
Introduction
Health care claims or administrative data often
arise as electronic copies of paid bills generated
from insurance companies, including the
Medicare and Medicaid programs.Widely used by
researchers, partially de-identified versions of
these data are available from the Centers for
Medicare and Medicaid Services (CMS), from
states in the form of hospital discharge
summaries, and from some private insurance
companies. In order to protect patient’s privacy,
the data are stripped of names and street
addresses. In many cases, however, zip or county
code is retained to facilitate studying geographic
aspects of health care. One of the most widely
known applications of geography to claims data is
the Dartmouth Atlas of Health Care
(www.dartmouthatlas.org). First released in 1996,
this atlas maps services and some utilization
patterns, grouping patients into hospital service
areas and hospital referral regions using a rule that
assigns each zip code to the facility that serves the
plurality of residents of that zip code (though the
service areas are subsequently “adjusted” to make
the geography more continuous).

In practice, such de-identified administrative
data need to be analyzed as areal (lattice) data [1].
That is, the data are available for analysis only as

de-identified summaries over geographical
regions, such as counties or zip codes.There are
two general strategies commonly used by health
services researchers to incorporate geography
into studies based on such data: using existing
geopolitical units without grouping (zip, county,
state, MSA, etc.), and combining existing
geopolitical units using an ad hoc rule (e.g., the
Dartmouth atlas). The former approach works
quite well when studies focus on units with large
numbers of beneficiaries (entire states or urban
areas, for example) but faces problems with
unstable estimates when applied to rural areas or
for conditions that are relatively uncommon. Ad
hoc combination of units may encounter
difficulties because groupings might not
accurately reflect underlying population
distributions and may not maximize available
information, particularly if the aggregation
obscures small-scale spatial variation in the data.
Even at finer scales, areal administrative data
analysis runs the risk of ecological fallacy [2] and
the modifiable areal unit problem (see e.g.
Gotway and Young, for a review) [3].

An alternate approach is to use methods from
spatial statistics to smooth geographic patterns.
This approach recognizes what geographers refer
to as the “first law of geography” [4], which is that
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Administrative data often arise as electronic copies of paid bills generated from insurance companies includ-
ing the Medicare and Medicaid programs. Such data are widely seen and analyzed in the public health area,
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political science and education, administrative data are also important. Administrative data are sometimes
more readily available as summaries over each administrative unit (county, zip code, etc.) in a particular set
determined by geopolitical boundaries, or what statisticians refer to as areal data. However, the spatial
dependence often present in administrative data is often ignored by health services researchers.  This can
lead to problems in estimating the true underlying spatial surface, including inefficient use of data and
biased conclusions. In this article, we review hierarchical statistical modeling and boundary analysis
(wombling) methods for areal-level spatial data that can be easily carried out using freely available statisti-
cal computing packages. We also propose a new edge-domain method designed to detect geographical
boundaries corresponding to abrupt changes in the areal-level surface. We illustrate our methods using
county-level breast cancer late detection data from the state of Minnesota.
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data arising from neighboring units are often more
highly correlated than non-neighboring units.When
present,this underlying spatial structure needs to be
accounted for in order to obtain valid inferences.
Often, the spatial structure itself is of scientific
interest, as when estimating an underlying
geographic health care usage or risk surface.

While other thematic mapping approaches are
possible, the most common output of an areal data
analysis is a choropleth (shaded, using color or
grayscale) map indicating the rough magnitudes of
a particular variable for each unit (see e.g. Figures
1(a) and (c) below). Such maps are crucial for
identifying which units are aberrant (large or small),
as well as assessing overall spatial patterns in the
map which may arise due to underlying spatially
associated covariates. Recent developments in
geographic information systems (GIS) technology
has made the drawing of such maps (complete with
physical features such as roads, railroads, streams,
lakes, etc.) fairly easy for applied scientists in
forestry, public health, urban planning, and so on.
However, proper attention must still be paid to key
cartographic issues such as the proper selection of
map type, scale, data classification, and color
schemes; see Dent [5] for a full discussion.

Although raw data maps and crosstabulations
are important tools for summarizing
administrative data, inherent randomness and bias
can cause raw data summaries to be misleading.
For example, the raw incidence rate, calculated as
the ratio of observed disease cases versus
population size at risk, is often of interest to
health services researchers. However, a few
unusual cases observed by chance over an area of
small population can lead to an exceptionally high
raw rate, misleading and insufficiently reliable for
reporting. Modern statistical methods enable the
user to both smooth and attach inferential

statements to choropleth maps, such as a
determination of whether an apparent “hot spot”
on a map is in fact statistically significant, or
merely the result of an unlucky year in a thinly
populated region. In particular, Manton et al. [6]
developed random effects methods for obtaining
smoothed county-level rates via empirical Bayes
statistical methods. The U.S. mortality atlas of
Pickle et al. [7] was influential in its use and
discussion of these and other, less formal
alternatives, such as headbanging  (median
smoothing; see e.g. Mungiole) [8]. Most recently,
fully Bayesian hierarchical modeling methods
permit complete flexibility in how the estimates
borrow strength across similar (say,geographically
adjacent) counties, hence result in improved
estimation, prediction and mapping of underlying
model features driving the data.

While areal estimation and smoothing remain of
primary importance in administrative data
analysis, the identification of statistically
significant boundaries over a geographic surface
is an increasingly important topic. This area is
often referred to as boundary analysis or, less
descriptively but more colorfully, wombling, a
name that pays homage to an important early
paper in the area [9]. Recently, there has been
increasing interest among a wide range of
researchers in the spatial problem of detecting
barriers separating regions of high and low
response for certain variables of interest. In the
field of public health, wombling is useful for
detecting regions of significantly different disease
mortality or (in the case of administrative data)
availability of care, thus improving decision
making regarding disease prevention and control,
allocation of society resources, and so on.

Our Bayesian modeling approach is flexible and
allows consideration of models too difficult to
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Figure 1. Breast cancer late detection data, crude boundaries, and BRFSS screening data.



handle using traditional, “frequentist” statistical
approaches. Bayesian analytic philosophy is also
easy to understand and concordant with the
accumulation of scientific evidence. A drawback
of Bayesian modeling, however, is that the
methods can be computationally intensive.
Fortunately, the rapid development of appropriate
computer hardware and software has spurred a
corresponding growth in Bayesian methodology.
Bayesian models are now broadly used and have
become an accepted part of statistical practice in
many areas; for example, roughly 10% of
applications to the FDA Center for Devices and
Radiological Health (CDRH) are now Bayesian.

A Bayesian model for the observed data
y=(y1,...,yn) begins with a probability distribution
f(y| θ) called the likelihood,where θ is a vector of
unknown parameters. In turn,θ is assigned a prior
distribution p(θ|η), where η is a vector of
hyperparameters. The prior distribution
summarizes our (possibly quite vague) knowledge
about θ before we have seen the data y. If η is not
known, a fully Bayesian approach would specify a
hyperprior distribution for η. Alternatively, we
might instead obtain an estimate η̂ and use it as if
η were known; this “shortcut” is usually called an
empirical Bayes approach. Assuming for the
moment that η is known, inference concerning θ
is based on the posterior distribution of θ,
computable using ordinary probability calculus as

We refer to this formula as Bayes’Theorem.The
denominator is called the marginal distribution
of the data y, which is free of θ. It is a scaling
constant for the posterior distribution of θ and
thus does not impact the distribution’s shape.
Thus equation (1) is often expressed compactly as 

Sadly, even when the likelihood f(y|θ) and the
prior p(θ) have convenient, closed-form
expressions, the posterior p(θ|y) may not. Indeed,
equation (2) usually involves high-dimensional
integration and has no analytical solution.
Traditional numerical integration methods are
often unstable or infeasible when θ is of high
dimension.Fortunately,Markov chain Monte Carlo
(MCMC) methods offer an iterative computational
method suitable for solving this problem. In a
nutshell, MCMC methods sample values
θ(g),g=1,...,G, from a convergent Markov chain
whose stationary distribution is the posterior,
p(θ|y).After convergence,empirical summaries of
the θ(g) values may be used in statistical estimates

and tests concerning θ. A variety of MCMC
methods have been proposed, the most prevalent
of which is the Gibbs sampler [10,11]. Once fit,
Bayesian models may be assessed via residual
analysis, and compared via penalized likelihood
criteria such as the AIC [12], BIC [13] and, for
hierarchical models, the Deviance Information
Criterion (DIC) [14].

Regarding user-friendly software, WinBUGS is a
computing package that carries out Bayesian
analysis using MCMC techniques. It is freely
available from the website www.mrc-
bsu.cam.ac.uk/bugs.WinBUGS includes an easy-to-
follow manual and several worked examples, and
an online Flash tutorial is available at
www.statslab.cam.ac.uk/~krice/winbugsthemovie
.html. In addition to posterior summaries and areal
maps, the DIC model comparison statistic can be
automatically calculated within WinBUGS.As such,
we use this package for all of the models
mentioned in this article.

There is a large and growing literature on
Bayesian analysis and MCMC methods. For further
reading, see the textbooks by Carlin and Louis
[11] or Gelman et al. [15]. Gilks et al. [16] offer an
excellent summary of advanced MCMC methods
for Bayesian analysis.

The remainder of this paper is organized as
follows. Section 2 introduces terminologies and
concepts of statistical areal rate estimation and
boundary analysis, and gives a brief description of
the dataset we use in this paper.Section 3 illustrates
spatial smoothing hierarchical models using
administrative data sets specific to cancer. This
section also describes boundary analysis methods,
including some that operate on the scale of the
edges between areas, as well as more traditional
approaches that work with the areas themselves.
Finally, Section 4 summarizes and discusses
directions for future research in this area.

Geographic data in cancer rate estimation and
boundary analysis

We illustrate our spatial hierarchical modeling
methods using county-level data on breast cancer
late detection in the US state of Minnesota.These
data are aggregated over the years 1993 to 1997,
and were collected by the Minnesota Cancer
Surveillance System (MCSS), a population-based
cancer registry maintained by the Minnesota
Department of Health.We choose the county level
partly for ease of illustration, but hasten to add
that some smaller, sub-county unit (say, census
tract) may well be more appropriate here; see e.g.
Boscoe and Pickle [17 ]for a discussion of this
issue in the context of public health data.
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p(y,θ) f(y|θ)p(θ)
p(θ|y) =

p(y)
= ∫f(y|θ)p(θ)dθ

p(θ|y)∝ f(y|θ)p(θ).

(1)

(2)



I T A L I A N   J O U R N A L   O F   P U B L I C   H E A L T H

Maps of standardized late detection ratios
(SLDRs) for the Minnesota breast cancer data are
given in Figure 1(a). The SLDR for county i is
calculated by dividing the observed value by the
age-adjusted expected counts:

Here, the populations at risk Nk
i are the numbers

of incident breast cancer cases for age group k in
county i, and the Yk

i are those detected late
(regional or distant stage); for more details see
Thomas and Carlin [18]. The above approach to
calculating the Ei is called internal standardization;
the counts can also be standardized externally if an
appropriate standard table of age-specific breast
cancer detection rates is available.An SLDR less than
1.0 indicates fewer than expected breast cancer late
detections in that county, while a value greater than
1.0 indicates more deaths than expected.The SLDRs
in Figure 1(a) suggest a modest amount of spatial
clustering in the data.

As mentioned above, in the analysis of
geographic administrative data, interest focuses
not only on estimation of area-level rates, but also
on finding boundaries corresponding to
significant changes in the underlying risk surface,
a problem known as boundary analysis or
wombling. BoundarySeer is a commercial GIS-
based boundary analysis software package; Figure
1(b) shows its application to our breast cancer
late detection data. For areal data like ours,
BoundarySeer uses the top k% of the boundary
likelihood values, commonly defined as the
absolute regional differences,

to determine the segments that comprise the
boundary. In the figure, the darkest lines show the
top 10% of the Dij ; note that these segments are
often disconnected. In addition, it is hard to know
how much confidence to place in these
boundaries, since the procedure has not accounted
for the greatly varying sample sizes across the
counties. For example, the Twin Cities metro area
(on the east side of the state about one third of the
way up) seems to include no more boundaries than
any other region. Finally, the selection of k=10%
seems quite arbitrary; the software will identify
“boundaries” regardless of whether differences
across regions are significant or not.

In the literature, there is debate over the
effectiveness of mammography in reducing breast
cancer late detection rates. Some studies have
shown that mammography screening can reduce
breast cancer mortality by 30-40% among women

aged 50 years and older [19,20]. A recent study of
the National Cancer Institute also indicates that not
having had a screening mammogram for one to
three years prior to diagnosis was associated with
52 percent of late-stage breast cancer cases [21].
These authors state that increasing mammography
screening rates should be a top priority to improve
breast cancer outcome. Thus we may wish to
consider these county-level values, estimates of
which are available from the Behavioral Risk Factor
and Surveillance Survey (BRFSS) data mapped in
Figure 1(c). These values may be helpful as a
spatially varying covariate, provided we
acknowledge their rather large variability: BRFSS
does not stratify by county, so many rural counties
have quite low sample sizes. Indeed, the maps of
the SLDRs in panel (a) and the BRFSS-based
screening estimates in panel (c) appear to generally
agree in the northern part of the state,but have less
in common in the southern part.

Statistical models for geographic administrative data
Global areal smoothing and boundary detection

Observed counts Yi are often modeled as
binomial or multinomial given the numbers at
risk Ni for i=l,...,n. For relatively rare events, a
common statistical practice is to use a Poisson
approximation, which here we use in a
hierarchical mixed effects model,

Here the Ei are internally standardized expected
counts (assumed fixed and known) obtained as in
the right side of (3), and the xi are known region-
specific covariates observed over the n regions.Let

so that ηi measures the true underlying relative
risk (RR) in area i.The SLDR offer crude estimates
of the ηi .

In our hierarchical model, the φi are random
effects that account for extra-Poisson variability in
the observed data. Suppose we model the φi as
independent and identically distributed (iid) normal
(Gaussian) random variables with mean zero and
precision (reciprocal of the variance) τ, i.e.,

Then the procedure will cause the fitted log-
relative risks µi to cluster around their global
(statewide) grand mean. This “borrowing of
strength” across regions is often helpful in
improving the estimates of each, and has been
long-used in small-area estimation. However, any
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SLDRi = Yi /Ei , where Ei = Σ Nk
i ΣYk

i /ΣNk
i .

m (3)

k=1 i i
[ [

Dij = |SLDRi - SLDRj | (4)

Yi ~ Poisson(µi)
where log µi = log Ei + x’i β+ φi , i=1,...,n.

indep

ηi = µi

Ei
= exp (x’i β+ φi ), i=1,...,n,

φi ~ N(0,1/τ).
iid



local spatial dependence among the log-relative
risks will be ignored by this model. We typically
set τ equal to some fixed value, or assigned a
distribution itself; a gamma distribution is often
chosen mainly due to computational
convenience.Here we adopt a vague gamma prior
distribution (mean 1 but variance 100) designed
to let the data dominate the determination of the
posterior distribution. Similarly, a noninformative
“flat” (uniform) prior distribution can be assumed
for β; even though this distribution is not proper
(due to β‘s infinite range), the posterior
distribution will still emerge as proper. If we had
more prior information about β, other more
informative priors could also be adopted, such as
a normal distribution with moderate variance. In
this paper, we use the flat prior for β so that its
posterior estimates are determined primarily by
the data.
Bayesian estimation of the theoretical relative
risks ηi can now proceed via MCMC, for example
as available in WinBUGS. However, for boundary
analysis we must first define a few more terms.
Bayesian areal wombling is concerned with the
theoretical boundary likelihood values, defined as

It is easy to see that (4) is a noisy realization of
(5). An empirical posterior distribution can be
obtained by getting draws {η(g), g =1,...G} from the
posterior distribution p(η|y) via an MCMC
algorithm. Wombled boundaries are then based
upon the posterior distribution of the ∆ij. For
example, we might take the border segment
between areas i and j to be part of the boundary
if E(∆ij |y)>c, where c is a prespecified constant
believed to be of scientific interest. Or we might
simply set the boundary as the segments

corresponding to the top k% of the posterior
means. In either case, the estimate of E(∆ij |y) is

Such boundaries are referred to as crisp
boundaries. Alternatively, we can use the idea of
an  exceedance probability, and define partial (or
fuzzy) boundaries based on values of Pr(∆ij >c|y).
Similar to (6), Pr(∆ij >c|y) can be estimated as

The global smoothing model of this subsection
can be easily fit in WinBUGS; see for example the
code available at www.biostat.umn.edu/~brad/
software.html. We applied this model to our
Minnesota breast cancer dataset and here
describe our results. Figure 2(a) maps posterior
estimates of η, the relative risks, while Figure 2(b)
does the same for the theoretical boundary
likelihood values ∆ij. Figure 2(c) reverses the
order of the expectation and absolute value in (6),
to see if this will better distinguish counties with
differing variability but similar average absolute
difference levels. The map of Ê (η|y) looks
smoother and shows fewer discordant patches
than the raw SLDR map in Figure 1(a).Also the ∆ij

posterior means seem to be somewhat better
connected than the map based on the raw data in
Figure 1(b). Panels (b) and (c) generally indicate
boundary segments separating the southern and
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Figure 2. Globally smoothed posterior summaries, breast cancer late detection data.

∆ij = |ηi - ηj|, for all i adjacent to j.
(5)

Ê (∆ij |y) = 1
G Σ ∆ij

(g) = 1
G Σ |ηi

(g)- ηj
(g)|

(6)

G

g=1 g=1

G

p̂ij = Pr(∆ij >c|y) = 1
G Σ 1{∆ij

(g)> c} =

1
G Σ 1{|ηi

(g)- ηj
(g)|> c},

where 1{∆ij
(g)>c} equals 1 if ∆ij

(g)> c,and 0 otherwise.

G

g=1

g=1

G
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northeast “arrowhead” regions from the remainder
of the state.

Regarding the spatially-varying screening
covariate, while its coefficient is consistent with
intuition (posterior mean 0.0035; counties with
higher nonscreening rates have higher late
detection rates), it does not emerge as
significantly different from 0 (95% posterior
confidence limits -0.0022 and 0.0090).This means
that the boundaries determined by the posterior
mean of ∆ij

(g) =|ηi - ηj| essentially follow the
smoothed late detection rates, not the screening
covariates in Figure 1(c).The boundaries in Figures
2(b) and (c) resemble those in Figure 1(b), but the
boundary segments are still mostly disconnected
and overall patterns remain difficult to see.

Local areal smoothing and boundary detection
In the global smoothing (iid) model of the

previous subsection, two counties with similar
expected counts will contribute equally to the
smoothed RR estimates of any other county.This
may not be appropriate, since areas that are
spatially closer together may tend to be more
similar than areas that are further apart. This
suggests some modification of the independence
assumption in our extra-Poisson variability.
Although spatial similarity in the data will lead to
nonzero posterior correlations among RR
estimates even under the iid model, we may
prefer to incorporate this knowledge explicitly
into the modeling through the distribution on the
random effects φi.

To do this, we follow a common practice in
areal data analysis, namely modeling the random
effects φ=(φ1...,φn)’ using a conditionally
autoregressive (CAR) distribution [22]. The CAR

model smoothes the data according to a certain
neighborhood structure specified in an n x
nproximity matrix, W, whose elements wij

measure “closeness” or adjacency of each pair of
regions (i,j). The model corresponds to a joint
spatial distribution for the areal random effects
having joint density proportional to ,

where τφ is a positive scale parameter and Dw =
Diag(wi+) = Diag(Σjwij). We denote this joint
distribution as CAR(τφ,W). This density is
awkward to work with (and may not even be
proper; see below), but its full conditional
distributions have the form

The most common choice for W is the 0-1
adjacency matrix illustrated in Figure 3(a).That is,
we set wij = 1 if and only if j=/i (a region cannot be
a neighbor of itself) and regions i and j share a
boundary; otherwise wij = 0. In this case we have
wi+=mi the number of neighbors for region i, so
the conditional distribution in (7) becomes quite
intuitive, having mean φ−i, the average of the
neighboring φj, and variance decreasing in mi.The
model will thus encourage local smoothing of
areal rates toward those of neighboring counties,
with counties having more neighbors subject to a
greater degree of smoothing. In Figure 3(a), the
dark square (Region 7) has 4 neighbors (Regions
3, 6, 8, and 11, shaded light gray). Note that
diagonally adjacent areas are unshaded; we only
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Figure 3. Illustration of areal and edge domain neighborhood structures:  (a) areal neighborhood structure; (b) edge neighborhood structure.

exp(– 
τφ
2
φ’(Dw - W) φ),

φi|φj=/i ~ N (Σ , ), i=1,...,n.

(7)

1

τφwi+

wijφj

wi+j



consider two areas to be adjacent if they share a
common boundary of positive length. Boundary
analysis can be implemented here via the Bayesian
approach of Lu and Carlin [23], using posterior
means or exceedance probabilities based on the
∆ij as described above.

While 0-1 adjacency matrices are most common
in practice, the CAR remains a valid distributional
specification for many other choices of W,
providing myriad possibilities for spatial
smoothing [24]. We might choose wij inversely
proportional to the distance separating the
centroids of regions i and j,or even try to estimate
W from the data, possibly with the help of
covariates [25,26].

Figure 4 offers an analysis of the breast cancer
data analogous to that in Figure 2, but assuming a
locally smoothing 0-1 CAR prior for the random
effects ϕ. Panel (a) greatly clarifies the overall
spatial trend (higher late detection rates in the
northwestern part of the state, lower in the
northeast and south), but again suggests a
collection of relative risks that are all close to 1.0.
The 95% Bayesian confidence interval for the CAR
smoothing parameter τ is (29.1, 378.8), consistent
with the degree of smoothing. Panels (b) and (c)
show wombled maps analogous to those in Figure
2(b) and (c); again there is some evidence of
spatial smoothing and a tendency toward better
connected boundaries.

Local edge smoothing and boundary detection
In boundary analysis, we are interested in

finding edges across which areal units are
significantly different. Up until now our statistical
model has been placed on data arising from the
areal units themselves, with final boundaries
arising from these (globally or locally) smoothed
estimates.Although such methods are sensible for

areal rate estimation, they are less so for boundary
analysis, since they do not directly model the edge
variables and thus often do not deliver well-
connected boundaries. As such, we now instead
propose to model directly in the “edge domain”,
where the basic data elements arise from the
edges (boundary segments) themselves. With
suitable modification, our existing iid and CAR
models can be applied on this domain, leading (in
the CAR case) to better-connected boundaries
and easier map interpretation.

Starting with data collected over areal units, we
need to define corresponding “observations” in
the edge domain that capture the difference
between neighboring units. A number of metrics
could be used to measure this difference. When
observed areal responses are univariate, the
absolute difference |Yi-Yj| offers a sensible
definition. For multivariate areal responses, we
can either use a multivariate summary or sums of
univariate summaries; see the next section for
further discussion.

If the original responses observed over the n
regions are counts, we first calculate the age-
adjusted expected counts as in (3), and then take

as our edge-specific data values.The log transfor-
mation helps stabilize the variability and produce a
more symmetric and roughly normal empirical
distribution for the collection of Uij on the real line.

For our statistical model on the edge domain,
we assume

The variance is simply an intuitively sensible
choice (more populous counties contribute to
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Figure 4. Locally smoothed posterior summaries, breast cancer late detection data.

Uij = log| ___ - ___ | = log|SLDRi - SLDRj|
Yi Yj

Ei Ej

Uij ~ N(δij , ______ ), i adjacent to j.
1

(Yi+Yj)τ
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less uncertain Uij) inspired by previous work in
this area [27] and delta method approximations [1
p.159].The inclusion of Yi and Yj in the variance
incorporates the different degrees of precision
associated with the observed data.

Next, let

where xij is a vector of “discrepancy” covariates.
These may correspond to known edges created by
mountain ranges, lakes,or other natural boundaries
or the absolute differences of variables suspected
to be important in causing inhomogeneity in Y
[25,26].The random effects ψij model residual edge
effects. Larger absolute ψij values indicate larger
discrepancies between the adjacent regions after
accounting for the effects of the covariates.

To encourage the model to favor continuous
boundaries, we use a CAR(λ,W*)prior for ψ,

where W* is a fixed adjacency matrix for the
edges. Edge adjacency is essentially the dual
problem of areal adjacency. To elucidate this
duality, consider the edge neighborhood structure
illustrated in Figure 3(b).The dark solid boundary
corresponding to edge (7,11) has six
“neighboring” edges, highlighted as dashed lines.
Thus edge segments are adjacent if and only if
they connect to one another. Note that (6,10) and
(8,12) are neighbors of (7,11), even though these
segments have no areal units in common. In order
to create the edge adjacency matrix W*, we
would first reindex each of the edge pairs from (i,
j) to a single index k running from 1 to nadj, the
total number of edges (area adjacencies) in the
map.We then simply use the ordinary 0-1 format,
with two edges k and 1 having W*kl only if they are
distinct and adjacent in the Figure 3(b) sense;
otherwise W*kl = 0.

L o n g  P a p e r s 1 0 1

IJPH - Year 4, Volume 3, Number 3-4, 2006

Figure 5. Posterior boundaries obtained via local edge smoothing, breast cancer late detection data.

δij = x’ij β+ψij



Writing U = {Uij}, significant boundary segments
may now be selected based on the absolute values
of the posterior estimates E(δij |U), or based on
the exceedance probability approach using
P(δij>c|U) for some constant c. If interest lies in
identification of boundaries of abrupt changes after
accounting for covariate effects (residual-based
boundaries), we could select boundary segments
based on posterior summaries of the ψij instead.

Like the areal smoothing models above,
posterior estimates based on our edge smoothing
model can be easily fitted in WinBUGS; again see
www.biostat.umn.edu/~brad/software.html.
Figure 5 presents the results for the breast cancer
late detection data.We use the absolute difference
of screening rate as the lone covariate xij in (8),
even though its coefficient did not emerge as
significantly different from 0 when included in
the previous models. Panels (a) and (b) are the
maps based on the posterior means of δij and ψij,
respectively.They are very similar, confirming that
the inclusion of the mammography covariate has
little impact on the results. Panels (c) and (d) are
exceedance probability maps for δij using two
values of c that correspond on the log scale to
SLDR differences of 0.2 and 0.3, respectively.The
resulting maps are not scale-free, and differ from
those shown in Figures 2 and 4 using the iid and
areal CAR models, respectively, in their selection
of many more northwestern boundary segments.

Summary and future work
Efforts to summarize geographic patterns from

administrative data using maps are widespread. A
limitation of such efforts and an ongoing source of
criticism is the sometimes ad hoc way of grouping
areas, a failure to explicitly recognize the spatial
association inherent in administrative data, and
the inability to consider multivariate
relationships. The approach we have presented
can be applied in a relatively straightforward
manner to administrative data that are grouped to
the zip code,county,or even state level.The ability
to control for the inconsistent effects that are the
result of small denominators (such as in rural
areas) or small numerators due to relatively
uncommon conditions (the annual incidence of
breast cancer is 1%) is a key feature. Our group
has applied this approach to studies of geographic
availability of home-based health services with
considerable success. Other applications would
include studies of the impact of market structures
on choice of service, as well as assessing the
impact of an environmental factor that might
influence disease incidence (such as studies of
the impact of air or water quality).

Our local edge smoothing suggestion extends the
idea of neighborhood structure modeling to the
edge domain, as a more direct attack on the
problem of areal boundary analysis. Like most CAR
model implementations, our neighborhood
structures were assumed constant (i.e., the
proximity matrices W and W* were fixed in
advance). In practice researchers typically model
two areas as adjacent if they share a common
boundary. But factors other than this could also
impact the “closeness” between two geographically
adjacent areas, such as the length of shared
boundaries, the geographical topology near the
boundaries, similarity of sociodemographic
covariates such as race, level of urbanization,and so
on. Future work looks toward development of
approaches that allow estimation of the
neighborhood structure itself, using both the value
of the process in each area and other covariates that
may indicate the inherent closeness between any
two areas.

In this paper we restricted our attention to
boundary analysis for a single response variable.
When we have multivariate areal data (say,
counts of p>2 outcomes over the same regions),
correlation across response variables may occur if
they share the same set of (spatially distributed)
risk factors, or if they are linked by etiology, a
common risk factor, or system of care. Moreover,
the presence of one outcome might encourage or
inhibit the presence of another over that same
region. In this setting, traditional wombling
methods use a metric to summarize the
observations using a multivariate dissimilarity
score. Thus the multivariate problem is
transformed to a univariate problem. Another
approach would be to treat the multivariate
problem as related univariate problems and carry
out spatial boundary analysis for each. In the first
approach, we obtain a single set of boundaries,
while in the second, multiple sets are obtained via
Bayesian hierarchical multivariate CAR (MCAR)
modeling [28,29]. Several basic MCAR models are
easily fit in the WinBUGS package.
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