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High dimensional regression on 
serum analytes
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Regression of high dimensional data is particularly difficult when the number of observations is limited. 
Principal Component Analysis, canonical correlation analysis and factor analysis are commonly used 
methods to reduce data dimensions, but usually cannot find the most significant linear combination. 
The goal is usually to find a particular partition of the space X consisting of all independent factors. 
In this paper, we propose an approach to high dimensional regression for applications where N>K or 
N<K, where N is the sample size, k is the dimension of space X. The approach starts by finding the 
most significant linear combination and one of the most insignificant directions to decompose the 
sample space into two subspaces and reduce the dimension. Further, we examine the contributions 
of individual variables to those most significant vectors by the coefficients of the combinations to 
reduce the total number of variables in the selected space without losing the power of the prediction. 
We use the proposed approach to determine the potential association of 51 serum analytes with 
schizophrenia using data derived from a case control study (n=208). Numerical results demonstrate 
that the proposed approach can significantly improve dimension reduction.
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INTRODUCTION

The vulnerability to mental illnesses, such 
as schizophrenia and bipolar disorder has been 
found to be associated with genetic components. 
The traditional genetic studies usually search for 
an unknown gene that may cause the disease 
in isolated families. But it is difficult to identify 

common gene variants that are associated with 
the disease across populations. It is clear that 
these disorders are not caused by a single 
defective gene, but by the joint effects of many 
genes acting together with non-genetic factors 
(1). Research suggests that such interaction 
of genetic predisposition and environmental 
factors is common in many diseases. 
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Detecting multiple genes, each contributing 
only a small effect requires large sample sizes 
and powerful technologies that can associate 
genetic variations with diseases (2). Examining 
genes individually could lead to a loss of 
valuable information. To find the genes with 
a relatively larger effect, high dimensional 
regression studies could be used under an 
assumption that a specific group of genes may 
cause the disease. Unfortunately, it is difficult 
and costly to have a large sample size in 
studies. Regression of high dimensional data 
is particularly difficult when the size of the 
data is limited. Traditional regression methods 
that use the sample covariance perform poorly 
in this situation (3). There are no generally 
accepted methods for relating the number of 
observations versus the number of independent 
variables in the model. In many cases, when we 
study epidemiological data with biomarkers, 
the sample number (N) might be less than the 
data dimension K. Then the sample covariance 
is singular. Even when N>K in large-scale data 
mining, predictive modeling, and especially for 
multivariate regression exercises with a large 
number of possible explanatory/predictive 
variables, variable selection and dimension 
reduction is a major task.

A common method in regression analysis for 
dimension reduction is the stepwise regression. 
One of the major limitations of the algorithm 
is that many variables used as independent 
variables in a regression may have a high degree 
of correlation. When several of the predictive 
variables are highly correlated, it is difficult 
to distinguish their effects on the dependant 
variable. Therefore the estimation and the test 
of statistical significance are not reliable, and 
the assumption of independence for these 
tests is violated. The parameter estimates in a 
regression equation may change with a slight 
change in the data and, thus, are not stable for 
predicting the future estimation. In the past, 
regression methods that adopt regularization 
have been introduced, such as ridge regression 
(4), subset selection, and principal component 
analysis (PCA). Recently, there has been an 
increasing interest in replacing the sample 
covariance with some sparse estimates of 
the true covariance or its inverse for high 
dimensional regression problems (5).

PCA is a traditional statistical method 
commonly used to reduce the number of 
predictive variables and solve the multi-
colinearity problem (6). PCA looks for a few 

linear combinations of the variables that can 
be used to summarize the data without losing 
too much information. Since PCA is a non-
supervised method, it does not use information 
of the dependent variable for the construction 
of such linear combinations. Therefore, the 
first principal component is often not the linear 
combination of the input variables that is most 
significantly associated with the dependant 
variable, e.g. disease state. In this study, 
we propose a component decomposition of 
the space of X consisting of all independent 
variables according to their association with the 
dependent variable, g(y). We will now formally 
define and describe gradient-noise-orthogonal 
(GNO) and their orthogonal components and 
show how they can be derived.

THEORY AND APPROACH

The Gradient-noise-orthogonal base

Without loss of generality, let g(y) Є RN be a 
vector of n i.i.d. random variables observed, 
the link function g(y) could be a continuous 
function of y

i
 or categorical function of y

i
. 

The independent observations are X Є RNxK, a 
matrix containing N independent row vectors, 
each of dimension K. A regression model 
relates g(y) to a function of X and β.

g(Y)  ≈  ƒ(X‚β)                 [1]
The approximation is usually formalized as 
E(g(Y) | X) = f(X, β)         [2]
To carry out regression analysis, the form 

of the function f must be specified. In order 
to perform a regression analysis the user 
must provide information about the dependent 
variable g(y): If N data points of the form 
(g(Y),X) are observed, where N < K, most 
classical approaches to regression analysis 
cannot be performed, as there is not enough 
data to recover β. If exactly N = K data points 
are observed, and the function f is linear, the 
equations g(y) = f(X, β) can be solved exactly.

The most common situation is N > K. In this 
case, there is enough information in the data to 
estimate a unique value for β that best fits the 
data in some sense, and the regression model, 
when applied to the data, can be viewed as an 
over determined system β. However K should 
not be too large and the pair-wise correlations 
should not be too high. Unfortunately, both of 
these scenarios often occur in microarray data 
analysis. Correlations among groups of analytes 
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sharing the same biological “pathways”, can 
be high (7). The ideal gene selection method 
should be able to achieve two objectives:  
eliminate the trivial genes, and automatically 
include whole groups of correlated predictors 
into the model once one gene amongst them 
is selected. The basic idea is to decompose the 
Space X into two parts: U and V. The vectors 
in Space U are highly associated with g(y), and 
the vectors in V have almost no association 
with g(y). Ideally, the dimension of U would 
be much smaller than the sample size, the 
dimension of Space R. All the vectors are linear 
or non-linear combinations of X. Most software 
will not tallow records with missing value; 
hence imputation might be needed for the 
missing value. 

First we need to find the most significant 
direction on g(y), which is called the gradient. 
For case control studies, we use Fisher’s 
linear discriminant analysis (LDA) (8) to find 
the gradient vector. In such a case, y=1 is for 
cases and y=0 is for controls. LDA approaches 
the problem by assuming that the conditional 
probability density functions of X for y=1 
and y=0 are both normal probability density 
functions of X for y=1 and y=0 are both normal. 

With mean and covariance parameters: 
(µ

1
, ∑

1
) and (µ

0
, ∑

0
)  respectively. Under this 

assumption, it is well known that the Bayes 
optimal solution to predict a subject as being 
from the case:  if the ratio of the log-likelihoods 
is below some threshold T is as follows:

[3]
If we assume that the class covariance are 

identical: ∑
0
=∑

1
=∑ with full rank, we will have 

the solution for maximization of the square 
distance of the two groups by ω·X <c, where 
ω=∑-1(μ

1
-μ

0
).

It is obvious that ω is the most significant 
direction to distinguish cases and controls, 
denoted as ω

1
, which belongs to U, denoted 

as U
K,0

. Next we find one of the insignificant 
directions by simulation, which are called 
noise. For example, for case control study, we 
randomly assign Y value (0 or 1) to the subjects, 
and use equation 3 to get the vector ω

2, 
which 

belongs to V. In order to find the direction ω
3
, 

satisfying ω
3
 ┴ω

1
, ω

3
┴ ω

2
, we minimize the 

sum of the absolute inner products with ω
1
 

and ω
2.

Min{|( ω
3
 · ω

1
)|+ |( ω

3
 · ω

2
)|; ω

3
 in X}

[4]

If the association between the g(y) and ω
3
 

is significance
,
 put it into U

K,0
, otherwise put 

into V. Repeat the same process, we get the 
remain vectors, in general, we select ω

j
 in X, 

it satisfies.
Minimizeωj

 {|( ω
j
 · ω

1
)| + |( ω

j
 · ω

2
)|+… + 

|( ω
j-1
 · ω

2
)|; ω

j
 in X} j=3,4,…K;

[5]
It can be seen that ω

j
 is perpendicular to 

U
K,0

 and V in the step j-1. If the association 
between the g(y) and ω

j
 is significance

,
 put it 

into U
K,0

, otherwise put into V.  U
K,0 

consists of 
a few vectors, which depends on the selected 
significance level. If we re-rank the vectors in 
U

K,0
 by the association significance on g(y), the 

gradient vector would be labeled number 1.

The GNO sequence

After U
K,0

 is selected, we examine the 
coefficients of the linear combinations of 
the vectors in U

K,0
, removing the variable or 

variables (gene or analyte) with lower value 
coefficients for all the vectors in U

K,0
 to get the 

space U
K-1

 (or
 
U

K-m
, if m variables are removed). 

U
K-1 

is a subspace of X with K-1 variables of X
i
’s. 

We decompose U
K-1

 by repeating the process 
in the previous Section, get U

K-1,0
, a subspace 

of U
K-1

 with a new gradient vector and a few 
perpendicular vectors in U

K-1
. Continuing the 

same process, we get U
K-2 

and U
K-2,0

; U
K-3, 

and 
U

K-3,0 
… until U

j-1
=U

j
, or stop by biological 

judgment, which would be the smallest 
subspace or an acceptable subspace U

j
 and U

j,0
 

as the final U.

Adjust p value for gradient

Since gradient vector is the most significant 
direction in U

k
 among the k linear combinations 

for any given k, the p value of the uni- 
biomarker should be adjusted. However, the 
aim of GNO is to remove the biomarkers, 
which have weak effects on the outcome, it is 
not necessary to find the true p value of the 
gradient direction in each step. For the final 
U, only a few biomarkers remain, the classic 
multivariate analyses could be performed. 
Obviously, the gradient vector has the smallest 
p value among the k orthogonal vectors in 
U

k
, hence the adjusted p value of the gradient 

vector could be found by using the extreme 
distribution of the order statistics. Among the 
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p values of the k vectors in U
k
, the adjusted 

p value is p
a
=1-(1-p)k. Simulation might be 

used to find the distribution of p value of the 
gradient vector, if needed.

GNO sequence properties

The gradient vector identifies the most 
predictive combination and the noise vector 
identifies one of the most insignificant 
directions. We can choose the insignificant 
direction lying on the hyper-plane with the 
gradient as normal, and then these two vectors 
will be perpendicular to each other. We can 
construct an orthogonal decomposition or near 
orthogonal decomposition. 

1.	All vectors are perpendicular to each other, 
except for the directions of the gradient 
and noise. However, we can choose the 
noise vector lying on the hyper plane with 
the gradient as the normal, and then all 
vectors are perpendicular to each other. 

2.	If all x
1
, x

2
, …, x

K
 are independent, then all 

vectors in GNO are independent or nearly 
independent with one exception. 

3.	The gradient vector has the strongest 
association with g(y).

4.	If g(y) is binary, then the hyper plane with 
gradient as normal separates g(y) better 
than any other hyper-planes.

5.	The sequence of the subspace U
i
=⊂ 

U
i+1
⊂U

i+2
 ⊂…⊂U

K-1 
⊂ U

K
 =X and U=U

i,0
⊂ U

i

6.	Y is almost independent on V. E(g(Y)|V) is 
almost a constant or a total random on V.

7.	E(g(Y)|U)≈E(g(Y)), V(g(Y)|U) ≈V(g(Y)).
8.	If ω

1
 and ω

2
 are not independent, the 

interactions among the components of X exist.

APPLICATION AND EVALUATION

Data and Method

Schizophrenia is a pervasive neuro-
psychiatric disorder of uncertain etiology. Data 
for US military service members who received 
medical discharges from the military with a 
diagnosis of schizophrenia from 1992 to 2005 
were obtained from the Physical Disability 
Agencies databases of the Army, Navy, Marines 
and Air Force (9). Those aged 18 and older 
who were on active duty at the time of 
their schizophrenia diagnosis, and who had 
at least one serum sample in the Department 

of Defense Serum Repository obtained prior 
to diagnosis were selected as potential study 
cases. Hospitalized cases were preferentially 
selected and virtually all (99%) study subjects 
were hospitalized with a mental disorder 
before their discharge from military service. 
Control subjects were selected from the active 
duty US military service population who had no 
inpatient or outpatient mental health diagnoses. 
All control subjects were matched to their cases 
on sex, race, branch of military service, date of 
birth (+/-12 months), and military enlistment 
(+/-12 months).

All laboratory measurements were 
performed using immunological techniques. 
The first part of the analysis comprised Enzyme-
linked immunosorbent assay measurement of 
antibodies to pre-selected infectious agents. 
Due to the cost, in the second stage of analysis, 
we selected a subset individuals for further 
testing: the samples for 6 plates of 86 cases 
(18 females, 27 older than 25 and 49 whites), 
with 122 perfectly matched controls. Fifty one 
analytes shown in Table 1 were measured in 
every sample. All analytes were standardized. 
Multiple imputation was performed for the 
undetectable values, with the range (0, 
minimum value) for each analyte. Over 80% of 
the data were undetectable for Interleukin-10, 
Interleukin-11 and Interleukin-17; therefore 
we combine these three standardized values 
for multiple analytes analysis; resulting in 
48 of individuals and one of the combined 
Interleukins were analyzed with GNO and 
compared to PCA.

Using GNO to examine the association of 
schizophrenia and serum analytes

We performed conditional logistic analyses 
for all analytes separately. Gender, age and 
the time to diagnosis were included as strata. 
The only significant finding was prolactin, 
with an adjusted hazard ratio of 1.28 (p=0.03), 
for increasing two standard deviations 
before diagnosis. Adjusting by the extreme 
distribution, the type I error for finding the 
highest significant value of 0.03 among 51 
analytes was actually 83%. Table 2 shows the 
adjusted hazard ratio for the 10 most significant 
analytes. For the other analytes, the p value 
was greater than 0.5.

Using the GNO method, Table 3 shows the 
HR for the gradient and other six other vectors 
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TABLE 1

Analytes measured using multiplexed immunoassays

va1 Alpha-1-Antitrypsin (AAT) va27 Vascular Endothelial Growth Factor (VEGF)

va2 Apolipoprotein A-I (Apo A-I) va28 Vitronectin

va3 Apolipoprotein A-II (Apo A-II) va29 Interleukin-6 receptor (IL-6r)

va4 Apolipoprotein B (Apo B) va30 Interleukin-7 (IL-7)

va5 Apolipoprotein C-I (Apo C-I) va31 Kidney Injury Molecule-1  (KIM-1)

va6 Apolipoprotein H (Apo H) va32 Luteinizing Hormone  (LH)

va7 Beta-2-Microglobulin (B2M) va33 Monocyte Chemotactic Protein 2 (M CP-2)

va8 Brain-Derived Neurotrophic Factor (BDNF) va34 Macrophage-Derived Chemokine (MDC )

va9 Serotransferrin (Transferrin) va35 Macrophage Migration Inhibitory F actor (MIF)

va10 Complement C3 (C3) va36 Macrophage Inflammatory Protein-1

va11 Cancer Antigen 125 (CA-125) alpha (MIP-1 alpha)

va12 Calbindin va37 Matrix Metalloproteinase-2 (MMP-2 )

va13 CD5 (CD5L) va38 Prostatic Acid Phosphatase (PAP)

va14 Carcinoembryonic Antigen (CEA) va39 Prolactin (PRL)

va15 Cortisol (Cortisol) va40 Peptide YY (PYY)

va16 Connective Tissue Growth Factor (CTGF) va41 Serum Amyloid P-Component (SAP)

va17 Epidermal Growth Factor Receptor (EGFR) va42 Sortilin 

va18 Endothelin-1 (ET-1) va43 Testosterone, Total

va19 Fetuin-A va44 Thrombopoietin 

va20 Ferritin (FRTN) va45 Tissue Inhibitor of Metalloprotei nases 1 (TIMP-1)

va21 Follicle-Stimulating Hormone (FSH ) va46 Tumor Necrosis Factor Receptor-Li ke 2 (TNFR2)

va22 Haptoglobin va47 TNF-Related Apoptosis-Inducing

va23 Intercellular Adhesion Molecule 1 (ICAM-1) Li gand Receptor 3 (TRAIL-R3)

va24 Immunoglobulin A (IgA) va48 Betacellulin (BTC)

va25 Immunoglobulin M (IGM) va49 Interleukin-10 (IL-10)

va26 Thyroid-Stimulating Hormone  (TSH ) va50 Interleukin-11 (IL-11)
  va51 Interleukin-17 (IL-17)

TABLE 2

The Hazard ratios for being a schizophrenia case of the 10 most significant analytes

Analytes HR 95% CI P
39 1.28 1.02 1.62 0.03

7 1.34 0.96 1.88 0.09

13 0.45 0.17 1.17 0.1

23 1.25 0.91 1.71 0.17

19 0.8 0.52 1.21 0.28

34 1.17 0.87 1.58 0.3

24 0.87 0.62 1.22 0.42

36 0.82 0.47 1.4 0.46

40 1.13 0.81 1.57 0.46

9 0.87 0.59 1.27 0.47
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with relative smaller p values. For the gradient 
alone, Table 3 shows that the risk to being a 
case was more than doubled (HR=2.4) when 
increasing 2 standard deviations in the gradient 
direction. The p value was 2.33E-07 and after 
adjusting by the extreme distribution of the 49 
vectors, the adjusted p value was 1.1E-5. The 
goodness of fit (-2log likelihood ratio) for the 
gradient vector was 1989.1 compared with the 
total goodness of fit of 2023.8, indicating that 
the gradient vector had a high contribution to 
the fit of the model. 

Table 4 shows the coefficients of the 
gradient vector. Many of them are lower than 
others in magnitude and the smallest value 
was 0.002, indicating a weak association with 
schizophrenia status. We repeated the steps 
4-12 to remove analytes with weak effects 
on schizophrenia status. Table 5 shows the 
gradient vectors of the three final spaces: 
U

11
,U

10
 and U

9
. In U

11
, analyte 17 had the 

smallest coefficient in the gradient vector in 
U

11
, which was much smaller than that of other 

analytes. In U
10, 

analyte 10 has the smallest 
contribution, but its coefficient was close to 
those of analytes 44 and 8. 

Table 6 shows the two most significant 
effects in U

11
,U

10
 and U

9
. In U

11
, the only 

significant vector was the gradient, but in U
10
, 

except for the gradient, vector 4 was almost 
significant (p=0.05), and in U

9
, vector 4 was 

significant. This means U
11,0

 could have only 
one vector, but U

10,0
 and U

9,0
 should have two 

vectors. Therefore we could use U
11 

as the final 
selected subspace of U. 

For the new gradient alone, Table 7 shows 
that the risk to be a schizophrenia case was 
doubled (HR=2.1) with a p value of 8.06E-06. 
Considering the extreme distribution among 
the 11 vectors, the adjusted p value was 8.9E-
5, which is a little larger than the gradient 
using 51 analytes. Except for the new gradient, 

Vectors HR 95% CI P Value

Gradient 2.40 1.72 3.34 2.33E-07
32 1.32 0.93 1.89 0.12

46 1.28 0.92 1.76 0.14

25 1.20 0.88 1.63 0.25

22 1.18 0.88 1.58 0.28

49 0.83 0.60 1.16 0.29

29 1.17 0.87 1.55 0.29

TABLE 3

The HR of being a schizophrenia case and 95% CI for the gradient
and other six most significant vectors in X

TABLE 4

The analyte coefficients of the gradient vector in space of X

Va1 Va2 Va3 Va4 Va5 Va6 Va7 Va8 Va9 Va10

-0.015 -0.033 -0.032 -0.018 -0.022 0.140 0.319 -0.153 -0.298 0.166

Va11 Va12 Va13 Va14 Va15 Va16 Va17 Va18 Va19 Va20

-0.014 -0.012 -0.073 0.092 0.064 0.072 -0.103 0.019 -0.053 0.048

Va21 Va22 Va23 Va24 Va25 Va26 Va27 Va28 Va29 Va30

0.078 -0.021 0.080 -0.095 0.087 0.035 0.022 -0.019 0.038 0.040

Va31 Va32 Va33 Va34 Va35 Va36 Va37 Va38 Va39 Va40

-0.022 0.062 -0.079 0.043 0.051 -0.034 -0.018 -0.017 0.158 0.008

Va41 Va42 Va43 Va44 Va45 Va46 Va47 Va48 Va49  

-0.054 0.057 0.069 -0.129 0.463 -0.592 0.052 -0.156 -0.002  
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no other vectors showed significant effect on 
schizophrenia risk. Table 8 shows the results 
of interactions in U

11
. There are no significant 

interactions between gradients and other vectors. 
Adding any other vectors had only minor effect 
or the gradient vector except for Vector 4. 

The selected subspace U would be U
11
 

or U
7
 with two vectors: gradient and Vector 

5 (data not shown). The individual effect of 
Vector 4 Table 6 was positively associated with 
schizophrenia. If both gradient and Vector 4 
are included in the model Table 8, the adjusted 

TABLE 5

Gradient vector in U
11

, U
10

 and U
9

Space va6 va7 va8 va9 va10 va17 va39 va44 va45 va46 va48

U
11

0.177 0.288 -0.119 -0.403 0.124 -0.066 0.193 0.151 0.549 -0.551 -0.156

U
10

0.183 0.291 -0.128 -0.414 0.106   0.197 0.127 0.543 -0.555 -0.159

U
9

0.186 0.293 -0.121 -0.346     0.208 0.150 0.578 -0.562 -0.169

TABLE 6

The two most significant effects of vectors in U
11

, U
10

 and U
9

Space Vector Parameter Standard Error P value

U
11

Gradient 0.74 0.17 8.06E-06

V9 -0.23 0.17 0.17

U
10

Gradient 0.75 0.17 8.06E-06

V4 0.25 0.13 0.05

U
9

Gradient 0.74 0.16 5.89-06

V4 0.28 0.13 0.04

TABLE 7

The HR and 95% CI for gradient and 10 other vectors in U
11

Vectors HR 95% CI P Value

Gradient 2.09 1.51 2.89 8.06E-06

9 0.79 0.57 1.11 0.17

4 1.20 0.92 1.55 0.18

6 0.82 0.58 1.15 0.25

11 0.88 0.62 1.24 0.47

3 1.10 0.79 1.54 0.56

8 0.95 0.69 1.32 0.77

2 1.06 0.68 1.67 0.79

10 1.02 0.75 1.39 0.91

5 0.99 0.71 1.39 0.96

7 1.00 0.74 1.37 0.98
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effect of Vector 4 is negatively associated with 
schizophrenia and the adjusted gradient effect 
is increased. This phenomenon suggests that 
a non-linear combination of the individual 
analytes may be better.

Results by using PCA

The PCA is obtained by Eigen-value 
decomposition of the covariance or correlation 
matrix of the predictive variables under 

TABLE 8

The risk effect by Gradient and other orthogonal vectors in U
11

 with interaction tera

Model Vector Parameter Std Error P Value HR

1

gradient 0.73 0.17 <.0001 2.08

V9 -0.05 0.16 0.76 0.95

gradient*grad9 0.08 0.30 0.79 .

2

gradient 0.73 0.17 <.0001 2.07

V6 -0.16 0.20 0.43 0.86

gradient*V6 0.01 0.13 0.93 .

3

gradient 0.87 0.22 <.0001 2.38

V4 -0.02 0.19 0.93 0.98

gradient*V4 -0.08 0.13 0.54 .

4

gradient 0.81 0.22 0.00 2.39

V6 -0.15 0.14 0.29 0.88

V4 -0.10 0.15 0.49 0.87

V9 -0.01 0.17 0.95 0.97

TABLE 9

The HR of being schizophrenia cases and 95% CI for Principal 1
and twelve most significant principals

Principals HR 95% CI P Value

1 1.06 0.76 1.47 0.75

48 0.61 0.44 0.85 0.003

13 1.34 0.94 1.91 0.10

24 1.27 0.91 1.76 0.15

36 0.80 0.58 1.10 0.17

14 1.28 0.89 1.82 0.18

5 0.78 0.54 1.12 0.18

41 0.84 0.63 1.13 0.25

10 0.83 0.59 1.17 0.29

38 0.84 0.61 1.16 0.29

27 1.18 0.86 1.64 0.31

15 1.16 0.84 1.61 0.36

47 0.86 0.63 1.19 0.38
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consideration. Most statistical software can 
compute the principal components. Using PCA, 
Table 9 shows the HR for principal 1 and 12 
other most significant principals (|ln(HR)|=0.18 
or above). Ranking the principal HRs by their 
p values resulted in a rank of 32 for the 1st 
principal. The most significant principal was 
the 48th principal (p=0.003), which is more 
significant than that of the individual factor 
Prolactin, but is also lower in significance 
compared to the gradient. Adjusting by the 
extreme distribution of 49 principals, the type 
1 error was approximately 14%.

To assess the model fit with the log 
likelihood ratio, we need to include at least the 
24 most significant principals into the model 
to reach the fitting level of modeling gradient 
alone (1989.1) in the initial space U

49
. The 

associated –2log likelihood was 1989.5 for the 
24 most significant principals and 1988.3 for 

the 25 most significant principals. The total 
likelihood ratio was 2023.8. The GNO method 
can reduce the dimension significantly more 
than PCA. There is no iteration process when 
using PCA, as that in GNO

The sensitivity analysis of the selection of 
gradient vector
 

The selection of the gradient vector is 
essential for the GNO. In order to study the 
sensitivity of the selection, we randomly select 
76 cases among the 86 cases and the matched 
controls, to construct a sub-sample. Then we 
find the gradients for this sub-sample in U49 
and U48. We repeat this process 500 times to 
get 500 gradients in U49 and U48. For each 
gradient, we first rank the coefficients of the 
individual analytes by their coefficients from 

TABLE 10

Sensitivity by 500 random selected samples

Rank Type

Rank by actual value with
largest absolute coefficients Rank by absolute value

The smallest (negative) The largest 
(positive) The smallest (near zero)

Analytes Va46 Va9 Va48 Va24 Va7 Va45 Va49 Va38 Va11 Va18

U49

Originala 49 48 47 46 1 2 49 44 46 41

meanb 49(100%) 47.9(91%) 46.8(77%) 46.2(93%) 1.2(81%) 1.8(99.6%) 42.5 44.0 42.1 40.9

std 0 0.4 0.6 0.6 0.4 0.4 4.2 4.1 3.3 3.7

min 49 46 45 44 1 1 31 29 33 32

Q1 49 48 47 46 1 2 40 41 40 38

median 49 48 47 46 1 2 43 45 42 40

Q3 49 48 47 47 1 2 45 47.5 45 43

max 49 48 48 48 2 5 49 49 49 49

Analytes Va46 Va9 Va48 Va8 Va45 Va7 Va11 Va18 Va38 Va40

U48

mean 48.0(99%) 46.8(88%)
44.6(57% 
≥ rank45)

44.3(75% 
≥ rank44)

1.2(87%) 1.9(99%) 40.6 39.2 37.0 36.8

std 0.1 0.7 1.3 1.8 0.6 0.4 5.7 6.6 8.3 8.3

min 47 41 40 36 1 1 17 20 12 13

Q1 48 47 44 43 1 2 37 35 32 30

median 48 47 45 45 1 2 42 41 39 39

Q3 48 47 46 46 1 2 45 44 44 44

max 48 48 47 47 8 3 48 48 48 48

aThe original rank of the analytes in the original sample.
bMean of the rank and the percentage of the analyte taking extreme ranking.
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largest to smallest, both largest (positive) and 
smallest (negative) have the larger contribution 
in the gradient vector. The six analytes with 
largest effects in the gradients from the original 
sample are shown in Table 10. We list the 
mean, standard deviation, and the 5 number 
summaries of the 500 simulations. Following 
the mean of the rank, the number in the 
parenthesis is the percentage of the rank or 
ranks with the extreme ranking: largest or 
smallest.

For example in U49, the analyte Va46 
has the original rank 49, the most negative 
contribution in the original sample gradient, 
the mean rank of the 500 simulations is 49 
and the standard deviation is 0. This implies 
that Va49 has the most negative value in all 
500 simulations. The percentage of Va46 with 
the 49th rank is 100%. The analyte Va48 has 
the original rank 47, the 3rd most negative 
one in the original sample. Among the 500 
simulations, Va48 has mean rank of 46.8 and 
the standard deviation of 0.6; 77% of Va48 are 
ranked 47 and above (47and 48). The analyte 
Va7 has the largest positive coefficient in the 
original sample. Among the 500 simulations, 
the mean of the rank of Va7 is 1.2; 81% of them 
are ranked 1, and 19% are ranked 2nd. We also 
ranked the coefficients by their absolute value 
from largest to smallest, those analytes, which 
have minimal contribution to the gradient will 
have the highest ranks, 4 of them were listed 
in Table 10. Our GNO analysis results in the 
following observations:

1.	For the most effective analytes, their 
contribution to the gradient is very stable 
and consistent. They are not sensitive to 
the sampling selection.

2.	For those 4 analytes with minimum effect 
on the gradient, their ranks among the 500 
simulations are relatively stable, which are 
mostly distributed in the lowest third rank 
ranges: 30th to 49th. It is to be expected that 
those analytes with smallest contributions 
have variations in their ranks.

3.	Similar observations are found in U48, 
which eliminates the Va49 with the smallest 
contribution to the gradient in the original 
sample.

4.	Those with highest contributions to the 
gradient in U49 still have the highest 
contributions in U48, except one analyte, 
Va24 was replaced by Va8. Va24 is the 6th 
highest in U49, but it is 7th highest in U48.

5.	Those with the smallest absolute coefficients 

in U49 still have the smallest coefficients in 
U48, with minor rank changes. 

We also used simulation to select the 
samples of different sizes (60 to 75) to examine 
the robustness of GNO, which gave similar 
results. For example, using simulation with 
selecting 70 cases 500 times, the mean HR of 
the gradient was 2.42 and the range of the 500 
simulations was (2.23, 2.64), comparing with 
2.40 for the original data.). Summarizing above, 
the GNO is robust and stable in the process of 
selection of gradients. 

DISCUSSION

In this study, we proposed the GNO 
decomposition method for high dimensional 
regression. For high dimensional data, we 
chose the vectors of decomposition one by 
one according to their effect on the dependent 
variable. Since all vectors are perpendicular 
to each other, the correlation among them is 
usually weak. The interaction among them on 
the dependent variable is usually low. Therefore 
GNO reduces multi-colinearity, which often 
occurs in the regression analysis. 

We examined the coefficients of the gradient 
vector and other vectors in U

j
 sequence to 

remove individual analytes with weak effect on 
outcomes. The proposed method, can find the 
effective analytes as well as the analyte-analyte 
interactions. It reduces both the dimensions 
of the regression and the total number of the 
individual analytes needed to be tested.

It is very important that the simulation results 
show that the selection of gradient is stable. 

Compared to the popularly used PCA as a 
dimension reduction technique, the gradient in 
GNO method is the most significant vector, while 
the 1st principal is not and the most significant 
component usually is not same as anyone of the 
Eigen vectors. Therefore, the dimension of space 
U would be much less with GNO than PCA.

Many of the analytes identified as 
associated with schizophrenia care states a 
have been implicated previously in acute or 
chronic inflammatory conditions, endothelial 
cell dysfunction, cardiovascular disease, type II 
diabetes mellitus and metabolic disorder (10-
12). Interestingly inflammatory disorders and 
schizophrenia share an increased prevalence 
of insulin resistance, metabolic syndrome and 
type II diabetes (13-16). Using the proposed 
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method, could find analytes that combined 
together are associated with schizophrenia care 
status in the general population.

The associations we found between analytes 
were complex, requiring multiple samplings for 
identification. This highlights the importance 
of performing longitudinal investigations of 
biologically relevant markers in complex brain 
disorders such as schizophrenia. This finding is 
consistent with the growing body of literature 
indicating that schizophrenia is likely to involve 
multiple etiologies and biological pathways. 
For example, recent genome wide association 
studies have identified a number of genes 
which confer an increased risk of schizophrenia; 
however, no single gene can explain more than 
a small number of cases (17).

Theoretically GNO is an algorithm to 
approximate the central dimension reduction 
subspace with the sufficient dimension 
reduction (18). There are many existing methods 
for dimension reduction, which are better 
than PCA, such as sliced inverse regression 
and sliced average variance estimation (19), 
likelihood-based sufficient dimension reduction 

(20), estimating the central subspace based on 
the inverse third moment (21), estimating the 
central solution space (22). We will use those 
approaches to analyze the same data in the 
future and compare to GNO.
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