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ABSTRACT

In questo lavoro analizziamo quale ruolo possa avere il pensiero matematico nella critica
dell'autofondazione della ragione attraverso la presentazione di una serie di risultati e
problemi di carattere matematico. Ad esempio, il passaggio dal Particolare all'Universa-
le, il Tutto e la Parte, la negazione del principio del terzo escluso e 'impossibilita di una
scelta, la fallacia dell'evidenza. L'analisi ¢ condotta attraverso la descrizione esplicita di
esempi tratti dalla prassi matematica che supportano le nostre conclusioni.

Parole chiave: principio d’induzione, terzo escluso, tutto, parte, evidenza.

THE CRITICAL ROLE OF MATHEMATICAL THOUGHT IN THE PROBLEM OF
SELF-FOUNDATION OF REASONING

In this work we analize the role of mathematical thought in the critical analisis of the
self-foundation of reasoning via the presentation of a number of results and problems
of mathematical character. For instance, the path from Particular to Universal, the prin-
ciple of the excluded middle, the impossibility of a choice and the fallacy of evidence.
The investigation is performed through the esplicit description of examples taken from
mathematical practice to support our conclusions.

Parole chiave: principle of induction, third excluded, whole, part, evidence.
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Pit di cinquant’anni fa Guardini' ha osservato che uno dei segni impressionanti
della fine dell'etd moderna ¢ il tramonto della certezza che la ragione possa tro-
vare un fondamento in sé stessa. Che questo fatto sia realmente uno dei segni
chiave del tramonto dell’etd moderna puod essere messo in discussione, ma di
certo il problema dei fondamenti della razionalita si pone in tutta la sua forza e
complessita. Cerchiamo di spiegare meglio cosa intendiamo con I'affermazione
della certezza dell'impossibilita di una autofondazione della ragione.

Come ben mette in risalto Melzi?, un requisito indispensabile per una
possibile autofondazione della ragione ¢ quello che il Melzi chiama “condizione
di coerenza interna dei processi razionali’. Questa consiste nella certezza che la
ragione, muovendo da certe premesse, sia in grado di pervenire a conclusioni
univoche in forza di un suo determinismo strutturale. Tale tema si pud far ri-
salire agli albori del pensiero occidentale essendo stata una delle speculazioni
fondamentali del pensiero classico nella cui cornice trovo soluzione attraverso la
ricerca dei canoni univoci dell’evidenza. Il problema, come affermato dal Melzi,
potrebbe essere considerato una delle caratterizzazioni dell’evoluzione e della fine
del pensiero moderno; fine consistente in una accurata descrizione di come il
pensiero occidentale abbia a poco a poco rinunciato a criticare e precisare la con-
dizione di coerenza interna vanificando per essa anche il senso di irrinunciabilita.
Ma quale ¢ la relazione tra quest’argomento, che ha da sempre interessato la spe-
culazione filosofica e la Matematica? La risposta ¢ sorprendentemente semplice:
la Matematica ed i suoi risultati nella loro univocita interpretativa, ovviamente
una volta fissate le regole, costituiscono il terreno fertile su cui sperimentare le
nostre ipotesi. In particolare si possono produrre in Matematica alcuni concetti
o nozioni, e alcuni risultati ad essi legati, che portano la nostra mente e le relative
convinzioni razionali, a vacillare quasi immediatamente al loro confronto. Dun-
que, anche se spesso non siamo in grado di dare soluzione a specifici problemi in
questo ambito, la Matematica ci permette comunque analisi istruttive per futuri
approfondimenti.

Ci concentreremo allora nel fornire e commentare un certo numero di
esempi, peraltro elementari che costituiranno materiale su cui riflettere e dal
quale partire con nuove indagini, insomma con nuove non scontate domande,
ad esempio sull’esistenza di certi enti, sulla consistenza delle inferenze logiche
che spesso diamo per scontate e cosi via. Sostanzialmente, come vedremo, il tema
ricorrente al quale ci limiteremo ¢ quello dell’infinito anche quando e diremmo

piu significativamente, il medesimo non sembra comparire nelle nostre consi-

' R. Guardini, La fine dell'epoca moderna, Morcelliana, Brescia, 1960.
2 G. Melzi, Le idee matematiche del XX secolo, Borla, Roma, 1983.
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derazioni. In particolare, ci risultera chiaro come il nostro personale concetto di
infinito sia sconcertante, poiché alcuni dei suoi aspetti dipendono non solamente
dal concetto stesso ma, come ravvisa Melzi®, dal rapporto tra tale concetto e la
mente umana che ¢ costretta a includere sé stessa come oggetto di studio nelle
sue analisi relative all’'infinito ed alle sue proprieta.

Il problema del passaggio dal particolare all’'universale ¢ sempre stato uno
tra i temi piu affascinanti della speculazione filosofica. Con I'induttivismo, par-
tendo dall’esperienza e dall’ osservazione di casi particolari (con cio intendiamo
anche esperienze ed osservazioni che nascono e vivono in ambienti astratti), si
giunge a proporre leggi generali che spiegano fenomeni di una data specie realiz-
zando in questo modo il passaggio dal particolare all'universale. Viceversa, iden-
tificate le leggi universali, posso prevedere fenomeni futuri deduttivamente, cio¢
instaurando un ragionamento che, partendo da premesse “accertate” mi conduca
a conclusioni altrettanto “accertabili” facendomi questa volta passare dall’univer-
sale al particolare. Ad esempio verificando sperimentalmente che sostanze liquide
diverse in situazioni diverse, di temperatura, pressione, volume... solidificano
sempre a temperature sufficientemente basse, traggo la legge universale che i li-
quidi solidificano a temperature “basse”. Viceversa lasciando un bicchiere d’ac-
qua fuori dalla porta di casa ad Inverness mi aspetto che in una fredda mattina
d’inverno l'acqua si trasformi in ghiaccio.

Ben sappiamo che la concezione induttivista della Scienza ¢ stata messa
in discussione ripetutamente e tra le critiche piti precise e definitive ricordiamo
quella, sotta tanti aspetti insuperata, di Hume. Vale a dire non potremo mai
affermare, per quelle che Hume chiama matters of fact che se ad un evento  se-
gue sistematicamente un evento b, allora questo deve avvenire anche la prossima
volta che si verifica 2. Questa prima critica toglie ogni carattere di necessita logica
al ragionamento di tipo induttivo. Nulla da obiettare, sennonché in realta una
strategia che potremmo chiamare simil-induttiva ¢ praticata sistematicamente
— e questo che sia esplicitata 0 meno — quasi ad ogni livello di orientamento co-
noscitivo. Cio costituisce, nell’atteggiamento abituale che abbiamo nei confronti
del mondo esterno, una sorta di schema di avanzamento che da spesso il senso
presunto e comunque 'orientamento a quelli che sono i caratteri delle nostre
protensioni nell’attesa di cio che ci aspettiamo avvenga. Soprattutto questo vale
per tutto quello che riguarda un atteggiamento che potremmo definire pre-scien-
tifico. Un atteggiamento induttivistico o simil-induttivistico — dove per simil-in-
duttivistico pil precisamente intendiamo una versione del ragionamento o del

modo di essere che implicitamente fa uso di schemi integralmente o parzialmen-

> Ivi, p. 53.

Mathesis universalis |61
néema — n. 16 (2025) — ISSN 2239-5474



Marco Rigoli — Mathematics and Reasoning

te induttivistici — e quindi presente quasi in ogni atteggiamento che abbiamo nei
confronti del mondo e questo implica, a fortiori, il riconoscimento che qualcosa
come un’osservazione autonoma — nel senso di scevra da ogni precomprensione
— ¢ qualcosa di molto chimerico. In fondo, come sottolinea Popper, la teoria —
o almeno una teoria implicita — guida sistematicamente I'osservazione. Questo
conduce talvolta a risultati completamente inattesi. Prendiamo un esempio mol-
to noto nella storia della scienza: Kepler e Brahe vedono gli stessi fenomeni, ma
con occhi diversi, uno li inquadra in prospettiva eliocentrica, 'altro in un’ottica
geocentrica. Cosa ne consegue? Che le loro conclusioni non potrebbero essere
pitt diverse. Perveniamo addirittura al dubbio che abbiano visto cose diverse ed
in un certo senso ¢ cosi. D’altra parte, e molto spesso, il “fatto” di vedere cose
diverse si manifesta in quasi tutte le esperienze conoscitive. Questa banale os-
servazione ci permette di afferrare quanto ogni prensione oggettuale, anche una
semplice percezione, sia in realtd e spesso implicitamente imbevuta di teoria.
Consideriamo ad esempio la percezione di un libro posto su di un tavolo. Quan-
te sovrapposizioni di teorie o di interpretazioni stanno operando e che ci portano
a parlare di “libro”? Tutto il cammino per capire la lingua, il contesto, insomma
tutto il problema dell’interpretazione. Senza di essa un testo non ¢ che una serie
di scarabocchi tracciati su dei fogli. Cio che precede pone in luce che una rifles-
sione sull'induzione ne implica un’altra — da un punto di vista fenomenologico
ancora piu rilevante — sul concetto di esperienza in generale e su quanto questa
sia poi orientata da schemi di ragionamento che prevedono una forte compo-
nente di relazione con elementi che ritroviamo nel pensiero induttivo. Insomma,
latteggiamento induttivistico — chiamiamolo cosi — ¢ fortemente connesso ad
ogni, o quasi, attivita soggettiva di conoscenza o di ricerca della stessa. Possiamo
addirittura ritenerla una componente essenziale dell’attitudine naturale che ca-
ratterizza il nostro essere nel mondo (In-der-Welt-Sein). Ed ¢ chiaro che un’analisi
di questo tema non investe soltanto la presunta “credibilitd” di una scienza em-
pirica, quanto quel sapere ingenuo fatto di attese, aspettative e precomprensioni
che ne strutturano o almeno contribuiscono a strutturarne ogni atteggiamento
abituale nei confronti del mondo.

Senza entrare in ulteriori e pitt profonde discussioni sul valore e la corret-
tezza della “scienza induttivista” consideriamo la seguente situazione: supponia-
mo che una qualche forma del nostro “tempo” sia quantizzata in minuti succes-
sivi; t, corrisponda al minuto 1, t, al minuto 2 e cosi via. Sia P(t) una proprieta
che dipenda dal minuto t, che sto considerando, ad esempio sia p la temperatura
della stanza nella quale siamo comodamente seduti. Supponiamo inoltre di aver
individuato, in un qualche modo, (ad esempio dopo varie misurazioni), la legge
che mi esprime P(t) in funzione di t. Come posso allora verificare che la mia

legge sia corretta? Un possibile modo di procedere ¢ il seguente:
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1. Al minuto t, verifico che la mia legge ¢ corretta, cio¢ P(t,) mi fornisce
la corretta temperatura della stanza.
2. Considerato un generico istante tn ed ammessa la correttezza di P(t )

sono sempre in grado di dimostrare che P(t_ ) ¢ corretta.

Allora ne deduco che P(ti) & corretta per ogni minuto t.

Diciamolo con le parole di Pascal:

Benche questa proposizione abbia un numero infinito di casi, ne daro
una dimostrazione molto breve supponendo due Lemmi. Il primo, che
¢ evidente per sé, ¢ che questo rapporto ¢ vero nella seconda base [cioe
per n=1]. Il secondo, che se questo rapporto ¢ vero in una base qualsiasi,
si ritrovera necessariamente nella base che segue. Da qui si vede che esso
sussiste necessariamente in tutte le basi; infatti, si trova nella seconda base
per il primo Lemma; dunque per il secondo Lemma si trova nella terza
base, dunque nella quarta cosi via all'infinito*.

Poincaré in La Science et 'Hypothése’, & ben consapevole della rilevanza episte-
mologica di cid che in Matematica viene chiamato Principio d’Induzione e come

afferma Giusti per Poincaré:

il Principio d’Induzione ¢ un vero giudizio sintetico a priori di tipo
Kantiano[...]; esso costituisce un’intuizione diretta dello spirito- anzi-
laffermazione di una proprieta dello spirito stesso”. Sostanzialmente esso
costituisce una procedura inferenziale insita nella nostra ragione in modo

intersoggettivo o meglio ¢ la “codifica” di una naturale ed intersoggettiva
6

inferenza logica®.
La definizione formale del principio non si discosta molto da quanto descritto da
Pascal, ma per precisione diamo la definizione in termini matematici. Sia N= [1,
2, 3...] l'insieme degli interi naturali.

Principio d’Induzione (prima forma). Sia P(n) un enunciato che ha senso

in dipendenza dell’intero naturale n. Si supponga che

i) P(n) sia vera per un qualche naturale n_
ii) Per n>n la validita di P(n) implichi quella di P(n+1)

Allora P(n) ¢ vera per ogni nn,
Dedekind e Peano capiscono che I'essenza stessa del principio d’induzione

¢ insita in N. Ma mentre il primo costruisce in Essenza e sz'gnz'ﬁcczto dei numeri,

*  B. Pascal, Traité du triangle arithmetique, Arvensa Editions, Paris, 2019, p. 53.

> Ivi, pp. 23-24.

¢ E. Giusti, lpotesi sulla natura degli oggetti matematici, Bollati Boringhieri, Torino, 1999, p.
47.
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continuita e numeri irrazgionali’ un modello dei numeri naturali, dimostrando
per esso la validita del Principio d’Induzione a partire dalla teoria “ingenua” degli
insiemi, il Peano produce una formulazione assiomatica degli interi naturali nel
modo seguente (in termini moderni ma equivalente alla definizione originaria):
Sia X un insieme non vuoto in cui si fissi un elemento che chiamiamo 1 ed una
funzione +: X—X. Indicata con a+ 'immagine di a nella funzione +, a+ si dice

successore di a. Si assuma che valgano i seguenti assiomi(di Peano-Dedekind):

i) perogniainX,a+ #1

jj) + ¢ una funzione iniettiva

jjj) se S ¢ contenuto in X, 1 sta in S e per ogni s in S, s+ sta in S, allora
S=X.

Si introduce, ricorsivamente, una operazione di somma, +, ponendo

at+l=a+

(a+) +b= (at+b)+.

Il Teorema di ricorsivita garantisce che la somma ¢ in questo modo ben definita

e da essa si introduce la relazione d’ordine (totale)

a<b se e solo se esiste ¢ in X tale che b=a+c

E facile vedere che il principio d’induzione, poc’anzi enunciato, ¢ (logicamente)
equivalente all’assioma jjj)®. X ¢ il nostro insieme dei numeri naturali N (in esso
si introduce il prodotto in modo opportuno e ritroviamo ci6 che abbiamo cono-
sciuto nella nostra infanzia).

Peano dunque comincia a metterci in guardia su quella che abbiamo finora
considerato una naturale inferenza logica della nostra ragione. Ma c’¢ di piti. Per
cercare di rendere le cose piu chiare, facciamo ricorso ad alcuni concetti elemen-
tari. Sia X un POSET (partially ordered set) cio¢ X ¢ un Insieme su cui ¢ definita
una relazione d’ordine parziale <. Vale a dire una relazione binaria che gode delle
seguenti proprieta:

1. Vx € X, x < x (proprieta riflessiva).

2. x =< yey =< x, implicano x = y (proprieta antisimmetrica).
3.x=yey = gimplicano x =< g (proprieta transitiva).

In generale, dati due elementi qualunque x e y di X, non ¢ detto né che x < y, né

che y < x. Per fare un esempio, prendiamo N con la relazione d’ordine parziale

7 R. Dedekind, Essenza e significato dei numeri, continuita e numeri irrazionali, Stock, Roma,
1926.

8 Siveda ad esempio F. Dalla Volta, M.Rigoli, Elementi di Matematica Discreta e Algebra Line-
are, Pearson, Milano, 2007.
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n =< mse e solo se n/m

dove l'ultimo simbolo significa che n divide m. Sicuramente (N, <) e un PO-
SET, ma ne 3 /5, ne 5 </3. In altri termini, gli elementi 3 e 5 non sono con-
frontabili in (N, <).

Diremo che nel POSET (X, <) vale Uassioma del buon ordinamento (d’ora in
avanti ABO) se ogni sottoinsieme non vuoto § € X ammette minimo, cio¢ se
esiste un ¢ € S tale che Vs € §, o < 5. Si noti che qualora un minimo o esista, esso
e anche unico per cui si parla del minimo di S. Osserviamo che un POSET (X,

<) per il quale vale ABO, e sempre totalmente ordinato. Ovvero

Vx, )€ X,0x<y0y =< x

Proveremo ora che la prima forma del principio di induzione su N e equivalente
alla validita di ABO su (N, <). In realtd proveremo anche qualcosa di pil; a tale
scopo, introduciamo il Principio d” Induzione (II forma): sia P() un enunciato

che ha senso in dipendenza dell'intero naturale » € N. Si supponga che:

1. P(n,) sia vera per qualche 7, € N.
2. Lavalidita di P(z) per ogni n, < r < n, implica quella di
Pn+1).

Allora I'enunciato P(#) e vero per ogni 7 > 7.
Abbiamo il seguente:

Teorema. Il principio di induzione nella I forma, nella I forma e la validita di

ABO in (N, <) sono tra di loro equivalenti.

Per dimostrare il teorema proveremo la validita della catena di implicazioni se-

guente:

1. I forma -— II forma.
2. II forma -— ABO.
3. ABO -— I forma.

1. Sia P(n) come nella II forma. Poiché il primo punto delle due forme del
principio di induzione coincidono, la prima parte della II forma e verificata. Sia
allora 7 > n, (il caso 7 = n ¢ del tutto ovvio) e si supponga P(#) vera per ogni 7,
< ¢ < n. In particolare P(n) ¢ vera e, dal punto 2 della prima forma, sappiamo
che P(n + 1) e vera. Dunque P() vale per ogni 7 > 7. Con cio6 vale la II forma.
2. Valga la II forma e sia § € N, S/~ @. Per assurdo S non abbia minimo e si

consideri la proposizione:

P(n): nessun intero ¢ < 7 sta in S.
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Se proviamo che P(n) e vera per ogni 7 > 1, allora § = @ ottenendo in tal modo
la contraddizione che stiamo cercando. Ora P(1) e vera altrimentil € S e sarebbe
sicuramente il suo minimo. Sia ora 7z > 1 e sia P(#) vera per ogni 1 < # < . Si
supponga, per contraddizione, che P(n + 1) sia falsa. Allora esiste un qualche 1
<st<n+ltaleches€S. Ser<n+ lalloral <z<ne P2 e vera per cui, nello
specifico, ¢ /€ S. Deve allora essere r= 7+ 1 € Se 7 + 1 e il minimo di §. Con-
traddizione. Dunque

P(n + 1) ¢ vera e P(n) ¢ vera per ogni 7 2 1 per la II forma del principio di
induzione. Quindi in (N, <) vale ABO.
3.Valga ABO in (N, <). Sia P(7) come nella I forma e siano soddisfatti i punti 1
e 2 della sua definizione. Dobbiamo verificare che P(») e vera per ogni 7 > n,. Si

consideri 'insieme:

S={n=n; Pn ¢ falsa} N

e per assurdo si supponga S/= @. Allora, per ABO, esiste 7 € S, minimo di S.
Dunque P(7) e falsa. Ora m > n, poiché P(n ) e vera. Del resto m - 1 2 n perché
altrimenti 7 non sarebbe il minimo di S. Ma per il punto 2 della I forma si ha
allora che P(m) e vera. Contraddizione.

Attraverso questa serie di nuove strutturazioni ed equivalenze abbiamo am-
pliato sicuramente la nostra comprensione del principio di induzione. Ad esem-
pio se nella prima forma sembrava dovesse giocare un qualche ruolo 'elemento
“successore” che in un certo qual modo attribuiva un aspetto dinamico-tempo-
rale al principio, nella seconda forma, come si evince dalla dimostrazione ripor-
tata sopra, scompare completamente. Essendo i due equivalenti ne deduciamo
che non esiste alcun aspetto dinamico nell™“essenza” del principio. Fondamentale
risulta invece la validita dell’assioma del buon ordinamento. Questo mette inol-
tre in luce il fatto eclatante che quella che finora abbiamo presentato come la
“codifica” di una intersoggettiva inferenza logica, si esprime attraverso la validita
di un assioma, ABO, goduto dagli interi naturali rispetto al loro ordinamento
canonico. E questa validita ¢ dovuta alla nostra costruzione dei naturali che non
ha a che fare con una nostra azione raziocinante definita a priori ma dipende
solo ad una nostra scelta. Osserviamo che, in generale, ABO ¢ falso per relazioni
d’ordine qualunque. Ad esempio consideriamo il campo ordinato Q dei razionali

con il suo usuale ordinamento. Linsieme A, sottoinsieme di Q, definito da

A= [p/qin Q positivi e tali che p*2/q"2 >2]

¢ non vuoto e non ha minimo. Altro che “giudizio sintetico a priori di tipo
Kantiano™!
Ma la seconda forma del Principio d’Induzione ci mostra anche un se-

condo fatto estremamente importante. Supponiamo che (I, <) sia un insieme di
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indici bene ordinato, valga cio¢ in esso ABO. Possiamo pensare ad un principio
di induzione dove I'enunciato P dipenda dagli “indici” i in I. Bene la seconda for-
ma del Principio d’Induzione ¢ quella che “mutatis mutandis” si estende a questa
situazione prendendo il nome di Principio d’Induzione Transfinita.

Il prossimo esempio mostra come la Matematica possa individuare e scar-
dinare preconcetti. Il motto, elevato a postulato da Euclide, “il tutto ¢ maggiore
della parte” (non nel senso della teoria della Gastalt, cio¢ non il tutto ¢ maggio-
re della somma delle sue parti) ha prodotto varie ed apparenti contraddizioni.
Famoso ¢ il paradosso di Galileo che osserva che ci sono tanti quadrati di in-
teri quanti questi ultimi. Tuttavia I'insieme formato dai primi ¢ propriamente
contenuto negli interi naturali. Difficolta di questo genere (famosa ¢ anche la
sua analisi del paradosso della ruota che la tradizione -con dubbia paternita- fa
risalire ad Aristotele) nel cercare di trattare dell’infinito in atto fecero concludere
a Galileo che queste sono difficolta che provengono dal discorrere che noi fac-
ciamo con il nostro intelletto finito intorno all’infinito, dandogli quegli attributi
che noi diamo alle cose finite; il che penso che non sia conveniente. Eppure Ga-
lileo nell’osservare che ci sono tanti interi quanti i loro quadrati” era vicinissimo
alla soluzione dell'apparente paradosso. Fu poi G. Cantor che riconoscendo che
il concetto di ugual numero di elementi “ottenuto” attraverso la determinazione
di una corrispondenza biunivoca tra due insiemi nulla aveva a che fare con la
relazione d’ordine indotta dall’inclusione insiemistica. Lenumerazione degli ele-
menti di un insieme ci porta, nel caso finito, all’'uguaglianza ma la “tensione” del
concetto di enumerazione nel caso infinito semplicemente non conserva questa
proprieta. In quest’ordine di idee scaturisce anche la definizione di insieme fini-
to, cio¢ per il quale ¢ possibile enumerare i suoi elementi fino ad esaurirlo (si noti
che questa non ¢ la definizione matematica di insieme finito nel senso del contare
ma una ncontrapposto quella di insieme infinito quando cid non ¢ possibile. In
quanto segue chiameremo quest’'ultima definizione “naif”. Il salto concettuale ¢
compiuto da Dedekind con la seguente definizione: Un insieme A si dice infinito
se si puo porre in corrispondenza biunivoca con una sua parte propria e finito altri-
menti. In questa definizione si individuano due punti salienti: il primo ¢ il rico-
noscimento che il fatto riportato nella definizione non ha nulla di paradossale;
il secondo ¢ che dalla definizione di insieme finito ¢ stato tolto ogni riferimento
all’azione del contare, processo tipicamente legato agli interi naturali.

Ma questa definizione, che diremo di Dedekind per distinguerla dalla pre-
cedente, deve perd recuperare la nostra idea “naif” iniziale... E cosi ¢, pur di ac-
cettare (il controverso) 'assioma della scelta. Precisamene la definizione “naif” e
quella di Dedekind sono equivalenti pur di ammettere I'assioma della scelta. Per

inciso, e riferendoci al principio di Induzione Transfinita, I'assioma della scelta ¢
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equivalente alla validitd del Teorema del buon ordinamento (o di Zermelo) che
ci permette di garantire I'esistenza di un buon ordinamento su qualsiasi insieme
permettendoci in questo modo la possibilita di utilizzare I'Induzione Transfinita.

Da un punto di vista epistemologico abbiamo teso la nozione iniziale di
insieme infinito “al punto di rottura” che ci ha permesso di introdurne una nuova
in una forma concettualmente pitt profonda anche se meno intuitiva.

Nel prossimo terzo esempio mostriamo come sia possibile introdurre in
modo logicamente corretto la definizione di un oggetto matematico, in questo
caso un numero reale, senza poter dire nulla a suo riguardo a parte (ammettendo
il principio del terzo escluso) la sua esistenza. Lesempio che proponiamo ¢ dovu-
to a Brouwer. Consideriamo il numero reale n. Nel 1761, Lambert ha dimostrato
che = ¢ irrazionale e dunque nello sviluppo decimale di n=3,1415926... non c’¢
alcun gruppo di cifre alla destra della virgola che si ripeta periodicamente. Fissato
ad esempio il traguardo di voler scrivere un milione di cifre decimali possiamo,
a tale scopo, considerare una serie convergente a (un multiplo di) 7, quale ad
esempio la serie (storica) di Leibniz-Gregory (ma meglio sarebbe una serie velo-
cemente convergente come quella di Bailey, Borwein e Plouffe’ e calcolare una
sufficientemente grande somma parziale per ottenere risposta al nostro quesito.

Brouwer ci suggerisce di costruire un nuovo numero reale 7" nel modo seguente:

i) La parte interadin® ¢ 3
ii) Per quella decimale procediamo nel modo seguente: se incontriamo
una successione di cento o pilt zeri consecutivi dopo un certo numero n di
cifre nella rappresentazione decimale di =,

a) sen ¢ pari sostituiamo la cifra r di posto n-1 con r-1

b) se n ¢ dispari sostituiamo il primo 0 che ¢ al posto n con 1.
iii)  Se non c’¢ alcuna successione di cento o piti zeri consecutivi poniamo

=,

Ora 7" ¢ perfettamente logicamente definito, il problema ¢ che non abbiamo al-
cun modo di decidere tra le tre possibilita che si presentano mutualmente esclu-
sive. Non essendoci data la possibilita di conoscere iz toto lo sviluppo decimale di
7, cio¢ come infinita in atto, qualsiasi procedimento che ci permette di calcolare
le successive cifre decimali di 7 non ci permette di rispondere al problema: se non
trovo in un lasso di tempo finito una successione di cento o pil zeri successivi,

non ¢ detto che non la trovero in futuro o non la trovero del tutto.

> D. Bailey, 2. Borwein, S. Plouffe, On the rapid computation of various polylogarithmic con-
stants, in «Math. Comp». 66, 997, pp. 903-913.
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Per meglio afferrare una delle conseguenze della negazione del principio
del terzo escluso partiamo da un dato che sembra laterale, ma che in realta ci
pone proprio all’interno della difficolta. Consideriamo la congettura di Goldba-
ch per la quale ogni intero pari maggiore di due si puo scrivere come somma di

due primi. Vale a dire

Vn 2 2 esistono p, ¢ € N primi tali che:2z = p + ¢.

Ad ora non conosciamo una dimostrazione di tale fatto e neppure conosciamo
un controesempio.
Se accettiamo la validita del principio del terzo escluso deduciamo la vali-

dita della seguente:

Osservazione. O tutti i pari pin grandi di 2 si possono scrivere come somma di due
&

primi oppure esiste almeno un numero pari pix grande di 2 per il quale l'asserzione

precedente e falsa.

Dunque: o partendo dalla proprieta di un intero maggiore di 2 di essere pari pos-
siamo dimostrare che ¢ scrivibile come somma di due primi; o esiste, diciamo, un
procedimento di calcolo che ci permette di costruire un controesempio.

E inoltre chiaro che per un numero finito di interi pari fissato (non generica-
mente) una diretta verifica ci porta sempre a stabilire se 0 meno per essi valga la
congettura di Goldbach. Ma ¢ altrettanto ovvio che cio non si estende agli interi
pari nella loro totalita.

Per Brouwer e con lui per Heyting, Borel, Poincaré e, in un periodo ini-
ziale, anche Weyl dobbiamo fondare la matematica su procedimenti costruttivi.
Ad esempio la validita dell’algoritmo euclideo che prova 'esistenza del MCD tra
due interi naturali si basa su un procedimento costruttivo. Il principio del terzo
escluso ¢ un cardine della matematica classica nella quale viene utilizzato di con-
tinuo. Possiamo sostituirlo facilmente e, per cosi dire, senza colpo ferire, con un
processo costruttivo?

Vediamo, con un esempio, se da un’argomentazione classica ¢ possibile
ricavare un procedimento costruttivo.

Ricordiamo che un punto p € R, I'insieme dei numeri reali, si dice punto di
accumulazione di un insieme S € R se per ogni intervallo di p privato del punto
p> (p-¢ p+e) Hp} con e > 0, si verifica che S N (p-¢, p+e) /{p} = @. Linsieme S &

R si dice limitato se esistono 5, 5, € Rali che Vs € S, 5,S5<5s,.
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Un classico risultato di B. Bolzano e K.Weierstrass afferma:

Teorema (di Bolzano-Weierstrass). Sia S © R un insieme infinito limitato. Allora

S possiede almeno un punto di accumulazione.
Osservazione. Il punto di accumulazione pud o meno appartenere ad S.
Il teorema di Bolzano-Weierstrass ¢ conseguenza del seguente:

Lemma (degli intervalli inscatolati). Sia I = [a, b ] € R, {I } una successione di
intervalli (la notazione indica che contengono gli estremi) tale che I +1 S 1, Vn e

|6 -a | — 0 per n — +oo. Allora I'intersezione degli I non é vuota.

Il lemma si basa sulla possibilita di costruire una successione di Cauchy e di uti-

lizzare la completezza di R per provarne la convergenza.

Dimostrazione del teorema. Siano s, e s, € Rtali che s, < s <5, Vs €S. Definiamo
5,=1/2(s,+s,). Allora I'affermazione “nell'intervallo [s,, 5,] giacciono infiniti punti
di §” ¢ o vera o falsa. Se ¢ falsa ne segue che in [s,, s,] giacciono infiniti punti di
S. Nel primo caso sia /, = [s,, s,)s nel secondo caso sia /, = s, 5,]. Sia s, il punto
medio di /, (che potrebbe essere 0 1/2 (s, + 5,) 0 1/2 (5, +s,)). Il punto s, divide 7,
in due intervalli e poiché /NS ha infiniti elementi applichiamo il ragionamento
precedente per determinare un intervallo 7, contenuto in 7, con 7, N S con infi-
niti elementi. In tal modo nasce una successione In che si vede immediatamente
soddisfare le ipotesi del lemma. Sia allora p nell'intersezione di tutti gli 7. E

immediato riconoscere che p e un punto di accumulazione per S.

Chiaramente stiamo qui usando il principio del terzo escluso per un insie-
me infinito. Ma e possibile dare al precedente ragionamento una forma costrut-
tiva?

Quello che dobbiamo fare ¢ sostanzialmente stabilire un criterio di scelta
per gli intervalli /. Ci sono casi in cui il sottoinsieme S € R limitato non ci
permette di farlo. Costruiamo un tale S e, a questo scopo, diciamo numero di

Goldbach un intero 7 > 2 tale che 27 si puo scrivere come somma di due primi.

Siainoltre 7, v=1, 2, ... la successione dei razionali in [0, 1) ordinati nel modo
seguente:
razionale mv: 0,1/2,1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5,1/6...
naturale v: 1,2, 3, 4 5 6 7, 8 9 10, 11..
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Ad esempio r,=215, 1, =1/6, ... e cosi via. Volendo esplicitare ulteriormente cid
che abbiamo fatto, si noti che i razionali della prima riga sopra p/g e p'/g’, con p,

g e p', ¢ primi tra loro, vengono ordinati secondo la relazione
plasp'lq’ seesoloseog<qoq=q ep<p

alla quale poi corrisponde I'assegnazione del naturale v sulla seconda riga.
Definiamo ora S come la successione «_siffatta:
a =2—1/nsen=10Vv = veunnumero di Goldbach,

oppure
a=r in caso contrario.

Si noti che se la congettura di Goldbach fosse veraalloraz =2 —1/nVned SC
[1, 2). Se perd la congettura di Goldbach fosse falsa e 2V ¢ il piti piccolo pari con
N 2 2 che non si puo esprimere come somma di due primi allora z =2 -1/n V»
<Nea =r ¥nzN.DunqueS < [0, 2] con al piti un numero finito di elementi
in [1, 2).

Come troviamo ora gli intervalli della dimostrazione del teorema di Weier-
strass?

Siha0 <4 <2dunques =0es, =2, allora s, = 1. Quindi o in [0, 1]
oppure in [1, 2] stanno infiniti punti della successione {« } cio¢ di S. Cio pero
non si puo decidere allo stato attuale delle cose; se la congettura di Goldbach
fosse vera dobbiamo scegliere 7, = [1, 2], se falsa /, = [0, 1]. L intersezione degli
intervalli non puo quindi essere assegnata oggertivamente per S = {a }. Si noti che
se la congettura di Goldbach fosse vera, il punto 2 sarebbe un punto di accu-
mulazione per S. Se invece la congettura fosse falsa, allora ogni punto di [0, 1]
sarebbe di accumulazione per S perché tale proprieta vale per la successione {r },
che differisce da § solo per un numero finito di termini.

La dimostrazione del teorema di Weierstrass (ammesso rimanga ancora
vero se escludiamo la validita del principio del terzo escluso) deve essere ristabili-
ta ex-novo in termini “costruttivi’.

Per concludere la mancanza del principio del terzo escluso ci preclude una
possibilita di scelta. Rinunciando ad utilizzare il terzo escluso, un elemento lo-
gico estremamente potente, abbiamo avuto una penalizzazione molto forte sulla
possibilita di dar esistenza a oggetti matematici. Laccettazione di nuovi oggetti
matematici non risulta dunque sempre possibile e, soprattutto, qualora esistano
comunque percorsi costruttivi, ci aspettiamo che essi siano spesso molto pit in-
voluti. Quindi vi ¢ sicuramente una perdita, per cosi dire, in termini economici.
Ma questo, fondamentalmente, ¢ un fatto marginale interno allo sviluppo del
pensiero matematico. Pensiamo invece che un’operazione del genere abbia molto

a che vedere con una posizione epistemologica proprio nei termini di una teo-
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ria della conoscenza — che pud essere implicita o esplicita - ma che comunque
agisce nella ricerca del matematico. Una riflessione filosofica dovrebbe coglierne
il significato soprattutto in relazione, alla costituzione di una teoria della cono-
scenza. Nel senso che, rinunciare al terzo escluso nel caso di insiemi infiniti, &
legato a doppio filo con 'ammettere solo dimostrazioni di carattere costruttivo,
ma cid puo essere filosoficamente criticabile. In effetti, qual ¢ 'alveo dei desidera-
ta da parte del matematico che riconosce diritto di cittadinanza a sole procedure
costruttive?

In primo luogo, e fermiamoci a questo che sembra tra i pitt importanti,
questi desiderata riguardano lo statuto che deve avere 'oggetto matematico che,
in questa prospettiva, ha senso e valore solo allorché si propone, al termine della
realizzazione del progetto costruttivo, in modo ostensivo. Loggetto in questione
deve proprio, al termine di una qualche progettualita, darsi, ostensivamente in
carne ed ossa. Su questo tema la fenomenologia puo dirci qualcosa a proposito
di cosa sia effettivamente “conoscere un oggetto”. Loggetto ¢ inteso come posto
di fronte a noi nel caso di un oggetto mondano — non so, il tavolo su cui sono
appoggiato — o invece in quella sorta di pienezza ed ostensione ideale — che chia-
meremo pienezza noematica — qualora si tratti di un oggetto ideale, di princi-
pio passibile di essere intenzionato dalla nostra coscienza. Ed il modello sotteso,
quello che indica cosa si intende per prensione adeguata dell’oggetto, e quello
dato dalla percezione sensibile. Ma c’¢ una cosa che passa sotto silenzio: in realta
la percezione oggettuale non ¢ mai completamente ostensiva. La datita ostensiva
e completa ¢ una sorta di idea kantiana, non si realizza mai. La percezione ci
offre sempre una faccia alla volta dell’oggetto, in un certo momento e contesto,
mentre ¢ la somma aperta o risultante delle percezioni parziali che ci da 'oggetto.
La percezione anche la pitt /uminosa che possa esserci, la pitt “offerente” risulta
sempre in via di saturazione e non ci consegna mai I'oggetto nella sua totalita.
In fondo questo desiderata per cui I'oggetto ideale debba darsi nella sua totale
ostensione indica chiaramente un’idealizzazione. Cid non impedisce che 'oggetto
si offra in evidenza, solo che questa prende forme mediate in un percorso tem-
poralmente strutturato. Questa posizione potrebbe portarci a ritenere che un

risultato di pura esistenza sia poco pit che inutile.

Consideriamo ora un esempio per vedere se le cose stanno proprio cosi o, alme-
no, se sia possibile presentare qualche dubbio sulla liceita di questo atteggiamen-
to cosl minimalista.

Gauss, motivato da certe considerazioni sperimentali basate sulle tavole
dei numeri primi allora esistenti (e alle quali egli stesso lavord per molti anni

come passatempo), introdusse quello che in termini moderni viene chiamato il
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logaritmo integrale di n, li(n), vale a dire la funzione aritmetica li(n) definita come

lintegrale da 2 a n di 1/log(t) e congetturo la validita del seguente risultato:

lim  =(n)/l(n=1

n—>+oco

dove () ¢ il numero dei primi compresi tra 2 ed n. Questo risultato, che prende
il nome di Zeorema dei numeri primi, venne dimostrato indipendentemente e
quasi contemporaneamente molto pit tardi nel 1896 da J. Hadamard e C. de la
Vallee Poussin. Entrambi basano la loro dimostrazione sulla funzione ¢ di Rie-
mann. Ma al solito i matematici risolto un problema vogliono qualcosa di piu ed

in questo caso si tratta di stabilire come si comporta la differenza:
x(n) — li(n)
per 7 grande. La risoluzione della congettura di Riemann per la funzione ¢ im-
plicherebbe che
2(x) — li(x)/x"* — 0 per x — +0, Va > 0.
tuttavia la congettura di Riemann non ¢ stata tuttora né provata né contraddetta.
In effetti il miglior risultato ad oggi disponibile &:

2(x) — /i(>)/x"*log x= O (1) pet x — +.

Per molto tempo si ¢ creduto che

w(x) < Ji(x)

essendo questo fatto validato dalla tavola dei numeri primi per x < 108, la disu-
guaglianza ¢ stata poi confermata per x < 10'® da Buthe nel 2015'.

Ed e proprio a questo punto che un teorema di Littlewood del 1914'" ha
un effetto in qualche modo dirompente. Infatti, Littlelwood ha dimostrato che

esistono infiniti interi naturali x per i quali:
n(x) — () >x""?/2 log x;
ed infiniti naturali x per i quali:
w(x) — li(x) < —x'? /2 log x.

Non si conosce ad oggi il piti piccolo intero y per il quale valga una delle due

precedenti disuguaglianze. Sappiamo perd'? che deve esistere un qualche

10 J. Buthe, On the first sign change in Mertens theorem, in «Acta arithmetica», 171, 2015, pp.
183-195).

""" J.E. Littlewood, Sur la distribution des nombres premiers, in «Comptes Rendus del’Academie

Scientifique de Paris», 158, 1914, pp. 1869-1872.
2 Cir. S. Zegowitz, On the positive region of m(x)-li(x), Master thesis, Manchester Institute for
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x < 672795]3468

per cui

w(x) — li(x)>0

Ricordiamo che questi interi vengono abitualmente chiamati interi di Skewes,
a Skewes, studente di Littlewood, che pubblico i propri unici due articoli su

da Sk tudente di Littl d, ch bbl d ticol

questa questione'®.Uno tra gli ultimi risultati pitt importanti in questa direzione

114

¢ dovuto a Saouter e Demichel' per il quale esiste un x come sopra con

x<1,397162914%x10%'¢

Possiamo a questo punto affermare che il risultato sia un semplice risultato di
pura esistenza che, in fondo, lascia il tempo che trova? Non abbiamo imparato
nulla di effettivo? Non abbiamo comunque aumentato la nostra conoscenza?

Risulta evidente che non abbiamo l'oggetto voluto, ma di fatto abbiamo
una serie di nuove conoscenze e di ipotesi di lavoro, di cui prima semplicemente
non disponevamo. Abbiamo imparato qualcosa su cio che sta attorno al nostro
oggetto ancora velato alla sua presa definitiva. E, a nostro parere, questo non ¢ si-
gnificativo solo all'interno della matematica, almeno nel senso che la costituzione
di una teoria della conoscenza dovrebbe anche occuparsi della possibilita effetti-
vamente operativa di conoscere anche, per cosi dire, le “condizioni di contorno”
all'oggetto di volta in volta intenzionato.

Torniamo per un momento alla conoscenza di un oggetto ideale, pil preci-
samente a quello che succede nel momento in cui definiamo un oggetto matema-
tico. Ad esempio introduciamo una classe particolare di funzioni con la seguente
definizione (non costruttiva):

Una funzione | definita su di un’aperto A del piano complesso C a valori in C si
dice olomorfa su A se ¢ derivabile in senso complesso in ogni punto di A.

Innanzitutto osserviamo che la definizione posta non ¢ vuota: una funzione po-
linomiale sul piano complesso ¢ olomorfa su di esso come pure la funzione espo-
nenziale e cosi via. Ma abbiamo una comprensione noetica di funzione olomorfa
ottenuta dalla sola definizione? Risulta chiaro che la definizione ¢ univoca nell’

individuare completamente il concetto di funzione olomorfa, ma la conoscenza

Mathematical Sciences, The University of Manchester, 2010.

'3 Rinviamo per questo a S. Skewes, On the difference n(x)-li(x) (I), in «Journal of the London
Mathematical Society», 8, 1933, pp. 277-283 ed al seguente On the difference n(x) - li(x) (II),
«Proceeding of the London Mathematical Society», 5, 1955, pp. 277 — 283.

14

Y. Saouter, PDemichel, A sharp region where n(x)-li(x) is positive, in «Math.Comp», 79
2010, pp. 2395-2405.
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dello stesso oggetto pud andare oltre; ad esempio, sappiamo che :A—C ¢ olo-
morfa in A se e solo se per ogni punto y di A esiste una serie di potenze centrata
in y e convergente in un disco D di raggio r tale che per ogni punto p interno
al disco e in A il valore di f in p coincide con la somma della serie in p. Risulta
chiaro che ora la mia comprensione dello stesso concetto si & ampliata. Anche
in questo caso possiamo dunque dire che la percezione oggettuale non ¢ com-
pletamente ostensiva, anzi ¢ pit probabile che, un giorno, riusciremo a vedere lo
stesso oggetto da una ulteriore sfaccettatura.

Questo esempio, come molti altri in matematica, ci permette di introdurre
anche la seguente riflessione: la natura comune delle funzioni olomorfe, quella
che potremmo chiamare loro essenza o meglio ancora “Idea” per ricordare Plato-
ne, possiamo etichettarla, come si fa nella prassi matematica, con il termine “olo-
morfia”. Per Platone essa apparterrebbe ad un immutabile mondo soprasensibile,
il mondo delle idee, ma qual ¢ 'uso che un matematico fa di questo termine nel
concreto della sua ricerca? Per capirci, supponiamo di voler dimostrare il (primo)
teorema di Morley™ che afferma il seguente fatto: dato un triangolo di vertici A,
B e Cssi considerino le trisettrici degli angoli in A, B e C e le tre coppie di triset-
trici che individuano angoli adiacenti allo stesso lato. Queste coppie si interseca-
no in tre punti che sono i vertici di un triangolo equilatero. Ora per dimostrare
il teorema si traccerebbe un triangolo particolare ABC per poi arrivare alla con-
clusione badando di non ricorrere ad alcuna caratteristica che esso non condivida
con gli altri triangoli. In questo caso stiamo utilizzando 'essenza della nozione di
triangolo, ma nel caso di concetti-idee pitt complesse quale quella di olomorfia?
In quale modo mi ¢ lecito considerare le due nozioni di olomorfia che abbiamo
poco sopra evidenziato benché tra loro logicamente equivalenti? Pitt brutalmente
ma in modo incisivo, 'assioma della scelta e il teorema di Tyconoff sul prodotto
di famiglie di spazi topologici compatti presentano un’equivalenza logica ma un
aspetto descrittivo di enti matematici totalmente diversi. Posso ritenere che mi
individuino la medesima “Idea”

Lultimo esempio tratta di quella tanto decantata evidenza abusata dalla
nostra ragione. La proprieta che vogliamo considerare ¢ quella della derivabilita
di una funzione continua definita sull’ intervallo [0, 1] o addirittura su tutto
I’asse reale R. Se tracciamo una curva con la punta di una matita su di un foglio
senza mai stai staccare la punta dal foglio, abbiamo quella che, a ragione, pos-
siamo chiamare una curva continua. Possiamo anche tracciare il grafico di una

funzione continua su R e pensare alla retta tangente al grafico nel punto (x, f(x))

5 R. Guy, The Lighthouse Theorem, Morley & Malfatti: A Budget of Paradoxes, in «The American
Mathematical Monthly», vol. 114, no. 2, 2007, pp. 97-141.
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il cui coefhiciente angolare ¢ dato dalla derivata di f in x. Fatti un po’ di tentativi
e di grafici sul foglio la nostra intuizione geometrica ci suggerisce che I'insieme
dei punti dove la tangente non esiste, cio¢ la derivata non esiste, debba essere
in un qualche modo “piccolo”. Ma quanto piccolo? E in che modo piccolo? 11
problema ¢ tanto vecchio che possiamo farlo risalire alle prime considerazioni
analitiche (cio¢ del “calcolo”) di Newton quali lo studio delle orbite dei pianeti,
il moto del pendolo... e cosi via. Questo modo di procedere lo portd a conside-
rare “sostenibili” le intuizioni di carattere geometrico che riguardavano il calcolo
stesso. (Per correttezza dobbiamo pero ricordare che le dimostrazioni contenute
nei Principia sono geometriche). Le strutture matematiche dovevano possedere
la stessa regolarita del mondo fisico e quindi, sia Newton che, molti matematici
negli anni successivi si concentrarono nello studio di “funzioni continue” dato
dalle curve (quasi sempre meccaniche) che descrivevano il moto di un corpo
pensato puntiforme. Considerazioni di questo genere rendono plausibile I'idea
che funzioni continue siano anche derivabili nei punti dove sono definite salvo
qualche eccezione. Interviene nelle nostre considerazioni anche un secondo fatto
che riguarda la definizione di funzione. Per Eulero, nel 1700 una funzione ¢ an-
cora un’espressione analitica; cioé qualcosa che possiamo pensare come costruita
a partire da funzioni elementari quali le funzioni polinomiali, o semplici trascen-
denti come 'esponenziale le funzioni trigonometriche e cosi via fino ad arrivare a
sviluppi in serie convergenti. Con Dirichlet, e indipendentemente Lobacevskij, il
concetto si amplia e in termini moderni una funzione f: R— R ¢ semplicemente
una qualche legge o ricetta che ad ogni x in R associa uno ed un sol y in R che,
con notazione dovuta a Eulero stesso, si denota con f(x). Ad esempio sia f: R— R
la funzione definita da f(x)=1 se x & razionale e f(x)=0 se x & irrazionale. Ancora,
nella prima meta dell’ottocento, A. Ampere pubblica una dimostrazione fallace
che “funzioni continue sono derivabili al di fuori di un insieme di punti specifi-
ci”. La sua “dimostrazione” si basa su di una erronea intuizione geometrica. Nelle
sue lezioni tenute a Berlino nel 1872 K. Weierstrass presenta un esempio, pubbli-
cato grazie all'interesse di P. du Bois-Raymond, la funzione f: R— R definita da

F(x)=)(a")cos((b")mx)

dove la sommatoria in n ¢ estesa da 1 a oo, ¢ i parametri reali a e b soddisfano le

seguenti condizioni

0O<a<1, b ¢ un intero dispari

e per essi risulta

ab>1 +(3/2) n
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Abbiamo cosi un’intera famiglia di funzioni continue su R dipendenti dai para-
metri a e b, che non ammettono derivata in alcun punto di R. La continuita di f
¢ ovviamente dovuta alla convergenza uniforme della serie.

Negli anni sono stati dati molti pitt esempi alcuni interessanti per la loro
semplicitd; ci piace ricordare quello di McCarthy del 1953'. La ricerca del ri-
gore in analisi cominciata alla fine dell’ottocento ci fa dunque dubitare di quel
“principio di evidenza” tanto caro a Cartesio e spesso evocato in tanti sistemi
filosofici. I precedenti esempi mostrano alcune figure in cui la matematica per-
mette di chiarire, persino con la possibilita di renderli operativi, una serie di
concetti che possono costituire un riferimento iniziale per la riflessione filosofica.
A questo punto vorremmo svolgere un percorso quasi reciproco: puo la rifles-
sione filosofica servire in qualche modo al matematico nell’elaborazione della
sua attivitd? Inoltre, per rendere anche piu relazionale ed efficace I'analisi, una
scelta filosofica orienta il lavoro del matematico? A questo proposito evitiamo un
banale fraintendimento: assolutamente non nel senso che il filosofo debba dire
al matematico come fare matematica, questo sarebbe semplicemente assurdo.
Piuttosto il contributo di una analisi filosofica puo essere utilizzato perlomeno

in due direzioni:

1. Il matematico, nel suo agire, in realtd non compie atti completamente
sganciati da considerazioni filosofiche. Egli stesso ¢ portatore di una visio-
ne filosofica che — esplicita o implicita che sia — ne orienta, necessariamente
ancor prima che I'agire, una sorta di quadro di riferimento. Qualora questa
visione sia esplicitata abbiamo la possibilita di una analisi, qualora non sia
esplicitata abbiamo qualcosa di molto simile all’idea di pregiudizio inten-
dendo che si tratta di una condizione che agisce orientando lattivita del
matematico, che semplicemente non ¢ esplicitata.

2. Lavisione filosofica della propria disciplina si caratterizza per una serie
di implicazioni relative che partono per esempio da un punto specifico,
diciamo il motivo del contendere, ma che si allargano in modo talora inatteso
e toccano relazioni sia matematiche che pit specificatamente filosofiche. La
riflessione filosofica dovrebbe poter permettere di mostrare, tra le altre cose,

quello che vi ¢ di implicito e di nascosto sotto determinate assunzioni.

16

J. McCarthy, An Everywhere Continuous Nowhere Differentiable Function, in «The American
Mathematical Monthly», 60, 10, 1953, pp. 709-7009.
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