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Più di cinquant’anni fa Guardini1  ha osservato che uno dei segni impressionanti 
della fine dell’età moderna è il tramonto della certezza che la ragione possa tro-
vare un fondamento in sé stessa. Che questo fatto sia realmente uno dei segni 
chiave del tramonto dell’età moderna può essere messo in discussione, ma di 
certo il problema dei fondamenti della razionalità si pone in tutta la sua forza e 
complessità. Cerchiamo di spiegare meglio cosa intendiamo con l’affermazione 
della certezza dell’impossibilità di una autofondazione della ragione.

Come ben mette in risalto Melzi2, un requisito indispensabile per una 
possibile autofondazione della ragione è quello che il Melzi chiama “condizione 
di coerenza interna dei processi razionali”. Questa consiste nella certezza che la 
ragione, muovendo da certe premesse, sia in grado di pervenire a conclusioni 
univoche in forza di un suo determinismo strutturale. Tale tema si può far ri-
salire agli albori del pensiero occidentale essendo stata una delle speculazioni 
fondamentali del pensiero classico nella cui cornice trovò soluzione attraverso la 
ricerca dei canoni univoci dell’evidenza. Il problema, come affermato dal Melzi, 
potrebbe essere considerato una delle caratterizzazioni dell’evoluzione e della fine 
del pensiero moderno; fine consistente in una accurata descrizione di come il 
pensiero occidentale abbia a poco a poco rinunciato a criticare e precisare la con-
dizione di coerenza interna vanificando per essa anche il senso di irrinunciabilità. 
Ma quale è la relazione tra quest’argomento, che ha da sempre interessato la spe-
culazione filosofica e la Matematica? La risposta è sorprendentemente semplice: 
la Matematica ed i suoi risultati nella loro univocità interpretativa, ovviamente 
una volta fissate le regole, costituiscono il terreno fertile su cui sperimentare le 
nostre ipotesi. In particolare si possono produrre in Matematica alcuni concetti 
o nozioni, e alcuni risultati ad essi legati, che portano la nostra mente e le relative 
convinzioni razionali, a vacillare quasi immediatamente al loro confronto. Dun-
que, anche se spesso non siamo in grado di dare soluzione a specifici problemi in 
questo ambito, la Matematica ci permette comunque analisi istruttive per futuri 
approfondimenti.

Ci concentreremo allora nel fornire e commentare un certo numero di 
esempi, peraltro elementari che costituiranno materiale su cui riflettere e dal 
quale partire con nuove indagini, insomma con nuove non scontate domande, 
ad esempio sull’esistenza di certi enti, sulla consistenza delle inferenze logiche 
che spesso diamo per scontate e così via. Sostanzialmente, come vedremo, il tema 
ricorrente al quale ci limiteremo è quello dell’infinito anche quando e diremmo 
più significativamente, il medesimo non sembra comparire nelle nostre consi-

1   R. Guardini, La fine dell’epoca moderna, Morcelliana, Brescia, 1960.
2   G. Melzi, Le idee matematiche del XX secolo, Borla, Roma, 1983.
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derazioni. In particolare, ci risulterà chiaro come il nostro personale concetto di 
infinito sia sconcertante, poiché alcuni dei suoi aspetti dipendono non solamente 
dal concetto stesso ma, come ravvisa Melzi3, dal rapporto tra tale concetto e la 
mente umana che è costretta a includere sé stessa come oggetto di studio nelle 
sue analisi relative all’infinito ed alle sue proprietà.

Il problema del passaggio dal particolare all’universale è sempre stato uno 
tra i temi più affascinanti della speculazione filosofica. Con l’induttivismo, par-
tendo dall’esperienza e dall’ osservazione di casi particolari (con ciò intendiamo 
anche esperienze ed osservazioni che nascono e vivono in ambienti astratti), si 
giunge a proporre leggi generali che spiegano fenomeni di una data specie realiz-
zando in questo modo il passaggio dal particolare all’universale. Viceversa, iden-
tificate le leggi universali, posso prevedere fenomeni futuri deduttivamente, cioè 
instaurando un ragionamento che, partendo da premesse “accertate” mi conduca 
a conclusioni altrettanto “accertabili” facendomi questa volta passare dall’univer-
sale al particolare. Ad esempio verificando sperimentalmente che sostanze liquide 
diverse in situazioni diverse, di temperatura, pressione, volume... solidificano 
sempre a temperature sufficientemente basse, traggo la legge universale che i li-
quidi solidificano a temperature “basse”. Viceversa lasciando un bicchiere d’ac-
qua fuori dalla porta di casa ad Inverness mi aspetto che in una fredda mattina 
d’inverno l’acqua si trasformi in ghiaccio.

Ben sappiamo che la concezione induttivista della Scienza è stata messa 
in discussione ripetutamente e tra le critiche più precise e definitive ricordiamo 
quella, sotta tanti aspetti insuperata, di Hume. Vale a dire non potremo mai 
affermare, per quelle che Hume chiama matters of fact che se ad un evento a se-
gue sistematicamente un evento b, allora questo deve avvenire anche la prossima 
volta che si verifica a. Questa prima critica toglie ogni carattere di necessita logica 
al ragionamento di tipo induttivo. Nulla da obiettare, sennonché in realtà una 
strategia che potremmo chiamare simil-induttiva è praticata sistematicamente 
– e questo che sia esplicitata o meno – quasi ad ogni livello di orientamento co-
noscitivo. Ciò costituisce, nell’atteggiamento abituale che abbiamo nei confronti 
del mondo esterno, una sorta di schema di avanzamento che dà spesso il senso 
presunto e comunque l’orientamento a quelli che sono i caratteri delle nostre 
protensioni nell’attesa di ciò che ci aspettiamo avvenga. Soprattutto questo vale 
per tutto quello che riguarda un atteggiamento che potremmo definire pre-scien-
tifico. Un atteggiamento induttivistico o simil-induttivistico – dove per simil-in-
duttivistico più precisamente intendiamo una versione del ragionamento o del 
modo di essere che implicitamente fa uso di schemi integralmente o parzialmen-

3   Ivi, p. 53.
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te induttivistici – e quindi presente quasi in ogni atteggiamento che abbiamo nei 
confronti del mondo e questo implica, a fortiori, il riconoscimento che qualcosa 
come un’osservazione autonoma – nel senso di scevra da ogni precomprensione 
– è qualcosa di molto chimerico. In fondo, come sottolinea Popper, la teoria – 
o almeno una teoria implicita – guida sistematicamente l’osservazione. Questo 
conduce talvolta a risultati completamente inattesi. Prendiamo un esempio mol-
to noto nella storia della scienza: Kepler e Brahe vedono gli stessi fenomeni, ma 
con occhi diversi, uno li inquadra in prospettiva eliocentrica, l’altro in un’ottica 
geocentrica. Cosa ne consegue? Che le loro conclusioni non potrebbero essere 
più diverse. Perveniamo addirittura al dubbio che abbiano visto cose diverse ed 
in un certo senso è così. D’altra parte, e molto spesso, il “fatto” di vedere cose 
diverse si manifesta in quasi tutte le esperienze conoscitive. Questa banale os-
servazione ci permette di afferrare quanto ogni prensione oggettuale, anche una 
semplice percezione, sia in realtà e spesso implicitamente imbevuta di teoria. 
Consideriamo ad esempio la percezione di un libro posto su di un tavolo. Quan-
te sovrapposizioni di teorie o di interpretazioni stanno operando e che ci portano 
a parlare di “libro”? Tutto il cammino per capire la lingua, il contesto, insomma 
tutto il problema dell’interpretazione. Senza di essa un testo non è che una serie 
di scarabocchi tracciati su dei fogli. Ciò che precede pone in luce che una rifles-
sione sull’induzione ne implica un’altra – da un punto di vista fenomenologico 
ancora più rilevante – sul concetto di esperienza in generale e su quanto questa 
sia poi orientata da schemi di ragionamento che prevedono una forte compo-
nente di relazione con elementi che ritroviamo nel pensiero induttivo. Insomma, 
l’atteggiamento induttivistico – chiamiamolo così – è fortemente connesso ad 
ogni, o quasi, attività soggettiva di conoscenza o di ricerca della stessa. Possiamo 
addirittura ritenerla una componente essenziale dell’attitudine naturale che ca-
ratterizza il nostro essere nel mondo (In-der-Welt-Sein). Ed è chiaro che un’analisi 
di questo tema non investe soltanto la presunta “credibilità” di una scienza em-
pirica, quanto quel sapere ingenuo fatto di attese, aspettative e precomprensioni 
che ne strutturano o almeno contribuiscono a strutturarne ogni atteggiamento 
abituale nei confronti del mondo.

Senza entrare in ulteriori e più profonde discussioni sul valore e la corret-
tezza della “scienza induttivista” consideriamo la seguente situazione: supponia-
mo che una qualche forma del nostro “tempo” sia quantizzata in minuti succes-
sivi; t1 corrisponda al minuto 1, t2 al minuto 2 e così via. Sia P(ti) una proprietà 
che dipenda dal minuto ti che sto considerando, ad esempio sia p la temperatura 
della stanza nella quale siamo comodamente seduti. Supponiamo inoltre di aver 
individuato, in un qualche modo, (ad esempio dopo varie misurazioni), la legge 
che mi esprime P(ti) in funzione di ti. Come posso allora verificare che la mia 
legge sia corretta? Un possibile modo di procedere è il seguente:



Marco Rigoli – Mathematics and Reasoning

|63Mathesis universalis
nóema – n. 16 (2025) – ISSN 2239-5474

1.    Al minuto t1 verifico che la mia legge è corretta, cioè P(t1) mi fornisce 
la corretta temperatura della stanza.
2.    Considerato un generico istante tn ed ammessa la correttezza di P(tn) 
sono sempre in grado di dimostrare che P(tn+1) è corretta.

Allora ne deduco che P(ti) è corretta per ogni minuto ti.
Diciamolo con le parole di Pascal: 

Benchè questa proposizione abbia un numero infinito di casi, ne darò 
una dimostrazione molto breve supponendo due Lemmi. Il primo, che 
è evidente per sé, è che questo rapporto è vero nella seconda base [cioè 
per n=1]. Il secondo, che se questo rapporto è vero in una base qualsiasi, 
si ritroverà necessariamente nella base che segue. Da qui si vede che esso 
sussiste necessariamente in tutte le basi; infatti, si trova nella seconda base 
per il primo Lemma; dunque per il secondo Lemma si trova nella terza 
base, dunque nella quarta così via all’infinito4.

Poincaré in La Science et l’Hypothèse5, è ben consapevole della rilevanza episte-
mologica di ciò che in Matematica viene chiamato Principio d’Induzione e come 
afferma Giusti per Poincaré:

il Principio d’Induzione è un vero giudizio sintetico a priori di tipo 
Kantiano[…]; esso costituisce un’intuizione diretta dello spirito- anzi- 
l’affermazione di una proprietà dello spirito stesso”. Sostanzialmente esso 
costituisce una procedura inferenziale insita nella nostra ragione in modo 
intersoggettivo o meglio è la “codifica” di una naturale ed intersoggettiva 
inferenza logica6.

La definizione formale del principio non si discosta molto da quanto descritto da 
Pascal, ma per precisione diamo la definizione in termini matematici. Sia N= [1, 
2, 3…] l’insieme degli interi naturali.

Principio d’Induzione (prima forma). Sia P(n) un enunciato che ha senso 
in dipendenza dell’intero naturale n. Si supponga che

i)  P(n0) sia vera per un qualche naturale n0

ii)  Per n≥n0 la validità di P(n) implichi quella di P(n+1)

Allora P(n) è vera per ogni n≥n0.

Dedekind e Peano capiscono che l’essenza stessa del principio d’induzione 
è insita in N. Ma mentre il primo costruisce in Essenza e significato dei numeri, 

4    B. Pascal, Traitè du triangle arithmetique, Arvensa Editions, Paris, 2019, p. 53.
5   Ivi, pp. 23-24.
6   E. Giusti, Ipotesi sulla natura degli oggetti matematici, Bollati Boringhieri, Torino, 1999, p. 
47.
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continuità e numeri irrazionali7 un modello dei numeri naturali, dimostrando 
per esso la validità del Principio d’Induzione a partire dalla teoria “ingenua” degli 
insiemi, il Peano produce una formulazione assiomatica degli interi naturali nel 
modo seguente (in termini moderni ma equivalente alla definizione originaria): 
Sia X un insieme non vuoto in cui si fissi un elemento che chiamiamo 1 ed una 
funzione +: X→X. Indicata con a+ l’immagine di a nella funzione +, a+ si dice 
successore di a. Si assuma che valgano i seguenti assiomi(di Peano-Dedekind):

j)  per ogni a in X, a+ ≠1
jj)  + è una funzione iniettiva
jjj)  se S è contenuto in X, 1 sta in S e per ogni s in S, s+ sta in S, allora 
S=X.

Si introduce, ricorsivamente, una operazione di somma, +, ponendo

a+1=a+
(a+) +b= (a+b)+.

Il Teorema di ricorsività garantisce che la somma è in questo modo ben definita 
e da essa si introduce la relazione d’ordine (totale)

a<b se e solo se esiste c in X tale che b=a+c

È facile vedere che il principio d’induzione, poc’anzi enunciato, è (logicamente) 
equivalente all’assioma jjj)8. X è il nostro insieme dei numeri naturali N (in esso 
si introduce il prodotto in modo opportuno e ritroviamo ciò che abbiamo cono-
sciuto nella nostra infanzia). 

Peano dunque comincia a metterci in guardia su quella che abbiamo finora 
considerato una naturale inferenza logica della nostra ragione. Ma c’è di più. Per 
cercare di rendere le cose più chiare, facciamo ricorso ad alcuni concetti elemen-
tari. Sia X un POSET (partially ordered set) cioè X è un Insieme su cui è definita 
una relazione d’ordine parziale ≤. Vale a dire una relazione binaria che gode delle 
seguenti proprietà:

1. ∀x ∈ X, x ≤ x (proprietà riflessiva).
2. x ≤ y e y ≤ x, implicano x = y (proprietà antisimmetrica).

3. x ≤ y e y ≤ z implicano x ≤ z (proprietà transitiva).

In generale, dati due elementi qualunque x e y di X, non è detto né che x ≤ y, né 
che y ≤ x. Per fare un esempio, prendiamo N con la relazione d’ordine parziale

7   R. Dedekind, Essenza e significato dei numeri, continuità e numeri irrazionali, Stock, Roma, 
1926.
8   Si veda ad esempio F. Dalla Volta, M.Rigoli, Elementi di Matematica Discreta e Algebra Line-
are, Pearson, Milano, 2007.
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n ⪯ m se e solo se n/m

dove l’ultimo simbolo significa che n divide m. Sicuramente (N, ⪯) e un PO-
SET, ma ne 3 ⪯̸ 5, ne 5 ⪯̸ 3. In altri termini, gli elementi 3 e 5 non sono con-
frontabili in (N, ⪯).
Diremo che nel POSET (X, ≤) vale l’assioma del buon ordinamento (d’ora in 
avanti ABO) se ogni sottoinsieme non vuoto S ⊆ X ammette minimo, cioè se 
esiste un σ ∈ S tale che ∀s ∈ S, σ ≤ s. Si noti che qualora un minimo σ esista, esso 
e anche unico per cui si parla del minimo di S. Osserviamo che un POSET (X, 
≤) per il quale vale ABO, e sempre totalmente ordinato. Ovvero

∀x, y∈ X, o x ≤ y o y ≤ x.

Proveremo ora che la prima forma del principio di induzione su N e equivalente 
alla validità di ABO su (N, ≤). In realtà proveremo anche qualcosa di più; a tale 
scopo, introduciamo il Principio d’ Induzione (II forma): sia P(n) un enunciato 
che ha senso in dipendenza dell’intero naturale n ∈ N. Si supponga che:

1.  P(n0) sia vera per qualche n0 ∈ N.
2.  La validità di P(t) per ogni n0 ≤ t ≤ n, implica quella di
P(n + 1).

Allora l’enunciato P(n) e vero per ogni n ≥ n0.
Abbiamo il seguente:

Teorema. Il principio di induzione nella I forma, nella II forma e la validità di 
ABO in (N, ≤) sono tra di loro equivalenti.

Per dimostrare il teorema proveremo la validità della catena di implicazioni se-
guente:

1. I forma −→ II forma.
2. II forma −→ ABO.
3. ABO −→ I forma.

1. Sia P(n) come nella II forma. Poiché il primo punto delle due forme del 
principio di induzione coincidono, la prima parte della II forma e verificata. Sia 
allora n ≥ n0 (il caso n = n0 è del tutto ovvio) e si supponga P(t) vera per ogni n0 
≤ t ≤ n. In particolare P(n) è vera e, dal punto 2 della prima forma, sappiamo 
che P(n + 1) e vera. Dunque P(n) vale per ogni n ≥ n0. Con ciò vale la II forma.
2. Valga la II forma e sia S ⊆ N, S ̸= ∅. Per assurdo S non abbia minimo e si 
consideri la proposizione:

P(n): nessun intero t ≤ n sta in S.
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Se proviamo che P(n) e vera per ogni n ≥ 1, allora S = ∅ ottenendo in tal modo 
la contraddizione che stiamo cercando. Ora P(1) e vera altrimenti1 ∈ S e sarebbe 
sicuramente il suo minimo. Sia ora n > 1 e sia P(t) vera per ogni 1 ≤ t ≤ n. Si 
supponga, per contraddizione, che P(n + 1) sia falsa. Allora esiste un qualche 1 
≤ t ≤ n + 1 tale che t ∈ S. Se t < n + 1allora 1 ≤ t ≤ n e P(t) e vera per cui, nello 
specifico, t /∈ S. Deve allora essere t = n + 1 ∈ S e n + 1 e il minimo di S. Con-
traddizione. Dunque

P(n + 1) è vera e P(n) è vera per ogni n ≥ 1 per la II forma del principio di 
induzione. Quindi in (N, ≤) vale ABO.
3.Valga ABO in (N, ≤). Sia P(n) come nella I forma e siano soddisfatti i punti 1 
e 2 della sua definizione. Dobbiamo verificare che P(n) e vera per ogni n ≥ n0. Si 
consideri l’insieme:

S = {n ≥ n0: P(n) è falsa} ⊆ N

e per assurdo si supponga S ̸= ∅. Allora, per ABO, esiste m ∈ S, minimo di S. 
Dunque P(m) e falsa. Ora m > n0 poiché P(n0) e vera. Del resto m − 1 ≥ n0 perché 
altrimenti m non sarebbe il minimo di S. Ma per il punto 2 della I forma si ha 
allora che P(m) e vera. Contraddizione.

Attraverso questa serie di nuove strutturazioni ed equivalenze abbiamo am-
pliato sicuramente la nostra comprensione del principio di induzione. Ad esem-
pio se nella prima forma sembrava dovesse giocare un qualche ruolo l’elemento 
“successore” che in un certo qual modo attribuiva un aspetto dinamico-tempo-
rale al principio, nella seconda forma, come si evince dalla dimostrazione ripor-
tata sopra, scompare completamente. Essendo i due equivalenti ne deduciamo 
che non esiste alcun aspetto dinamico nell’“essenza” del principio. Fondamentale 
risulta invece la validità dell’assioma del buon ordinamento. Questo mette inol-
tre in luce il fatto eclatante che quella che finora abbiamo presentato come la 
“codifica” di una intersoggettiva inferenza logica, si esprime attraverso la validità 
di un assioma, ABO, goduto dagli interi naturali rispetto al loro ordinamento 
canonico. E questa validità è dovuta alla nostra costruzione dei naturali che non 
ha a che fare con una nostra azione raziocinante definita a priori ma dipende 
solo ad una nostra scelta. Osserviamo che, in generale, ABO è falso per relazioni 
d’ordine qualunque. Ad esempio consideriamo il campo ordinato Q dei razionali 
con il suo usuale ordinamento. L’insieme A, sottoinsieme di Q, definito da

A= [p/q in Q positivi e tali che p^2/q^2 ≥2]

è non vuoto e non ha minimo. Altro che “giudizio sintetico a priori di tipo 
Kantiano”!

Ma la seconda forma del Principio d’Induzione ci mostra anche un se-
condo fatto estremamente importante. Supponiamo che (I, ≤) sia un insieme di 



Marco Rigoli – Mathematics and Reasoning

|67Mathesis universalis
nóema – n. 16 (2025) – ISSN 2239-5474

indici bene ordinato, valga cioè in esso ABO. Possiamo pensare ad un principio 
di induzione dove l’enunciato P dipenda dagli “indici” i in I. Bene la seconda for-
ma del Principio d’Induzione è quella che “mutatis mutandis” si estende a questa 
situazione prendendo il nome di Principio d’Induzione Transfinita.

Il prossimo esempio mostra come la Matematica possa individuare e scar-
dinare preconcetti. Il motto, elevato a postulato da Euclide, “il tutto è maggiore 
della parte” (non nel senso della teoria della Gastalt, cioè non il tutto è maggio-
re della somma delle sue parti) ha prodotto varie ed apparenti contraddizioni. 
Famoso è il paradosso di Galileo che osserva che ci sono tanti quadrati di in-
teri quanti questi ultimi. Tuttavia l’insieme formato dai primi è propriamente 
contenuto negli interi naturali. Difficoltà di questo genere (famosa è anche la 
sua analisi del paradosso della ruota che la tradizione -con dubbia paternità- fa 
risalire ad Aristotele) nel cercare di trattare dell’infinito in atto fecero concludere 
a Galileo che queste sono difficoltà che provengono dal discorrere che noi fac-
ciamo con il nostro intelletto finito intorno all’infinito, dandogli quegli attributi 
che noi diamo alle cose finite; il che penso che non sia conveniente. Eppure Ga-
lileo nell’osservare che ci sono tanti interi quanti i loro quadrati” era vicinissimo 
alla soluzione dell’apparente paradosso. Fu poi G. Cantor che riconoscendo che 
il concetto di ugual numero di elementi “ottenuto” attraverso la determinazione 
di una corrispondenza biunivoca tra due insiemi nulla aveva a che fare con la 
relazione d’ordine indotta dall’inclusione insiemistica. L’enumerazione degli ele-
menti di un insieme ci porta, nel caso finito, all’uguaglianza ma la “tensione” del 
concetto di enumerazione nel caso infinito semplicemente non conserva questa 
proprietà. In quest’ordine di idee scaturisce anche la definizione di insieme fini-
to, cioè per il quale è possibile enumerare i suoi elementi fino ad esaurirlo (si noti 
che questa non è la definizione matematica di insieme finito nel senso del contare 
ma una πcontrapposto quella di insieme infinito quando ciò non è possibile. In 
quanto segue chiameremo quest’ultima definizione “naif ”. Il salto concettuale è 
compiuto da Dedekind con la seguente definizione: Un insieme A si dice infinito 
se si può porre in corrispondenza biunivoca con una sua parte propria e finito altri-
menti. In questa definizione si individuano due punti salienti: il primo è il rico-
noscimento che il fatto riportato nella definizione non ha nulla di paradossale; 
il secondo è che dalla definizione di insieme finito è stato tolto ogni riferimento 
all’azione del contare, processo tipicamente legato agli interi naturali.

Ma questa definizione, che diremo di Dedekind per distinguerla dalla pre-
cedente, deve però recuperare la nostra idea “naif ” iniziale… E così è, pur di ac-
cettare (il controverso) l’assioma della scelta. Precisamene la definizione “naif ” e 
quella di Dedekind sono equivalenti pur di ammettere l’assioma della scelta. Per 
inciso, e riferendoci al principio di Induzione Transfinita, l’assioma della scelta è 
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equivalente alla validità del Teorema del buon ordinamento (o di Zermelo) che 
ci permette di garantire l’esistenza di un buon ordinamento su qualsiasi insieme 
permettendoci in questo modo la possibilità di utilizzare l’Induzione Transfinita.

Da un punto di vista epistemologico abbiamo teso la nozione iniziale di 
insieme infinito “al punto di rottura” che ci ha permesso di introdurne una nuova 
in una forma concettualmente più profonda anche se meno intuitiva.

Nel prossimo terzo esempio mostriamo come sia possibile introdurre in 
modo logicamente corretto la definizione di un oggetto matematico, in questo 
caso un numero reale, senza poter dire nulla a suo riguardo a parte (ammettendo 
il principio del terzo escluso) la sua esistenza. L’esempio che proponiamo è dovu-
to a Brouwer. Consideriamo il numero reale π. Nel 1761, Lambert ha dimostrato 
che π è irrazionale e dunque nello sviluppo decimale di π=3,1415926… non c’è 
alcun gruppo di cifre alla destra della virgola che si ripeta periodicamente. Fissato 
ad esempio il traguardo di voler scrivere un milione di cifre decimali possiamo, 
a tale scopo, considerare una serie convergente a (un multiplo di) π, quale ad 
esempio la serie (storica) di Leibniz-Gregory (ma meglio sarebbe una serie velo-
cemente convergente come quella di Bailey, Borwein e Plouffe9 e calcolare una 
sufficientemente grande somma parziale per ottenere risposta al nostro quesito. 
Brouwer ci suggerisce di costruire un nuovo numero reale π^ nel modo seguente:

i)  La parte intera di π^ è 3
ii)  Per quella decimale procediamo nel modo seguente: se incontriamo 
una successione di cento o più zeri consecutivi dopo un certo numero n di 
cifre nella rappresentazione decimale di π,

a)  se n è pari sostituiamo la cifra r di posto n-1 con r-1
b)  se n è dispari sostituiamo il primo 0 che è al posto n con 1.

iii)  Se non c’è alcuna successione di cento o più zeri consecutivi poniamo 
π^=π.

Ora π^ è perfettamente logicamente definito, il problema è che non abbiamo al-
cun modo di decidere tra le tre possibilità che si presentano mutualmente esclu-
sive. Non essendoci data la possibilità di conoscere in toto lo sviluppo decimale di 
π, cioè come infinità in atto, qualsiasi procedimento che ci permette di calcolare 
le successive cifre decimali di π non ci permette di rispondere al problema: se non 
trovo in un lasso di tempo finito una successione di cento o più zeri successivi, 
non è detto che non la troverò in futuro o non la troverò del tutto.

9   D. Bailey, P. Borwein, S. Plouffe, On the rapid computation of various polylogarithmic con-
stants, in «Math. Comp». 66, 997, pp. 903–913.
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Per meglio afferrare una delle conseguenze della negazione del principio 
del terzo escluso partiamo da un dato che sembra laterale, ma che in realtà ci 
pone proprio all’interno della difficoltà. Consideriamo la congettura di Goldba-
ch per la quale ogni intero pari maggiore di due si può scrivere come somma di 
due primi. Vale a dire

∀n ≥ 2 esistono p, q ∈ N primi tali che:2n = p + q.

Ad ora non conosciamo una dimostrazione di tale fatto e neppure conosciamo 
un controesempio.

Se accettiamo la validità del principio del terzo escluso deduciamo la vali-
dità della seguente:

Osservazione. O tutti i pari più grandi di 2 si possono scrivere come somma di due 
primi oppure esiste almeno un numero pari più grande di 2 per il quale l’asserzione 
precedente e falsa.

Dunque: o partendo dalla proprietà di un intero maggiore di 2 di essere pari pos-
siamo dimostrare che è scrivibile come somma di due primi; o esiste, diciamo, un 
procedimento di calcolo che ci permette di costruire un controesempio.
È inoltre chiaro che per un numero finito di interi pari fissato (non generica-
mente) una diretta verifica ci porta sempre a stabilire se o meno per essi valga la 
congettura di Goldbach. Ma è altrettanto ovvio che ciò non si estende agli interi 
pari nella loro totalità.

Per Brouwer e con lui per Heyting, Borel, Poincaré e, in un periodo ini-
ziale, anche Weyl dobbiamo fondare la matematica su procedimenti costruttivi. 
Ad esempio la validità dell’algoritmo euclideo che prova l’esistenza del MCD tra 
due interi naturali si basa su un procedimento costruttivo. Il principio del terzo 
escluso è un cardine della matematica classica nella quale viene utilizzato di con-
tinuo. Possiamo sostituirlo facilmente e, per così dire, senza colpo ferire, con un 
processo costruttivo?

Vediamo, con un esempio, se da un’argomentazione classica è possibile 
ricavare un procedimento costruttivo.

Ricordiamo che un punto p ∈ R, l’insieme dei numeri reali, si dice punto di 
accumulazione di un insieme S ⊆ R se per ogni intervallo di p privato del punto 
p, (p−ε, p+ε) /{p} con ε > 0, si verifica che S ∩ (p−ε, p+ε) /{p} ≠ ∅. L’insieme S ⊆ 
R si dice limitato se esistono s1, s2 ∈ R tali che ∀s ∈ S, s1 ≤ s ≤ s2.
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Un classico risultato di B. Bolzano e K.Weierstrass afferma:

Teorema (di Bolzano-Weierstrass). Sia S ⊆ R un insieme infinito limitato. Allora 
S possiede almeno un punto di accumulazione.

Osservazione. Il punto di accumulazione può o meno appartenere ad S.

Il teorema di Bolzano-Weierstrass è conseguenza del seguente:

Lemma (degli intervalli inscatolati). Sia In = [an, bn] ⊆ R, {In} una successione di 
intervalli (la notazione indica che contengono gli estremi) tale che In+1 ⊆ In, ∀n e 
|bn−an| → 0 per n → +∞. Allora l’intersezione degli In non è vuota.

Il lemma si basa sulla possibilità di costruire una successione di Cauchy e di uti-
lizzare la completezza di R per provarne la convergenza.

Dimostrazione del teorema. Siano s1 e s2 ∈ R tali che s1 ≤ s ≤ s2 ∀s ∈S. Definiamo 
s3 =1/2(s1+s2). Allora l’affermazione “nell’intervallo [s1, s3] giacciono infiniti punti 
di S” è o vera o falsa. Se è falsa ne segue che in [s3, s2] giacciono infiniti punti di 
S. Nel primo caso sia I1 = [s1, s3], nel secondo caso sia I1 = [s3, s2]. Sia s4 il punto 
medio di I1 (che potrebbe essere o 1/2 (s1 + s3) o 1/2 (s3 +s2)). Il punto s4 divide I1 
in due intervalli e poiché I1∩S ha infiniti elementi applichiamo il ragionamento 
precedente per determinare un intervallo I2 contenuto in I1 con I2 ∩ S con infi-
niti elementi. In tal modo nasce una successione In che si vede immediatamente 
soddisfare le ipotesi del lemma. Sia allora p nell’intersezione di tutti gli In.  È 
immediato riconoscere che p e un punto di accumulazione per S.

Chiaramente stiamo qui usando il principio del terzo escluso per un insie-
me infinito. Ma e possibile dare al precedente ragionamento una forma costrut-
tiva?

Quello che dobbiamo fare è sostanzialmente stabilire un criterio di scelta 
per gli intervalli In. Ci sono casi in cui il sottoinsieme S ⊆ R limitato non ci 
permette di farlo. Costruiamo un tale S e, a questo scopo, diciamo numero di 
Goldbach un intero n ≥ 2 tale che 2n si può scrivere come somma di due primi. 
Sia inoltre rν, ν = 1, 2, . . . la successione dei razionali in [0, 1) ordinati nel modo 
seguente:

razionale rν:           0, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6…

  naturale ν:             1,   2,     3,     4,     5,     6,     7,     8,     9,   10,   11...
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Ad esempio r8 = 2/5, r11 = 1/6 , ... e così via. Volendo esplicitare ulteriormente ciò 
che abbiamo fatto, si noti che i razionali della prima riga sopra p/q e p′/q′, con p, 
q e p′, q′ primi tra loro, vengono ordinati secondo la relazione

p/q≤p′/q′ se e solo se o q < q′o q = q′ e p ≤ p′

alla quale poi corrisponde l’assegnazione del naturale ν sulla seconda riga.
Definiamo ora S come la successione an siffatta:

 an =2 – 1/n se n = 1 o ∀ν ≤ n, ν e un numero di Goldbach,
oppure

an=rn in caso contrario.

Si noti che se la congettura di Goldbach fosse vera allora an = 2 – 1/n ∀n ed S ⊆ 
[1, 2). Se però la congettura di Goldbach fosse falsa e 2N è il più piccolo pari con 
N ≥ 2 che non si può esprimere come somma di due primi allora an = 2 −1/n ∀n 
< N e an = rn ∀n ≥ N. Dunque S ⊆ [0, 2] con al più un numero finito di elementi 
in [1, 2).

Come troviamo ora gli intervalli della dimostrazione del teorema di Weier-
strass?

Si ha 0 < an ≤ 2 dunque s1 = 0 e s2 = 2, allora s3 = 1. Quindi o in [0, 1] 
oppure in [1, 2] stanno infiniti punti della successione {an} cioè di S. Ciò però 
non si può decidere allo stato attuale delle cose; se la congettura di Goldbach 
fosse vera dobbiamo scegliere I1 = [1, 2], se falsa I1 = [0, 1]. L’ intersezione degli 
intervalli non può quindi essere assegnata oggettivamente per S = {an}. Si noti che 
se la congettura di Goldbach fosse vera, il punto 2 sarebbe un punto di accu-
mulazione per S. Se invece la congettura fosse falsa, allora ogni punto di [0, 1] 
sarebbe di accumulazione per S perché tale proprietà vale per la successione {rn}, 
che differisce da S solo per un numero finito di termini.

La dimostrazione del teorema di Weierstrass (ammesso rimanga ancora 
vero se escludiamo la validità del principio del terzo escluso) deve essere ristabili-
ta ex-novo in termini “costruttivi”.

Per concludere la mancanza del principio del terzo escluso ci preclude una 
possibilità di scelta. Rinunciando ad utilizzare il terzo escluso, un elemento lo-
gico estremamente potente, abbiamo avuto una penalizzazione molto forte sulla 
possibilità di dar esistenza a oggetti matematici. L’accettazione di nuovi oggetti 
matematici non risulta dunque sempre possibile e, soprattutto, qualora esistano 
comunque percorsi costruttivi, ci aspettiamo che essi siano spesso molto più in-
voluti. Quindi vi è sicuramente una perdita, per così dire, in termini economici. 
Ma questo, fondamentalmente, è un fatto marginale interno allo sviluppo del 
pensiero matematico. Pensiamo invece che un’operazione del genere abbia molto 
a che vedere con una posizione epistemologica proprio nei termini di una teo-
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ria della conoscenza – che può essere implicita o esplicita − ma che comunque 
agisce nella ricerca del matematico. Una riflessione filosofica dovrebbe coglierne 
il significato soprattutto in relazione, alla costituzione di una teoria della cono-
scenza. Nel senso che, rinunciare al terzo escluso nel caso di insiemi infiniti, è 
legato a doppio filo con l’ammettere solo dimostrazioni di carattere costruttivo, 
ma ciò può essere filosoficamente criticabile. In effetti, qual è l’alveo dei desidera-
ta da parte del matematico che riconosce diritto di cittadinanza a sole procedure 
costruttive?

In primo luogo, e fermiamoci a questo che sembra tra i più importanti, 
questi desiderata riguardano lo statuto che deve avere l’oggetto matematico che, 
in questa prospettiva, ha senso e valore solo allorché si propone, al termine della 
realizzazione del progetto costruttivo, in modo ostensivo. L’oggetto in questione 
deve proprio, al termine di una qualche progettualità, darsi, ostensivamente in 
carne ed ossa. Su questo tema la fenomenologia può dirci qualcosa a proposito 
di cosa sia effettivamente “conoscere un oggetto”. L’oggetto è inteso come posto 
di fronte a noi nel caso di un oggetto mondano – non so, il tavolo su cui sono 
appoggiato – o invece in quella sorta di pienezza ed ostensione ideale – che chia-
meremo pienezza noematica – qualora si tratti di un oggetto ideale, di princi-
pio passibile di essere intenzionato dalla nostra coscienza. Ed il modello sotteso, 
quello che indica cosa si intende per prensione adeguata dell’oggetto, e quello 
dato dalla percezione sensibile. Ma c’è una cosa che passa sotto silenzio: in realtà 
la percezione oggettuale non è mai completamente ostensiva. La datità ostensiva 
e completa è una sorta di idea kantiana, non si realizza mai. La percezione ci 
offre sempre una faccia alla volta dell’oggetto, in un certo momento e contesto, 
mentre è la somma aperta o risultante delle percezioni parziali che ci dà l’oggetto. 
La percezione anche la più luminosa che possa esserci, la più “offerente” risulta 
sempre in via di saturazione e non ci consegna mai l’oggetto nella sua totalità. 
In fondo questo desiderata per cui l’oggetto ideale debba darsi nella sua totale 
ostensione indica chiaramente un’idealizzazione. Ciò non impedisce che l’oggetto 
si offra in evidenza, solo che questa prende forme mediate in un percorso tem-
poralmente strutturato. Questa posizione potrebbe portarci a ritenere che un 
risultato di pura esistenza sia poco più che inutile.
 
Consideriamo ora un esempio per vedere se le cose stanno proprio così o, alme-
no, se sia possibile presentare qualche dubbio sulla liceità di questo atteggiamen-
to così minimalista.

Gauss, motivato da certe considerazioni sperimentali basate sulle tavole 
dei numeri primi allora esistenti (e alle quali egli stesso lavorò per molti anni 
come passatempo), introdusse quello che in termini moderni viene chiamato il 
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logaritmo integrale di n, li(n), vale a dire la funzione aritmetica li(n) definita come 
l’integrale da 2 a n di 1/log(t) e congetturò la validità del seguente risultato:

lim     π(n)/li(n)= 1
				       n→+∞    

dove π(n) è il numero dei primi compresi tra 2 ed n. Questo risultato, che prende 
il nome di Teorema dei numeri primi, venne dimostrato indipendentemente e 
quasi contemporaneamente molto più tardi nel 1896 da J. Hadamard e C. de la 
Vallee Poussin. Entrambi basano la loro dimostrazione sulla funzione ζ di Rie-
mann. Ma al solito i matematici risolto un problema vogliono qualcosa di più ed 
in questo caso si tratta di stabilire come si comporta la differenza:

π(n) − li(n)

per n grande. La risoluzione della congettura di Riemann per la funzione ζ im-
plicherebbe che

π(x) − li(x)/x1/2+α → 0 per x → +∞, ∀α > 0.

tuttavia la congettura di Riemann non è stata tuttora né provata né contraddetta. 
In effetti il miglior risultato ad oggi disponibile è:

π(x) − li(x)/x1/2 log x= O (1) per x → +∞.

Per molto tempo si è creduto che

π(x) < li(x)

essendo questo fatto validato dalla tavola dei numeri primi per x < 108, la disu-
guaglianza è stata poi confermata per x < 1018 da Buthe nel 201510. 

Ed e proprio a questo punto che un teorema di Littlewood del 191411 ha 
un effetto in qualche modo dirompente. Infatti, Littlelwood ha dimostrato che 
esistono infiniti interi naturali x per i quali:

π(x) − li(x) >x1/2/2 log x;

ed infiniti naturali x per i quali:

π(x) − li(x) < −x1/2 /2 log x.

Non si conosce ad oggi il più piccolo intero y per il quale valga una delle due 
precedenti disuguaglianze. Sappiamo però12 che deve esistere un qualche

10   J. Buthe, On the first sign change in Mertens’ theorem, in «Acta arithmetica», 171, 2015, pp. 
183–195).
11   J.E. Littlewood, Sur la distribution des nombres premiers, in «Comptes Rendus del’Academie 
Scientifique de Paris», 158, 1914, pp. 1869–1872.
12   Cfr. S. Zegowitz, On the positive region of π(x)−li(x), Master thesis, Manchester Institute for 
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x < e7279513468

per cui

π(x) − li(x)>0

Ricordiamo che questi interi vengono abitualmente chiamati interi di Skewes, 
da Skewes, studente di Littlewood, che pubblicò i propri unici due articoli su 
questa questione13.Uno tra gli ultimi risultati più importanti in questa direzione 
è dovuto a Saouter e Demichel14 per il quale esiste un x come sopra con

x<1,397162914×10316

Possiamo a questo punto affermare che il risultato sia un semplice risultato di 
pura esistenza che, in fondo, lascia il tempo che trova? Non abbiamo imparato 
nulla di effettivo? Non abbiamo comunque aumentato la nostra conoscenza?

Risulta evidente che non abbiamo l’oggetto voluto, ma di fatto abbiamo 
una serie di nuove conoscenze e di ipotesi di lavoro, di cui prima semplicemente 
non disponevamo. Abbiamo imparato qualcosa su ciò che sta attorno al nostro 
oggetto ancora velato alla sua presa definitiva. E, a nostro parere, questo non è si-
gnificativo solo all’interno della matematica, almeno nel senso che la costituzione 
di una teoria della conoscenza dovrebbe anche occuparsi della possibilità effetti-
vamente operativa di conoscere anche, per così dire, le “condizioni di contorno” 
all’oggetto di volta in volta intenzionato. 

Torniamo per un momento alla conoscenza di un oggetto ideale, più preci-
samente a quello che succede nel momento in cui definiamo un oggetto matema-
tico. Ad esempio introduciamo una classe particolare di funzioni con la seguente 
definizione (non costruttiva):

Una funzione f  definita su di un’aperto A del piano complesso C a valori in C si 
dice olomorfa su A se è derivabile in senso complesso in ogni punto di A.

Innanzitutto osserviamo che la definizione posta non è vuota: una funzione po-
linomiale sul piano complesso è olomorfa su di esso come pure la funzione espo-
nenziale e così via. Ma abbiamo una comprensione noetica di funzione olomorfa 
ottenuta dalla sola definizione? Risulta chiaro che la definizione è univoca nell’ 
individuare completamente il concetto di funzione olomorfa, ma la conoscenza 

Mathematical Sciences, The University of Manchester, 2010.
13   Rinviamo per questo a S. Skewes, On the difference π(x)−li(x) (I), in «Journal of the London 
Mathematical Society», 8, 1933, pp. 277–283 ed al seguente On the difference π(x) − li(x) (II), 
«Proceeding of the London Mathematical Society», 5, 1955, pp. 277 – 283.
14   Y. Saouter, P.Demichel, A sharp region where π(x)−li(x)  is positive, in «Math.Comp», 79 
2010, pp. 2395–2405.
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dello stesso oggetto può andare oltre; ad esempio, sappiamo che f:A→C è olo-
morfa in A se e solo se per ogni punto y di A esiste una serie di potenze centrata 
in y e convergente in un disco D di raggio r tale che per ogni punto p interno 
al disco e in A il valore di f in p coincide con la somma della serie in p. Risulta 
chiaro che ora la mia comprensione dello stesso concetto si è ampliata. Anche 
in questo caso possiamo dunque dire che la percezione oggettuale non è com-
pletamente ostensiva, anzi è più probabile che, un giorno, riusciremo a vedere lo 
stesso oggetto da una ulteriore sfaccettatura.

Questo esempio, come molti altri in matematica, ci permette di introdurre 
anche la seguente riflessione: la natura comune delle funzioni olomorfe, quella 
che potremmo chiamare loro essenza o meglio ancora “Idea” per ricordare Plato-
ne, possiamo etichettarla, come si fa nella prassi matematica, con il termine “olo-
morfia”. Per Platone essa apparterrebbe ad un immutabile mondo soprasensibile, 
il mondo delle idee, ma qual è l’uso che un matematico fa di questo termine nel 
concreto della sua ricerca? Per capirci, supponiamo di voler dimostrare il (primo) 
teorema di Morley15  che afferma il seguente fatto: dato un triangolo di vertici A, 
B e C si considerino le trisettrici degli angoli in A, B e C e le tre coppie di triset-
trici che individuano angoli adiacenti allo stesso lato. Queste coppie si interseca-
no in tre punti che sono i vertici di un triangolo equilatero. Ora per dimostrare 
il teorema si traccerebbe un triangolo particolare ABC per poi arrivare alla con-
clusione badando di non ricorrere ad alcuna caratteristica che esso non condivida 
con gli altri triangoli. In questo caso stiamo utilizzando l’essenza della nozione di 
triangolo, ma nel caso di concetti-idee più complesse quale quella di olomorfia? 
In quale modo mi è lecito considerare le due nozioni di olomorfia che abbiamo 
poco sopra evidenziato benché tra loro logicamente equivalenti? Più brutalmente 
ma in modo incisivo, l’assioma della scelta e il teorema di Tyconoff sul prodotto 
di famiglie di spazi topologici compatti presentano un’equivalenza logica ma un 
aspetto descrittivo di enti matematici totalmente diversi. Posso ritenere che mi 
individuino la medesima “Idea”?

L’ultimo esempio tratta di quella tanto decantata evidenza abusata dalla 
nostra ragione. La proprietà che vogliamo considerare è quella della derivabilità 
di una funzione continua definita sull’ intervallo [0, 1] o addirittura su tutto 
l’asse reale R. Se tracciamo una curva con la punta di una matita su di un foglio 
senza mai stai staccare la punta dal foglio, abbiamo quella che, a ragione, pos-
siamo chiamare una curva continua. Possiamo anche tracciare il grafico di una 
funzione continua su R e pensare alla retta tangente al grafico nel punto (x, f(x)) 

15   R. Guy, The Lighthouse Theorem, Morley & Malfatti: A Budget of Paradoxes, in «The American 
Mathematical Monthly», vol. 114, no. 2, 2007, pp. 97–141.
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il cui coefficiente angolare è dato dalla derivata di f in x. Fatti un po’ di tentativi 
e di grafici sul foglio la nostra intuizione geometrica ci suggerisce che l’insieme 
dei punti dove la tangente non esiste, cioè la derivata non esiste, debba essere 
in un qualche modo “piccolo”. Ma quanto piccolo? E in che modo piccolo? Il 
problema è tanto vecchio che possiamo farlo risalire alle prime considerazioni 
analitiche (cioè del “calcolo”) di Newton quali lo studio delle orbite dei pianeti, 
il moto del pendolo… e così via. Questo modo di procedere lo portò a conside-
rare “sostenibili” le intuizioni di carattere geometrico che riguardavano il calcolo 
stesso. (Per correttezza dobbiamo però ricordare che le dimostrazioni contenute 
nei Principia sono geometriche). Le strutture matematiche dovevano possedere 
la stessa regolarità del mondo fisico e quindi, sia Newton che, molti matematici 
negli anni successivi si concentrarono nello studio di “funzioni continue” dato 
dalle curve (quasi sempre meccaniche) che descrivevano il moto di un corpo 
pensato puntiforme. Considerazioni di questo genere rendono plausibile l’idea 
che funzioni continue siano anche derivabili nei punti dove sono definite salvo 
qualche eccezione. Interviene nelle nostre considerazioni anche un secondo fatto 
che riguarda la definizione di funzione. Per Eulero, nel 1700 una funzione è an-
cora un’espressione analitica; cioè qualcosa che possiamo pensare come costruita 
a partire da funzioni elementari quali le funzioni polinomiali, o semplici trascen-
denti come l’esponenziale le funzioni trigonometriche e così via fino ad arrivare a 
sviluppi in serie convergenti. Con Dirichlet, e indipendentemente Lobacevskij, il 
concetto si amplia e in termini moderni una funzione f: R→ R è semplicemente 
una qualche legge o ricetta che ad ogni x in R associa uno ed un sol y in R che, 
con notazione dovuta a Eulero stesso, si denota con f(x). Ad esempio sia f: R→ R 
la funzione definita da f(x)=1 se x è razionale e f(x)=o se x è irrazionale. Ancora, 
nella prima metà dell’ottocento, A. Ampere pubblica una dimostrazione fallace 
che “funzioni continue sono derivabili al di fuori di un insieme di punti specifi-
ci”. La sua “dimostrazione” si basa su di una erronea intuizione geometrica. Nelle 
sue lezioni tenute a Berlino nel 1872 K. Weierstrass presenta un esempio, pubbli-
cato grazie all’interesse di P. du Bois-Raymond, la funzione f: R→ R definita da

F(x)=∑(an)cos((bn)πx)

dove la sommatoria in n è estesa da 1 a ∞, e i parametri reali a e b soddisfano le 
seguenti condizioni

0<a<1, b è un intero dispari

e per essi risulta

ab>1 +(3/2) π
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Abbiamo così un’intera famiglia di funzioni continue su R dipendenti dai para-
metri a e b, che non ammettono derivata in alcun punto di R. La continuità di f 
è ovviamente dovuta alla convergenza uniforme della serie.

Negli anni sono stati dati molti più esempi alcuni interessanti per la loro 
semplicità; ci piace ricordare quello di McCarthy del 195316. La ricerca del ri-
gore in analisi cominciata alla fine dell’ottocento ci fa dunque dubitare di quel 
“principio di evidenza” tanto caro a Cartesio e spesso evocato in tanti sistemi 
filosofici. I precedenti esempi mostrano alcune figure in cui la matematica per-
mette di chiarire, persino con la possibilità di renderli operativi, una serie di 
concetti che possono costituire un riferimento iniziale per la riflessione filosofica. 
A questo punto vorremmo svolgere un percorso quasi reciproco: può la rifles-
sione filosofica servire in qualche modo al matematico nell’elaborazione della 
sua attività? Inoltre, per rendere anche più relazionale ed efficace l’analisi, una 
scelta filosofica orienta il lavoro del matematico? A questo proposito evitiamo un 
banale fraintendimento: assolutamente non nel senso che il filosofo debba dire 
al matematico come fare matematica, questo sarebbe semplicemente assurdo. 
Piuttosto il contributo di una analisi filosofica può essere utilizzato perlomeno 
in due direzioni:

1.  Il matematico, nel suo agire, in realtà non compie atti completamente 
sganciati da considerazioni filosofiche. Egli stesso è portatore di una visio-
ne filosofica che – esplicita o implicita che sia – ne orienta, necessariamente 
ancor prima che l’agire, una sorta di quadro di riferimento. Qualora questa 
visione sia esplicitata abbiamo la possibilità di una analisi, qualora non sia 
esplicitata abbiamo qualcosa di molto simile all’idea di pregiudizio inten-
dendo che si tratta di una condizione che agisce orientando l’attività del 
matematico, che semplicemente non è esplicitata.
2.  La visione filosofica della propria disciplina si caratterizza per una serie 
di implicazioni relative che partono per esempio da un punto specifico, 
diciamo il motivo del contendere, ma che si allargano in modo talora inatteso 
e toccano relazioni sia matematiche che più specificatamente filosofiche. La 
riflessione filosofica dovrebbe poter permettere di mostrare, tra le altre cose, 
quello che vi è di implicito e di nascosto sotto determinate assunzioni. 

16   J. McCarthy, An Everywhere Continuous Nowhere Differentiable Function, in «The American 
Mathematical Monthly», 60, 10, 1953, pp. 709–709.


