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Introduction
Logistic regression is one of the most widely

used generalized linear models to analyze the
relation between one or more explanatory
variables and a categorical response. The best
regression models are those in which the
predictor variables each correlate highly with the
dependent (outcome) variable but correlate at
most only minimally with each other.  But when
there are many of explanatory variables of
interest the efficiency of model reduces
especially if there are also strong relationship
among independent variables i.e.

multicollinearity [1].
Multicollinearity increases the standard errors

of the coefficients. Increased standard errors in
turn means that coefficients for some
independent variables may be found not to be
significantly different from, whereas without
multicollinearity and with lower standard errors,
these same coefficients might have been found to
be significant and the researcher may not have
come to null findings in the first place.

So multicollinearity makes it difficult to apply
directly the classical statistical methods to
investigate relationships among variables and in
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Abstract

Background: Logistic regression is one of the most widely used models to analyze the relation between one
or more explanatory variables and a categorical response in the field of epidemiology, health and medicine.
When there is strong correlation among explanatory variables, i.e. multicollinearity, the efficiency of model
reduces considerably.  The objective of this research was to employ latent variables to reduce the effect of
multicollinearity in analysis of a case-control study about breast cancer risk factors.
Methods: The data belonged to a case-control study in which 300 women with breast cancer were compared
to same number of controls.  To assess the effect of multicollinearity, five highly correlated quantitative
variables were selected.  Ordinary logistic regression with collinear data was compared to two models contain
latent variables were generated using either factor analysis or principal components analysis.  Estimated
standard errors of parameters were selected to compare the efficiency of models. We also conducted a
simulation study in order to compare the efficiency of models with and without latent factors. All analyses
were carried out using S-plus.
Results: Logistic regression based on five primary variables showed an unusual odds ratios for age at first
pregnancy (OR=67960, 95%CI: 10184-453503) and for total length of breast feeding (OR=0).  On the other
hand the parameters estimated for logistic regression on latent variables generated by both factor analysis
and principal components analysis were statistically significant (P<0.003).  Their standard errors were smaller
than that of ordinary logistic regression on original variables.  
The simulation showed that in the case of normal error and 58% reliability the logistic regression based on
latent variables is more efficient than that model for collinear variables. 
Conclusions: This research indicated that logistic regression based on latent variables is more efficient than
logistic regression based on original collinear variables.  

Key words: multicollinearity, latent variables, factor analysis, principal components analysis, logistic
regression, breast cancer



some cases the prediction is felled in unexpected
rang [2].

Let X is the matrix of explanatory variables that
adjusted by centering on sample means and
standard deviation or measurement scale.  The
correlation matrix will be XT  X .

The members of main diagonal of  implies by

(1)

Called variance inflation factors (3) which   is
the multiple correlation of   with other
explanatory variables.  Obviously as   closes to
one, the VIF increases.

Variance inflation factors (VIF) are a measure of
the multicolinearity in a regression design matrix
and a VIF more than 5 reflects a strong
collinearity because VIF > 5 is the result of a
linear correlation >0.8 [1]. 

What to do about multicollinearity? Increasing
the sample size is a common first step since
when sample size is increased, standard error
decreases.

Another solution is removing the most inter
correlated variable(s) from analysis. This method
is misguided if the variables were there due to
the theory of the model, which they should have
been.

In some cases, variables involved in
multicollinearity can be combined into a single
variable that called latent variable.  Latent
variables are such kind of variables that not be
observed directly but can be generated by a
transformation of other observed variables and
employed instead of original collinear
explanatory variables [4].

In statistics, Latent variables (as opposed to
observed variables), are variables that are not
directly observed but are rather inferred (through
a mathematical model) from other variables that
are observed and directly measured.

The using of latent variables for data reduction
actually has had more application in psychology
and social sciences [5], but because of some
conditions in the areas of epidemiology and
medical sciences which researchers often
encounter situations where there are many
variables related to each other, the problem of
multicollinearity is expected to occur [6] and this
technique can be done for this problem. However
multicollinearity makes problem in logistic
regression too, the researchers just have focused
on linear regression with normal response.

The objective of this research was to employ
latent variables to reduce the effect of
multicollinearity in analysis of a case-control

study about breast cancer risk factors and
compare the efficiency of methods that generate
latent variables with simulation.

Methods
1) Latent variable techniques
1.1) Principal components analysis

Principal components analysis is one of popular
methods to data reduction in multivariate analysis.
The history of this method is referred to Pearson’s
development in orthogonal least square fitting
and the most theoretical development was related
to Hotteling’s study.

Principal components analysis is frequently
used as a method for data reduction in linear
regression to reduce the effect of multicollinearity
[7].

In this technique the principal components are
produced by eigen values matrix as a linear
combination of original variables, Create new,
uncorrelated variables, they are independent from
each other and could replaced by original
collinear variables in analysis [8].

Consider the following regression model:

(2)

Where y is a vector of η observation from a
dependent variable and Xηxρ is a matrix of
independent variables. β is a vector and regression
coefficients and   is a vector of random errors
with variance equals2.

Because the logistic regression, as a generalized
linear model is an extension of linear regression
based on logit transformation (9), principal
component can be used in such model.

The value of principal components for each
observation can be calculated by following

(3)

Where the (i,k) ‘th member of matrix Z is the
k’th principal component for i’th observation
from Aρχρthat its k’th column is the k’th eigen
vector of X’X.

Because of A’s orthogonally, Xβ can be
expressed as XAA’β = Zγ where γ = A’B.

Therefore the first regression equation is
transformed to γ = Zγ + ε where the explanatory
variables replaced by their principal components.
In this study components were calculated using
the covariance method.

1.2) Factor analysis
Factor analysis is another method to data

reduction first introduced by Spearman with
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1
VIFi = rii =                

1-R2
1

γ = Xβ + ε (i)

Z = XA
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assuming a specific underlying model for the
whole data; the independent factors are computed
based on variance-covariance matrix or correlation
coefficient matrix. [10] So the observed variables
are modeled as linear combination of the factors,
plus "error" terms.

This technique is frequently used to eliminate
the multicollinearity in linear regression models
[11].  However its history referred to psychological
literatures.

Suppose γ is a response variable and x is a vector
of ρ dimension explanatory variable.

γ can be a binary variable too.
If  f is a vector of dim k < ρ factor that computed

based on vector x, we can estimate regression γ on
f instead of γ on x.  In this study factor analysis was
employed, using maximum likelihood procedure
in order to estimate latent factors. 

Results
2.1) Data Example: Breast Cancer Risk Factors

Breast cancer is the most common type of
cancer among women in the world (12), In Iran;
breast cancer constitutes 21.4 % of all cancer
cases reported in the country. The crude
incidence rate of breast cancer in women is 22.4
per 100000 populations [13].

Yavari et al [14] carried out a hospital based
case-control study to elucidate roles of
reproductive factors in breast cancer. The total
sample comprised of 303 breast cancer patients
and 303 hospital controls. All the cases and
controls were selected from a teaching university
hospital in North Tehran.

Data were collected through interview using
structured questionnaires and reproductive
variables were included age at first full-term
pregnancy (AFP) and live birth (AFLB), number of
pregnancy (NP) and live birth (NLB), and total
length of breast feeding (TLBF). All of the analysis
was carried out using S-plus.    

We consider these five reproductive variables

because they show naturally a high linear
correlation among themselves (Table 1).  

We applied ordinary multiple logistic regression
to these variables.  From Table 2, we find that
when we include all variables in the model only
the estimate for AFP and AFLB are statistically
significant, and all others are not significant with
very large p-values. But the results for these two
variables show an unusual odds ratio
(approximately near zero for AFLB and OR=67960
for AFP).  These unexpected results caused by the
high correlation among the variables make
interpreting the effect that each of these variables
has on the outcome very difficult. If we use the
variance inflation factor as an index of
multicollinearity, we have that NP is 4.57, NLB is
5.83, TLBF is 2.13, AFP is 15.41 and AFLB is 15.34
which are dramatically high for NLB, AFP and AFLB
and moderate for NA and TLBF.

The correlation structure and what we know
substantively about the observed variables suggest
creating two latent variables. 

Hence we consider the following latent variable
model; factor analysis to generate two factors:

FFaaccttoorr11= 
0.85NP+0.97NLB+0.68TLBF-0.26AFP-0.26AFLB

FFaaccttoorr22=
-0.21NP-0.23NLB-0.25TLBF+0.94AFP+0.95AFLB

And principal component analyses to generate
two components:

CCoommppoonneenntt11=
0.90NP+0.92NLB+0.82TLBF-0.25AFP-0.24AFLB

CCoommppoonneenntt22= 
-0.21NP-0.25NLP-0.22TLBF+0.96AFP+0.96AFLB

The value for the coefficient derived from both
methods indicated that the first latent variable
(Factor1 and Component1 in both techniques)
has been weighted with NP, NLB and TLBF but the
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Table 1. The Correlation matrix of the five reproductive variables and variance inflation factors.

*Variance Inflation Factors

**Significant at 1 percent level



second one is a linear combination of AFP and
AFLB. This is due to the fact that all analysis in
these techniques are based on the structure of
correlation existing among original dataset and
the results appear as  a component where the
greatest variance by any projection of the data
comes to lie on it or as a linear combination of the
observed data, plus error terms, called factor.

Then logistic regression has been conducted
with these two latent variables.  From Table 2, we
see that for both latent variable methods the odds
ratios of two latent variables are significant. 

2.2) Simulation study:
We conducted a simulation study with an S-plus

macro to examine whether these methods can
perform well for eliminates multicollinearity in a
logistic regression with high collinear explanatory
variables and to evaluate that which latent
variable model is the best. 

We considered two uncorrelated variable
groups consist of high correlated variables
generated from the following model:

x1 = g1 + 0.25e1

x2= 5 + 0.5g1 + 0.25e2

x3= 3 + 0.7g1 + 0.25e3 (4)
x4= g2 + 0.25e4

x5= 3 + 0.7g1 + 0.25e5

x6= 2 + 0.8g2 + 0.25e6

g1&g2 are independent from each other but have
a same distribution. So the artificial variables
calculated from them in two groups consist of
x1,x2 &x3 generated fromg1 and x4,x5 &x6  generated
from g2 in second group are independent. The
(ei,i = 1,...,7) reflects the random error term. 

Then the response variable was generated as
following:

(5)

With respect to logit transformation:

(6)

y2 was generated as a logit response.

Two different distributional scenarios are
considered for (g1,g2) and (ei,i = 1,...,7).

First these variables all are distributed i.i.d.
N(0,1) , second to asses the effect of skewness the
error terms distributed X

2
(1) with mean 0 and

variance 1. We choose X
2
(1) because it represents

a highly skewed distribution (Highly non-normal).
In each two distributional scenarios, two

different levels for   were selected (i.e. either 1 or
4) in order to control a high and low of reliability
for the model as following:

(7)

The term of reliability is one minus the ratio of
the variation of the error score and the variation
of the observed score, which is how much the
variation of the response variable represented by
the model. The reliability decreases when the
error term of the estimated model increases and
vice versa [15]. Therefore in order to comparing
the simulated results in different cases of
reliability we set two different coefficients for
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Table 2. Estimated coefficients of model using logistic regression with original variables and latent variables in Breast Cancer

Risk Factors. 

y = P ( y - 1) = 
exp ( 3 + 4g1 + 2g2 )

1 + exp ( 3 + 4g1 + 2g2 )

y2 = 1n (              ) + ae7
y1

1 - y1

Reliability= 1 - 
Var ( ε )

Var ( y )
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error term. The reliability for  equals 0.96 when
and 0.58 when .

To evaluate the sample size variation on
precision of estimation, each scenario was
repeated with sample in 60, 300 and 600 size and
finally we had 12 simulation scenarios (table 3).

For each of the training artificial data sets the
simulation have been done of the 1000 iterations
and two latent variables calculated by factor
analysis and principal components analysis both
and results were compared with empirical
expected mean squared error from the following
formula:

(8)

(9)

Where N= 1000 is the number of iterations in
simulation study and n = 60,300 and 600 for each
scenario.

The final results of empirical expected mean
squared error for all simulation scenarios are in table 3.

From figure 1 we see that efficiency of OLR is
better than others in term of EMSE with high
reliability and normal error, but with increasing in
sample size, the efficiency of FS increases and
goes up to OLR’s and approximately they are both
converged.  The PC method performs slightly
worse than both methods and there was no
change in each sample size for its efficiency.

Figure 2 shows that the FS is the best with
respect to low reliability and all the methods
improved when sample size increases.  The PC is
better than OLR in n=60, 300.

From figure 3 we find OLR the best but with
increasing in sample size FS is converged to it. 

Figure 4 showed that the OLR is the best too but
there is no important difference among all
methods in n=600

As is expected, the scale of the EMSE is larger
when the reliability is lower because the error
variance in the model is larger and each the
methods are not robust to the non-normality
when the error is Chi-square. 

When n=600, there is practically no clear
winner. Thus we see that the improvements of all
methods approximately are closed to each other
with increasing sample size.
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Table 3. Empirical expected mean squared error for different sample size, reliability and errors.  

*Ordinary Logistic Regression with Original Variables; **Logistic Regression with Factor Scores; *** Logistic

Regression with Principal components 

EMSE = MSEi

N
Σi=1

N

MSEi = ( ŷ ( ôi , xij ) - yij )2

n
Σj=1

N



Discussion    
We have discussed using latent variables in a

case-control study of breast cancer risk factors
and we conducted a simulation which
demonstrates that the use of latent variables in the
case of normal error and low reliability yield a
better fit and more efficiency for model and factor
analysis is more efficient than principal
components analysis.

Wall and Li [16] compared the linear regression
of two methods of factor analysis based on
generalized least square and structural equation
modelling.  Their results indicated a perfect fit for

SEM in compare to FS.  They also showed with real
data, which was about respiratory disease, latent
variable models produced parameters with
smallest standard errors.

The skewness imposed a bad effect on efficacy.
Especially this problem is touchable for FS
because of using maximum likelihood to estimate
the latent variables.  However in large sample size
the results were converged cross the all
techniques.  Wall and Li controlled the skewness
in their own simulation.  They used generalized
least square, so the method was robust to the non
normality.  In order to evaluate the effect of
sample size on their results they considered n=50,
200 and 1000 and found that the efficacy of FS
increased with respect to increasing in sample
size.  These findings are acceptable with our
results.  But they didn’t find similar results in the
case of reliability equals 58% and 96% about FS
method.  On the other hand in our simulation FS
is the best.

Morris [17] compared several different types of
factor analysis with low reliability equals to 33%
consistently found FS more favourable but its
results seems sceptical because his simulation was
based on re sampling of the same 1000
observations for all cases.  Also Morris only
examined the correlation between observations
instead of using a statistic to compare the
efficiency.  Helland and Almoy [18] conducted a
simulation study to compare principal
component regression and partial least square
regression.  They found mixed results with no
clear winner.

Filzmoser and Croux [19] suggested using
principal component with a special algorithm in a
linear regression with collinear explanatory
variables.  This algorithm has been used to choose
the number of factors.  They also by a simulation
study proved that this method is efficient in a
linear regression with high correlated variables.

Aguilera & Escabias [20] showed that PC is a
favourable method in a logistic regression with
collinear data.  Escabias et al [21] used this
method to modelling climatologically data.

The idea of using latent variables instead of
original variables to data reduction comes from
this fact that these variables can reflect the
relation among observations [21], but the final
comment should be kept in our mind about the
benefits and restriction of these methods.  

One of the biggest interests for any researcher is
usually interpretation of parameters and what
they exactly mean.  A possible criticism of using
the latent variable technique is the interpretation
of the new parameter that calculated from new
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Figure 1. EMSE with Reliability= 0.96 and Normal error.  

Figure 2. EMSE with Reliability= 0.58 and Normal error.  

Figure 3. EMSE with Reliability= 0.96 and Chi-Square error.  
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model.  This interpretation is too difficult [22].  
Somehow PC technique can be the first solution

because principal components are a linear
combination of initial data and opposite of FA do
not assume an underlying model for dataset [8].
So researchers are able re estimate the parameters
for original model, using inverse rotation matrix
which translates the latent parameters to initial
ones.  Also some methods have been
recommended to interpret the components too
[23]. In spite of some disadvantages, the
applications of latent variables are so increased
that a new technique is proposed to produce
latent variables for multi responses [24]. 
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Figure 4. EMSE with Reliability= 0.58 and Chi-Square error.  


