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Background: parameter uncertainty in the Markov model’s description of a disease course was 
addressed. Probabilistic sensitivity analysis (PSa) is now considered the only tool that properly permits 
parameter uncertainty’s examination. This consists in sampling values from the parameter’s probability 
distributions.  
MeThodS: Markov models fitted with microsimulation were considered and methods for carrying out a 
PSa on transition probabilities were studied. Two Bayesian solutions were developed: for each row of 
the modeled transition matrix the prior distribution was assumed as a product of Beta or a dirichlet. The 
two solutions differ in the source of information: several different sources for each transition in the Beta 
approach and a single source for each transition from a given health state in the dirichlet. The two methods 
were applied to a simple cervical cancer’s model.
reSulTS: differences between posterior estimates from the two methods were negligible. results 
showed that the prior variability highly influence the posterior distribution.  
concluSionS: the novelty of this work is the Bayesian approach that integrates the two distributions 
with a product of Binomial distributions likelihood. Such methods could be also applied to cohort data 
and their application to more complex models could be useful and unique in the cervical cancer context, 
as well as in other disease modeling. 
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INTRODUCTION
Quantifying uncertainty is relevant in medical 

decision making in order to properly acknowledge 
confidence in health impact estimates, to identify 
critical assumptions and to compare the impact of 

alternatives (1). In this paper, we address Markov 
models to describe the natural history of a disease. 
The components of uncertainty in these kinds of 
models are: population variability, heterogeneity, 
structural uncertainty, parameters uncertainty. 
These uncertainties are reflected in decision 
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uncertainty by specifying a distribution for the 
cost-effectiveness outcomes (2).

Individual variability consists of differences 
among patients that occur by chance and cannot be 
reduced by additional information. Heterogeneity, 
on the contrary, relates to differences between 
patients that can be in part explained. By 
simulating different life histories within a Markov 
model according to given transition probabilities, 
which can eventually be a function of subject-
specific covariates like age, heterogeneity can 
be reproduced. Structural uncertainty is related 
to the assumptions we are making about the 
phenomenon being studied and the specification 
of the mathematical model. Structural uncertainty 
can be addressed with Bayesian model averaging 
methods as demonstrated in (3). 

Parameters uncertainty is usually understated. 
In the context of Markov models, life histories 
of a cohort of patients are generated one at 
time by microsimulation. In each Markov cycle, 
each transition made is sampled in accordance 
with the corresponding probability (age, sex, 
race, etc.). Information about these probabilities 
is usually limited, because scientific literature 
about age-, type- and population-specific natural 
history and transmission is scarce. Moreover, for 
some parameters, such as progression rates for 
cancer, empirical studies cannot be carried out 
for ethical reasons.

The most common method for dealing with 
uncertainty in transition probabilities consists in 
carrying out the microsimulations under extreme 
different values of the given model parameters - one-
way or multi-way if parameters are varied one or 
more at a time respectively (4). This “deterministic” 
method is in opposition to probabilistic sensitivity 
analysis (PSA) in which parameters values are 
sampled from appropriate theoretical or empirical 
distributions. While a deterministic approach still 
has a role in specific contexts, as in scenario 
analysis, probabilistic methods are considered the 
only tool that properly allows for the examination 
of parameter uncertainty in the current literature (5, 
6). PSA is now largely diffused in health technology 
assessment and in screening policy simulations (6). 

Bayesian methods are widely studied in 
the context of medical decision making (7). 
One advantage of using Bayesian methods in 
the context of PSA for Markov models is in 
overcoming the problem of estimating transition 
probabilities when zero counts are observed 
for the event of interest. If in the specification 
of distributions for transition probabilities the 
parameters are estimated uniquely from observed 

event counts, zero probability will be associated to 
those transitions that have never been observed. 
With a Bayesian approach, it is natural to combine 
data with prior information and, as a result, a non 
null probability, even if small, will be associated 
with the unobserved transitions (8). 

The Bayesian approach is also useful for 
integrating information when several datasets or 
expert opinions are available (9).

In the present paper, we developed two 
Bayesian methods for carrying out a PSA on 
transition probabilities. We also applied these 
methods to a very simple model for natural history 
of cervical cancer.

METHODS

Using a PSA within a decision making problem 
allows to take directly into account uncertainty 
on the parameters involved in the model by 
treating them as random quantities with a specific 
probability distribution. 

In carrying out a Bayesian PSA for transition 
probabilities, a joint posterior density function 
is associated with each element of the transition 
matrix related to the Markov model under study. 
Obtaining the joint posterior density function 
requires the definition of an appropriate Bayesian 
model for transition probabilities and therefore 
the selection of suitable distributions for prior 
information and data. 

We developed two Bayesian models for PSA 
on transition probabilities based on different prior 
specification (Table 1). In particular we assumed 
that transition probabilities are a priori distributed 
as independent Beta random variables or follow a 
Dirichlet distribution.

likelihood 

Usually information on transition probabilities 
between health states is from independent 
epidemiological studies. In such a case the suitable 
approach is to define a model based on a series of 
independent random likelihoods. Data relative to 
each transition probability consists of the number 
of successes in a sequence of independent Binomial 
experiments. When the whole transition matrix is 
considered, data for each row {x

1
, . . . , x

k
} are the 

product of independent Binomial distributions (10):
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where x
i
 is the observed number of transitions 

to the ith state, ni represents the related sample size 
and πi the probability of making a transition to state i. 

The vector of probabilities {π
1
, . . . , π

k
} must 

satisfy the constraint of the row sum to one that 
derives from the assumption in the Markov model 
of health states that are mutually exclusive. Since 
data for the probability of remaining in the same 
health state at time t+1 is usually not available, 
we model progression and regression data with 
Binomial independent distributions and impose 
the constraint of row elements summing up to 
one by fixing the probability to not change status 
as the difference between one and the sum of all 
other transition proportions. For example, if we 
are modeling the hth row of the transition matrix, 
the constrain is the following

In the case the transitions to different states are 
observed in the same study, the distribution for the 
number of success can be assumed Multinomial:

where n is the study sample size.

Prior distributions

The prior distribution summarizes current 
knowledge on each transition probability. Prior 

distributions can be of clinical relevance or 
non-informative (11). Clinical priors represent 
the combined prior belief of informed experts. 
This will include the subjective prior opinions 
of the trial investigators and/or other experts, 
as well as the results of previous similar 
studies. Informative priors can be skeptical 
or enthusiastic depending on the grade of 
confidence experts put on the transition (11). 
In principle a non-informative prior would 
correspond to the situation when none or very 
little prior information is available. 

In this work, we will use Beta or Dirichlet prior 
distributions to model transition probabilities. 

Beta priors

The Beta distribution is a natural choice 
for representing uncertainty on the probability 
parameter π when a Binomial distribution is 
assumed on the number of success on a sequence 
of independent dichotomous experiments (2, 12, 
13). In fact, the Beta and the Binomial distributions 
are conjugated (14). The Beta distribution is 
continuous, constrained by the interval (0, 1), 
and characterized by two parameters a and b, 
which are strictly positive:

 
where B(a,b) is the Beta function. Beta 

parameters are related to the mean and the 

TransiTion BeTa model dirichleT model

Likelihood

Prior

Posterior  

Approximated by MCMC

TaBle 1

Bayesian models for Bayesian Psa on row h of The TransiTion maTrix
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variance of π: mean and variance of π  are 
respectively

 
The Beta distribution has the property of 

being very versatile and can be used to model 
random variables with quite different shapes. 
Beta priors can be tuned by multiplying Beta 
parameters by an inflation factor c. The result is 
that while the mean remains constant the variance 
will be modified approximately inversely to c. 

We assumed that, given the hth row of 
the transition matrix, probabilities π

1
, . . . , π

k 

have independent Beta distributions. For each 
π

i
 we defined the Beta parameters a

i
 and b

i
. 

The specification of these parameters permits 
the generation of a distribution consistent with 
available information on transition, i.e. knowledge 
about the phenomenon from expert opinion, 
literature revision or new empirical data. 

Dirichlet priors

The Dirichlet distribution is conjugated with 
the Multinomial distribution, and then it is a 
natural choice for representing uncertainty on the 
probability vector {π

1
, …, π

k
} even for different 

sampling designs, as the Product Binomial model 
discussed above (8). 

The Dirichlet distribution is an extension of the 
Beta generally used in the case of several mutually 
exclusive events. Each row of the transition 
matrix can then be modeled by the multivariate 
Dirichlet distribution to deal with uncertainty 
in transition probabilities. The constraint of row 
elements summing up to one is implicitly fulfilled. 
The distribution is parameterized by a vector 
of positive real numbers {α

1
, …, α

k
}. These 

parameters code prior information on event 
probabilities. The density function of a Dirichlet 
variable {π

1
, . . . , π

k
} is 

 
with α

i
 ≥ 0, for all i = 1, . . . , k and   

Setting,                 mean and variance of each 

π
i
 are respectively

 

Note that Dirichlet distribution parameters 
are related to the mean and the variance of 
the transition probabilities. Likewise, multiplying 
such parameters by an inflation factor c, we 
obtain a series of Dirichlet distributions, π’

i
  ~ 

Dir(c · α
1
, . . . , c · α

k
), with the same expected 

value, but different variability: 

Given the inflation factor c, the variance of the 
row transition probabilities will be jointly modified 
inversely to c: the larger the value of c the smaller 
is the variance. The coefficient c can be thought 
of as the dimension of a hypothetical sample from 
which information about parameters is obtained 
and represents the degree of prior confidence.

Posterior distributions

Given a row of the transition matrix, if we 
assume Binomial likelihoods and independent Beta 
prior distributions on each transition probability 
π

1
, . . . , π

k
, the resulting posterior distribution 

can be simply obtained in closed form relying 
on conjugacy. A posteriori each parameter πi 
has a Beta distribution with parameters x

i
 + a

i
, 

b
i
 + n

i
 - x

i
. The joint posterior is then computed 

in closed form as product of these Betas. Under 
this approach, we can introduce expert opinions 
through parameters ai and bi for all i=1,…,k to 
develop priors on π

1
, . . . , π

k
. 

If we assume Binomial likelihoods and 
Dirichlet prior distribution on {π

1
, . . . , π

k
}, a 

simple analytical form for the joint posterior 
density does not exist due to the non conjugacy of 
the prior (Dirichlet) and the likelihood (product 
of Binomial). The marginal posterior of each 
parameter can be approximated by Markov Chain 
Monte Carlo (MCMC) method to draw repeatedly 
from the joint posterior distribution. 

It should be noticed that in the case in which 
prior belief is obtained by the same expert(s) 
for all the transitions from a given health state 
(a row in the transition matrix), the variance is 
fixed for all the parameters and a Dirichlet prior is 
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particularly appropriate to model each row of the 
transition matrix. 

example

As an example of the two approaches we 
considered a very simple model for natural history 
of cervical cancer (Figure 1). In cervical cancer 
modeling the natural history considers the Human 
Papillomavirus (HPV) infection, that is considered 
a necessary cause for cervical cancer (15). The 
health states are the following: Healthy, HPV 
infected, Pre-cancer lesion, Cancer, Death by 
cancer, Death by other causes (16). 

Microsimulation with Bayesian PSA was then 
carried out as follows. We fixed a number of 
iterations and, for each iteration, we defined 
different transition matrices sampling from the 
joint posterior distribution of the transition 
probabilities obtained under the two approaches. 
In simulating life histories, a cohort of women 
of a fixed dimension is considered. For each 
woman and for each iteration a life history 
is simulated by sampling transitions from the 
corresponding posterior matrix. Repeating for all 

women and for all iterations, a set of life histories 
is generated.

Clinical age-specific prior distributions were 
developed for each transition probability as 
explained in a recent work (16). Age-specific 
values of the Beta and Dirichlet parameters used to 
specify the prior distributions for some transition 
probabilities are reported in Figure 2. 

Data for transitions was extracted from 
published studies (Table 2). Transition data 
relative to periods different than 12 months was 
converted in accord with (17). Using this method 
we are implicitly assuming that only a transition 
is possible from each state; in the case of partially 
observed data a matrix decomposition approach 
(18) or a method that estimates the underlying 
rate matrix using Kolmogorov’s forward equations 
(19) are surely more appropriate. However we 
are here considering a simplified example of 
cervical cancer disease and not interested at real 
parameter estimates. 

The microsimulation was implemented using 
the software R 2.8.0 (20). WinBugs (21) was used 
for approximating the joint posterior distribution 
with the Dirichlet method, with burn-in 1 000 and 
2 000 iterations.

fig. 1

six healTh sTaTe models for hPV naTural hisTory and carcinogenesis

deaTh for all causes

healThy hPV cancer deaTh for cancer
Pre-cancer

lesion

TransiTion x n se Time reference

Healthy → HPV 122 608 0.016 12 (22)

HPV → Healthy 115 288 0.029 12 (23)

HPV → SIL 6 83 0.028 12 (22)

SIL → Healthy 52 376 0.018 72 (24)

SIL → HPV 6 376 0.0065 72 (24)

SIL → Cancer 4 481 0.0041 72 (24)

x: cases, n: sample dimension, se: standard error for proportions, time: period in which data is relative (months), SIL: pre-cancer lesions

TaBle 2

daTa used in The hPV and carcinogenesis naTural hisTory model wiTh Their references
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RESULTS

We applied the Bayesian PSA with the Beta 
and the Dirichlet priors to the simple model for 
cervical cancer natural history. Data in (22) is 
from a study on 608 female students from a state 
University in New Brunswick, New Jersey. Their 
mean (± SD) age was 20 ± 3 years. Data in (23) 
is from a cohort of 688 young women 13 to 22 
years old positive for HPV recruited in two clinic 
sites in San Francisco and visited every 4 months. 
Data in (24) is from a study of 528 women with a 
mean age of 29 included in a prospective follow-
up study conducted at the University Hospital in 
Kuopio, Finland (Table 2). 

It should be noticed that age-specific 
transition data was not available and we 
assumed the same likelihood for all classes 
of age. Prior specifications were then highly 
informative and higher weight was given to 
prior respect to data. 

We sampled 100 values from the joint 
posterior distribution for the elements of the 

transition matrix under the two approaches and 
generated 1 000 life histories. When independent 
Beta prior distributions were assumed on the 
row transition probabilities, uncertainty on 
each row parameter was treated separately. 
When a Dirichlet prior was assumed, the row 
variance was modified by applying an inflation 
factor c to the distribution hyperparameters. 
The larger c is the smaller is the marginal 
variance of each row parameter. In general we 
found that the posterior distributions are highly 
sensitive to the prior variances.

As an example, we report some transition 
probabilities for a given age (25 years).  For 
each transition, we used three different Beta 
priors (with variance respectively 0.001, 
0.0001 and 0.00001) and we plotted them 
with the corresponding posterior distributions 
(Figure 3). Results for the Bayesian model with 
Dirichlet prior are reported in Figure 4. In 
all cases, the marginal variance on each prior 
distribution was varied by applying different 
inflation factors (c=100, 1 000, 10 000).
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age-sPecific mean Values for some TransiTion ProBaBiliTies, used To sPecify The Prior disTriBuTions. 
sil: Pre-cancer lesions
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DISCUSSION

We proposed a Bayesian approach with two 
different prior specifications to carry out a PSA 
on transition probabilities in Markov models for 
disease natural history. PSA using Dirichlet or 
Beta distributions to model probabilities is not 
new in the context of Markov models (2, 8). The 
novelty of our work is the Bayesian approach that 
integrates these two distributions with a likelihood 
which is the product of Binomial distributions.

Boshuiozen et al. (12) handled Bayesian 
methods for Binomial proportions by considering 
non informative priors (uniform or Jeffrey priors). 
However, in case of sparse empirical data on 
transitions between health states, informative 
priors are useful. In addition, if studies with large 
sample size are available, the results will be less 
sensitive to prior specification (7).

A novelty in our approaches is the use of 
independent Binomial data. In many works on 
transition probabilities, a Multinomial likelihood 
is specified for data (8, 19, 23, 24). This choice 

models state transitions as the number of success 
in a sampling experiment with fixed sample size. 
A Multinomial likelihood could be appropriate if 
transitions from a given health state to k possible 
other states are observed in the same cohort of 
individuals. However, since transition data is 
typically from different and independent studies, it 
is more appropriate to model transition data using 
independent Binomial data. By using an improper 
prior distribution Beta(0,0), i.e. assuming a priori 
ignorance on transition probabilities, than the 
Beta approach results in the standard non Bayesian 
PSA practice. In this case, the non Bayesian 
PSA approach implicitly corresponds to the use 
of independent Binomial likelihoods. However, 
the use improper prior is controversial and a 
priori ignorance may by assumed by using other 
uninformative priors, i.e. Beta(1,1). 

There is a main difference between using Beta 
prior and Dirichlet prior for modeling transition 
probabilities. Under the Beta approach, we assume 
that prior information on transitions comes 
from independent experts. Under the Dirichlet 
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fig. 3

likelihood funcTion, Prior (solid line) and PosTerior (dashed line) disTriBuTions for The TransiTion 
from healThy To hPV infecTed sTaTe wiTh The BeTa model wiTh Prior Variance 0.001, 0.0001 and 0.00001
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approach, we assume that prior information on 
all transition probabilities from a given health 
state comes from a single expert. This involves 
that given a health state, all transitions from that 
state are modeled with a joint prior distribution 
and the same degree of uncertainty is assumed for 
all transitions from that health state. In this case, 
the parameter’s variance could be jointly modified 
by applying an inflation factor c. This factor is 
inversely proportional to the distribution variance 
and can therefore be interpreted as the sample 
size of a hypothetical experiment. The larger c 
is the smaller is the marginal variance of each 
row parameter. Under the Dirichlet approach, 
also a certain correlation among parameters was 
assumed. Differing from the Boshuizen et al. 
(12) study, in this case uncertainty on different 
parameters (transition from a given health state) 
is not assumed independent, but correlation 
between the uncertainty is taken into account.

We didn’t take here in consideration the 
elicitation problem, i.e. it is not investigated the 
appropriate distribution in the case where different 

expert beliefs give correlated probabilities, neither 
the case of different levels of uncertainty about 
each probability from a single expert, even if in 
this case the Beta approach could be used. Both in 
the data and prior specification, it is assumed that 
information is previously selected by meta-analytical 
techniques with the aim of making the standard 
assumption that the different studies informing data 
and prior probabilities (that often have differences 
in population, clinical context, design, and so 
on) represent the same underlying population. 
Therefore possible conflicts between the informing 
studies could be weighted by relevance.

The models here presented are applicable 
to transitions with very low probabilities. In the 
likelihood specification the probability to not 
change health state is fixed as the difference 
between one and the sum of other transition 
proportions. This is possible only in the case of 
very small probabilities, otherwise a negative 
likelihood to not change state, as well as a 
negative posterior probability, could result. 

We applied our methods to a very simple 
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model for cervical cancer natural history. As an 
example of the two model application, the prior 
variance was varied to examine the resulting effect 
on posterior distribution. In the application to a 
complex problem prior variance should be fixed. 

Results show that decreasing the variance of 
the prior Beta distributions as well as increasing 
the value of the inflation factor c for the Dirichlet 
prior, the posterior distributions are closer to the 
priors and the likelihoods become negligible. As 
shown in Figures 3-4, the posterior distribution 
moves toward the prior as the variability decreases. 
When prior and likelihood are centered on the 
same value, decreasing the prior variability, the 
posterior distribution becomes narrower. In our 
application, prior information was age-specific, 
while data was not. This implied that prior was 
strongly informative in particular for extreme 
classes of age. Further studies should be planned 
to obtain age-dependent data in order to improve 
likelihood for the most critical transitions. 

In cervical cancer modeling, screening and 
recent vaccination strategies are evaluated on the 
basis of natural history models for HPV. Large 
uncertainty is present in various parameter values, 
such as screening efficacy, HPV progression 
and regression rates, transmission probabilities. 
In most of the proposed models for cervical 
screening evaluation (16, 25) sensitivity analysis 
was conducted on parameters concerning 
diagnostics and follow-up protocol, because the 
emphasis was on studying cost and benefits 
of different screening strategies. PSA methods 
in cervical cancer modeling were used for 
economic parameters (26). Uncertainty about 
transition probabilities was taken into account 

with calibration methods where a posterior 
set of parameters was selected that generates 
model outcomes in accord with epidemiological 
data (27). Bayesian PSA methods on transition 
probabilities have not yet been developed in 
cervical cancer modeling. The application of our 
methods to more complex models could therefore 
be very useful and unique in the cervical cancer 
context. With our approach, uncertainty about 
transition probability is treated with PSA methods 
that are now considered to be the only tool that 
properly allows for the examination of parameter 
uncertainty. In addition, the Bayesian approach 
allows to use information coming from different 
sources at the same time to update the transition 
probability distribution. This is important in the 
cervical cancer field where a large number of 
sources of information and studies are present.

This work is a step forward in developing a 
Bayesian comprehensive decision analytic model 
that could be applied to the evaluation of cervical 
cancer screening and vaccination interventions 
while taking into account all components of 
uncertainty and combining multiple sources of 
information and empirical data. These methods 
could be applied in Markov models that generate 
cohort data besides microsimulation and also in 
modeling diseases different than cervical cancer.
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