substitutes 
the couple ij; however in this case to implement 
the H matrix according to [3] it is convenient to 
introduce two triplets of suffixes for h: klm 
referring to ŷ and ''' mlk  referring to y. 

Then, for example:
 

++=++=
mlk klmlk klmk mkml lm yyyyyyyyy

,,, 1, 1, 1...1...1...1111 16
2

4
1

4
1

4
12ˆ

In general:

===

===++

=

m'ml'lk' k
LM

m'ml'lk'km'ml'lk'km'ml'lk' k
LMK

m'ml'lk' k
LMMLK

h mlkklm

,,for                      1

,,or    ,,or    ,,for                 21

 and   and  for   2111

''',

Table 6 reports the H matrix of this model. 
As in the previous examples, all the elements 
of the H matrix principal diagonal have the 
same value: 

 
625.0

16
10

, === hh klmklm  for k, l, m=1, 2, 3, 4. 
The variance of klmê  is now:

 

222
, 375.0625.0ˆ LSLSLSklmklmLSklm he ===  

[17]
Increasing the complexity of the design 

from completely randomized to randomized 
complete block design or to Latin square 
design, can be justified by postulating:

22
CRRCB < 	  

or
22
CRLS < 	  

From equations [14] and [16] we get:
 22 75.0ˆvar5625.0ˆ CRCRiRCBRCBie =<=

Similarly, from equations [14] and [17] we get:
22 75.0ˆvar375.0ˆvar CRCRiLSLSi =<=  .

Finally, observing that iih  increases as the 
number of directions of orthogonal blocking 
increases, one can argue that the H matrix 
will correspond to a nxn identity matrix if 
orthogonal blocking will make allowance of 
the whole random variability. This matrix is the 
counterpart of the pxp identity matrix already 
mentioned in the subsection Completely 
randomized design.

A WORKED EXAMPLE

Table 7 reports an ad hoc dataset which 
will be processed in details. It is a 2x2 
factorial design in the presence of interaction, 
with true responses: (1)=5, a=8, b=7, ab=16. 
The random errors were generated by means 
of the rnorm function of software R: ijle
~N(0,1). A non homogeneity of experimental 
units due to inbreeding lines (blocking 
factor) was postulated. Thus we are dealing 
with a randomized complete block factorial 
experiment.

The arrangement of treatments per block 
adopted in the following example is given in 
Figure 3.

TABLE 5

X matrix of 2x2 factorial experiment
arranged in a Latin square

Treatments 
effects

Rows 
effects

Columns 
effects

μ α β αβ π1 π2 π3 γ1 γ2 γ3
[1,] 1 -1 -1 1 1 0 0 1 0 0

[2,] 1 -1 -1 1 0 1 0 0 1 0

[3,] 1 -1 -1 1 0 0 1 -1 -1 -1

[4,] 1 -1 -1 1 -1 -1 -1 0 0 1

[5,] 1 1 -1 -1 1 0 0 0 1 0

[6,] 1 1 -1 -1 0 1 0 1 0 0

[7,] 1 1 -1 -1 0 0 1 0 0 1

[8,] 1 1 -1 -1 -1 -1 -1 -1 -1 -1

[9,] 1 -1 1 -1 1 0 0 0 0 1

[10,] 1 -1 1 -1 0 1 0 -1 -1 -1

[11,] 1 -1 1 -1 0 0 1 1 0 0

[12,] 1 -1 1 -1 -1 -1 -1 0 1 0

[13,] 1 1 1 1 1 0 0 -1 -1 -1

[14,] 1 1 1 1 0 1 0 0 0 1

[15,] 1 1 1 1 0 0 1 0 1 0

[16,] 1 1 1 1 -1 -1 -1 1 0 0

figure 3

Arrangement of 2x2 factorial design in a 
randomized complete block structure

Units

1 2 3 4

Block 1 (1) a b ab

Block 2 b ab (1) a

Block 3 ab b a (1)

Block 4 a (1) ab b
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Fixed effects model

Table 8 reports the ANOVA results. The 
estimated residual mean square is 201.1ˆ 2 =RCB ; 
together with leverages of H matrix reported 

in Table 4 it enables the computation of the 
studentized residuals according to [7]. The graph 
of these residuals against predicted values ( klŷ ) is 
drawn in Figure 4. Each point is labelled with a 
number indicating the block (1, 2, 3, 4) and by 
a symbol indicating the treatment combination 
as in Figure 1. The emerging message is the 
absence of outliers, as all the sixteen points lie 
within the bands (-2,2). 

 Table 9 reports the estimates of treatments 
fixed effects (left side) and of blocks fixed 
effects (right side). Recalling the first 4 columns 
of Table 3, it is straightforward to obtain 
the response estimates for the four cells 
of the design; for instance for the ab cell: 

165.15.239ˆ =+++=aby .
Owing to the fact that interaction is 

significant, the hypothesis concerning the main 
effects of factors A and B are difficult to interpret. 
This can be bypassed considering the “simple 
effects”, i.e. the differences (d) at two levels:

•	 factor A (B present): ab-b
•	 factor A (B absent): a-(1)

Symmetrically:
•	 factor B (A present): ab-a
•	 factor B (A absent): b-(1)

The 95% confidence intervals of the true 
value of each of these differences are:

4
1

4
1ˆ975.0,9 +± RCBtd   [18]

TABLE 6

H matrix of 2x2 factorial experiment arranged in a Latin square

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] 0.625 0.125 0.125 0.125 0.125 0.125 -0.125 -0.125 0.125 -0.125 -0.125 0.125 0.125 -0.125 0.125 -0.125

[2,] 0.125 0.625 0.125 0.125 0.125 0.125 -0.125 -0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 -0.125 0.125

[3,] 0.125 0.125 0.625 0.125 -0.125 -0.125 0.125 0.125 0.125 -0.125 0.125 -0.125 -0.125 0.125 0.125 -0.125

[4,] 0.125 0.125 0.125 0.625 -0.125 -0.125 0.125 0.125 -0.125 0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125

[5,] 0.125 0.125 -0.125 -0.125 0.625 0.125 0.125 0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125 -0.125 0.125

[6,] 0.125 0.125 -0.125 -0.125 0.125 0.625 0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 0.125 -0.125

[7,] -0.125 -0.125 0.125 0.125 0.125 0.125 0.625 0.125 -0.125 0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125

[8,] -0.125 -0.125 0.125 0.125 0.125 0.125 0.125 0.625 0.125 -0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125

[9,] 0.125 -0.125 0.125 -0.125 0.125 -0.125 -0.125 0.125 0.625 0.125 0.125 0.125 0.125 0.125 -0.125 -0.125

[10,] -0.125 0.125 -0.125 0.125 -0.125 0.125 0.125 -0.125 0.125 0.625 0.125 0.125 0.125 0.125 -0.125 -0.125

[11,] -0.125 0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 0.125 0.625 0.125 -0.125 -0.125 0.125 0.125

[12,] 0.125 -0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 0.125 0.125 0.125 0.625 -0.125 -0.125 0.125 0.125

[13,] 0.125 -0.125 -0.125 0.125 0.125 -0.125 0.125 -0.125 0.125 0.125 -0.125 -0.125 0.625 0.125 0.125 0.125

[14,] -0.125 0.125 0.125 -0.125 -0.125 0.125 -0.125 0.125 0.125 0.125 -0.125 -0.125 0.125 0.625 0.125 0.125

[15,] 0.125 -0.125 0.125 -0.125 -0.125 0.125 0.125 -0.125 -0.125 -0.125 0.125 0.125 0.125 0.125 0.625 0.125

[16,] -0.125 0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 -0.125 -0.125 0.125 0.125 0.125 0.125 0.125 0.625

TABLE 7

Ad hoc generated data set for a randomized 
complete block factorial experiment

y Treatment Block

3.264 (1) 1

6.202 (1) 2

6.388 (1) 3

4.147 (1) 4

6.302 a 1

8.472 a 2

8.663 a 3

8.563 a 4

6.061 b 1

6.816 b 2

7.397 b 3

7.727 b 4

12.372 ab 1

17.178 ab 2

16.220 ab 3

18.231 ab 4
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where 975.0,9t  is the 97.5 centile of the 
Student t distribution with 9 degrees of freedom.

One could argue that using a fixed 
effects model for blocks is questionable and 
alternatively it is more appropriate to consider 
the blocks as random factors. Consequently 
the analysis should be carried out in terms of 
mixed effects model.

Mixed effects model

In this simple example, the mixed effect 
model includes the fixed component (treatment), 
the random component (block) with mean 0 
and variance G = σ2

μ 
and the random error. 

TABLE 8

ANOVA table of the data reported in Table 7

Source 
of 

variation
Df Sum of Squares Mean Square F-value p-value

A 1 144 144 119.868 <0.0001

B 1 100 100 83.2417 <0.0001

A*B 1 36 36 29.9670 0.0004

Blocks 3 21.358   7.119    5.9261 0.0163

Residual 9 10.812 1.201

FIGURE 4

Graph of studentized residuals versus predicted values for the data reported in Table 7

TABLE 9

Estimate of fixed effects for the
data reported in Table 7

Treatments BLOCKS (ũi)

μ 9.0 1 -2.0

α2 3.0 2 0.67

β 2.5 3 0.61

(αβ)22 1.5 4 0.72

e 8 6 6 3 - 1 0
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Therefore two estimates of variance components 
are needed: 

2ˆ u and 
2ˆ RCB. The REML estimates are: 

479.1ˆ 2 =u  and 201.1ˆ 2 =RCB . The latter is equal to 
the corresponding estimate from the fixed effects 
model (Table 8). The same values are obtained 
according to the Method of Moments from the 
following expressions: 

2ˆ RCB =MSResidual, 
2ˆ u 

=(MSBlocks – MSResidual)/4; where 4 is the 
number of observed block levels and MSBlocks, 
MSResidual are reported in Table 8. 

Table 10 gives the estimates of fixed and 
random effects of this model. By comparing 
Table 8 and 10 it is easy to note that the 
estimates of fixed effects (treatments) are the 
same, whereas the estimates of random effects 
(blocks) in the mixed effects model are lower, 
in absolute value, than the corresponding 
ones in the fixed effects model. This shows 
the shrinkage toward zero property of mixed 
effects models. In the latter the prediction of 
block effect iû  corresponds to the estimated 
block effect in the fixed effects model iu~ 
multiplied by a coefficient which always lies 
between 0 and 1, and depends on the variance 
components (10). In the example shown here:

 

i
RCB

i u

n

u ~
ˆ

ˆ

ˆ
ˆ

2
2

2

+

=

u

u

The scatter plots of the studentized marginal 
residuals (according to [10]) and the studentized 
conditional residuals (according to [12]) against 
predicted values ( klŷ ) are drawn in Figure 5. This 
graph is drawn here for marginal residuals, even 
though we are aware that studentized marginal 
residuals and marginal predictions are not 
orthogonal. In panel A the marginal residuals 
pertaining to block 1 show a clear pattern: they 
are lower than those pertaining to the other 
levels, especially point (1, ab) which is under 

the threshold -2; furthermore, the effect of block 
1 (-1.663) contrasts the effects of the other three 
blocks. This pattern does not appear in panel 
B, as only marginal residuals include estimates 
of the random component (blocking factor) 
as discussed in section Basic Notation and 
Terminology. However the point (1, ab) is under 
the threshold here too. The emerging message 
is that the results produced by block 1 should 
be thoroughly investigated to assess the validity 
of the corresponding observations. Nonetheless 
we can observe that in fixed effects model no 
residual is outside the range (-2, 2), while the 
residual plots of the mixed effects model are 
able to pinpoint the outlier observation (1, ab). 

Graph of studentized marginal residuals 
versus marginal predicted values (Panel A), 
graph of studentized conditional residuals 
versus conditional predicted values (Panel B) 
for the data reported in Table 7

As regards the “simple effects” confidence 
intervals the formula is the same used in 
fixed effects model [18]. Consider for instance 

babd =1 :
 =+= ),cov(2)var()var()var( 1 babbabd

+=
+

+
+

4
1

4
1

4
2

44
2

22222

RCB
RCBRCB uuu

Thus all variances of the simple effects are 
free of the block variance component 2

u . “This 
is the manifestation of the randomized complete 
block design controlling block variation” (11). 

Let’s come back to the H matrices: the 
matrix of marginal leverages 1Ĥ  (not reported 
here) turns out to be practically identical to 
the hat matrix of the completely randomized 
fixed effects design (shown in Table 2), 
in which the block effects are absent. The 
matrix of conditional leverages 2Ĥ  (Table 11) 
turns out to have a pattern similar to that of 
the hat matrix of the randomized complete 
block fixed effects design (Table 4), even 
though the corresponding numerical values 
are different. In fact 2Ĥ  depends strongly 
upon V̂ as shown by [11].

CONCLUDING REMARKS

In fixed effects models the H matrix 
depends only on the design structure, reflected 
by the X matrix. In balanced completely 
randomized designs the H matrix assumes 
the form of a block diagonal matrix and each 

R
hii

1
=  , where R is the common number of

TABLE 10

Mixed effects model estimates for
the data reported in Table 7

Treatments Blocks (ũi)

μ 9.0 1 -1.663

α2 3.0 2 0.557

β 2.5 3 0.507

(αβ)22 1.5 4 0.599

e 8 6 6 3 - 1 1



I T A L I A N   J O U R N A L   O F   P U B L I C   H E A L T H

IJPH - 2012, Volume 9, Number 4

Pinpointing outliers in experimental data

replications for the design cells. Moving from 
a completely randomized to a randomized 
complete block design or to a Latin squares 
design, the H matrix is not a block diagonal 

one any longer as no null correlation terms 
between klŷ  pertaining to different treatments 
are introduced. However, in the three mentioned 
designs the elements of the principal diagonal 
of the corresponding H matrix are 

n
phhii == .

FIGURE 5

TABLE 11

Conditional leverage matrix of the mixed effects model for data reported in Table 7

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] .4058 .1981 .1981 .1981 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519

[2,] .1981 .4058 .1981 .1981 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519

[3,] .1981 .1981 .4058 .1981 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519

[4,] .1981 .1981 .1981 .4058 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558

[5,] .1558 -.0519 -.0519 -.0519 .4058 .1981 .1981 .1981 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519

[6,] -.0519 .1558 -.0519 -.0519 .1981 .4058 .1981 .1981 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519

[7,] -.0519 -.0519 .1558 -.0519 .1981 .1981 .4058 .1981 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519

[8,] -.0519 -.0519 -.0519 .1558 .1981 .1981 .1981 .4058 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558

[9,] .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .4058 .1981 .1981 .1981 .1558 -.0519 -.0519 -.0519

[10,] -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 .1981 .4058 .1981 .1981 -.0519 .1558 -.0519 -.0519

[11,] -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 .1981 .1981 .4058 .1981 -.0519 -.0519 .1558 -.0519

[12,] -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 .1981 .1981 .1981 .4058 -.0519 -.0519 -.0519 .1558

[13,] .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .4058 .1981 .1981 .1981

[14,] -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 .1981 .4058 .1981 .1981

[15,] -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 .1981 .1981 .4058 .1981

[16,] -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 -.0519 -.0519 -.0519 .1558 .1981 .1981 .1981 .4058
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Increasing the complexity of the design 
structure does increase p and thus increases 
the corresponding iih  .

As regards mixed effects models, two 
different H matrices are needed: 1H  to compute 
marginal predictions and residuals, and 2H  
to compute conditional predictions and 
residuals. Furthermore both of them cannot 
be implemented a priori on the knowledge of 
the design structure, as they depend not only 
on the X matrix, but also on the components 
of variance matrix V, which, in its turn, must 
be estimated from the data. Furthermore, as 

different methods of estimating V are available, 
the Ĥ matrices depend also on the estimation 
method chosen. Therefore it is not surprising 
that studies with the same experimental design 
give substantially different Ĥ matrices.

In fixed effects models the studentized 
residuals [7] enable pinpointing possible 
outliers, whereas in mixed effects models 
marginal [10] and conditional [12] studentized 
residuals provide different useful information 
about the data, and thus both should be used 
for model checking. 
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