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1 The Best System Account

The Best System Account, BSA hereafter, is an attempt to answer the philosoph-
ical question: “What are natural laws?”. The three philosophers associated with
this perspective on natural laws are J.S. Mill, F.P. Ramsey and D. Lewis, and for
this reason BSA is also known as MRL account. Let us introduce BSA quoting
the locus classicus of the latter author. In his 1973 book Counterfactuals, Lewis
characterized BSA in the following terms:

Whatever we may or may not ever come to know, there exist (as ab-
stract objects) innumerable truedeductive systems: deductively closed,
axiomatizable sets of true sentences. Of these true deductive sys-
tems, some can be axiomatizedmore simply than others. Also, some
of them have more strength, or informational content, than others.
Thevirtuesof simplicity andstrength tend toconflict. Simplicitywith-
out strength can be had from pure logic, strength without simplicity
from (the deductive closure of) an almanac. [. . . ] What we value in
a deductive system is a properly balanced combination of simplicity
and strength - asmuch of both as truth and our way of balancing will
permit. We can restate Ramsey’s 1928 theory of lawhood as follows:
a contingent generalization is a law of nature if and only if it appears
as a theorem (or axiom) in each of the true deductive systems that
achieves a best combination of simplicity and strength. (Lewis 1973,
p. 73, original italic)

We can immediately observe that Lewis reduces the problem of characterizing
natural laws to the problem of theory choice: once we have selected the best
system(s) we can determine if a statement is a natural law by checking if it is
a theorem or an axiom of said system(s). It is worthwhile to remark that this
procedure will fail if the systems we are considering are undecidable.

Lewis’ conception itself was not monolithic. It was articulated and slightly
modified during time in order to make it fit in Lewis’ own philosophy, e.g. with
Principal Principle,modal realismandnatural properties.1 Inwhat follows, how-
ever, I won’t analyze the development of Lewis ideas through time. My aim is to
discuss, and possibly clarify, the four core notions of BSA, namely the notions of
deductive system, simplicity, strength and balance. As can be seen from the last
quotation, for Lewis simplicity and strength are binary relations such that:

• a system is simpler than another one if it has a simpler axiomatization;

• a system is stronger than another one if it hasmore informational content.

From other textual evidences it seems that for Lewis, given a deductive system,
the addition of an assumption increases the strength and decreases the simplic-

1See (Lewis 1973, 1986, 1994, 1999).
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ity of the deductive system. I therefore take the number of axioms (or hypothe-
ses, as Iwill prefer to call them later) tobe theLewisianmeasureof the symplicity
of a deductive system.2

This characterization is insufficient, as I will argue in what follows. Indeed,
the necessity to pin down these concepts more precisely can be traced back to
Lewis himself, as witnessed by the following quotations:

In science we have standards - vague ones, to be sure - for assess-
ing the combination of strength and simplicity offered by deductive
systems. (Lewis 1973, pp. 73–74, emphasis mine)

and

Of course, it remains an unsolved and difficult problem to say what
simplicity of a formulation is. (See the 1983 article “New work for a
theory of universals”, reprinted in Lewis 1999, p. 42)3

In order to pursue the analysis of these notions I will stick to the 1973 formula-
tion of BSA. This is, to the best of my knowledge, faithful enough to the version
of BSA that was received in the literature on natural laws.4

1.1 The contemporary debate and the need for a more precise
version of BSA

The contemporary literature onBSA addresses awide range of issues, essentially
accepting the 1973 formulation and its core notions. In general, we can iden-
tify roughly two attitudes towards the explicit definitions of simplicity, strength
and balance. On one hand, the issue is ignored, in the sense that scholars rest
content with Lewis’ characterization or simply decide to postpone its analysis
(among the others, the articles (Cohen and Callender 2009), (Jaeger 2002) and
(Robert 1999) are, in different degrees, examples of this perspective). On the
other hand, it is perceived as problematic (see for example (Psillos 2002, p. 152);
(Bird 1998, p. 40); (Armstrong 1983, p. 67); (Mumford 2004, p. 44)). The clearest
exposition of this second stance is Van Fraassen’s:

I havewrittenhereas if simplicity, strengthandbalanceareas straight-
forward as a person’s weight or height. Of course they are not, and
the literature contains no account of themwhich it would be fruitful
to discuss here. [. . . ] To utilize these motions uncritically, as if they
dealt with such well-understood triads as ‘under five foot five, over

2The correctness of this interpretation is however not essential for the aim of this paper, namely
providing an apt framework to specify the notions of simplicity, strength and balance.

3Where ‘formulation’ refers to the formulation of a deductive system.
4See for examples, among the recent papers, (Bird 2008, p. 74) and (Cohen and Callender 2009,

p. 4).
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200 pounds, overweight’ may be unwarranted. (Van Fraassen 1989,
pp. 41–42)

I agree with this concern and I take the insufficient precision of such notions as
a drawback of BSA. The following sectionwill be devoted to the (re)construction
of a suitable frame for such tasks.

2 The Formal Framework

To attempt a clearer formulation of simplicity, strength and balance we have
to use a toolkit of more precise, and possibly shared, definitions. According
to Lewis, these notions are to be applied to scientific theories conceived as de-
ductive systems. But what is a deductive system exactly? In his words a deduc-
tive system is a “deductively closed, axiomatizable sets of true sentences”(Lewis
1973, p. 73). However, a deductive system is usually understood as a purely syn-
tactic object.5 What is then the role of truth in a formal representation of sci-
entific theories and what do we mean by deductive system? Given that BSA is
essentially a formal account of lawhood, the notions of axiomatization, deriva-
tion anddeductive systemare crucial. But Lewis is not explicit in explaining how
they enter thepicture. Imaintain thatweneedamoreprecise formal framework.
This is not just a concern about tidiness: we need an improved version of BSA to
evaluate BSA itself, its assumptions and its consequences. Questions like

• what conception of scientific theories is required by BSA?

• how do standards of simplicity and strength look like?

• how do we calculate the balance of a deductive system?

cannot be addressed employing the 1973 formulation of BSA. In what follows I
will provide an aswer to the first two questions and suggest possible replies to
the third one.

To this end in the rest of this section wewill attempt a reconstruction of BSA.
Assuming that scientific theories can be formalized, we treat them as theories in
model-theoretic sense.6 To add further generality, we abstract from a particular
deductive system (inModel Theory it is usually first order classical logic) using a
general theory of logical calculi such as the one developed in Abstract Algebraic
Logic.7 This latter step enables us to vary the inferential environment in which
a scientific theory lives and study the consequences.

5See (Font, Jansana, and Pigozzi 2003, p. 5 and subsection 2.2).
6The founding fathers of this approachare, among theothers, Tarski andCarnap, see (Tarski 1944,

pp. 346–347), (Tarski 1994) and (Carnap 1937). Formore recent considerations on this stance see (da
Costa and French 2000), for a classic text of Model Theory see (Chang and Keisler 1990).

7See (Font, Jansana, and Pigozzi 2003).
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2.1 Logical languages and formulas

Prior to outlining the definition of deductive system, let us define a formal lan-
guage along the lines of Johnstone’s presentation.8 For the sake of simplicity I
will stick to first order languages (for a definition of language appropriate for
higher order logic see (Johnstone 2002, p. 940)). Each language can have non-
logical symbols for basic sorts, functions and relations: these symbols constitute
the signature of the language. A signature Σ is thus composed of:

1. A set Σ-Sort of sorts, symbols for kinds or families of objects.

2. A set Σ-Fun of function symbols together with a map assigning to each
function symbol its type, a finite non empty list of sorts (where the last sort
is the sort of the output). We write f : A1 . . . An → B to indicate that f has
type A1 . . . AnB and call n the arity of f . If n = 0 f is called a constant of sort
B .

3. A set Σ-Rel of relation symbols together with a map assigning to each re-
lation symbols its type, a list of sorts as in the previous case. We write
R : A1 . . . An to indicate that R has type A1 . . . An and call n the arity of R .
If n = 0 R is called an atomic proposition.

For each sort A of Σ-Sort we assume to have a countably infinite number of vari-
ables of sort A. We now define the terms of a language and their sorts recursively
(we write t : A to indicate that t is a term of sort A):

1. x : A if x is a variable of sort A.

2. f (t1, . . . , tn) : B if f : A1 . . . An → B and t1 : A1, . . . , tn : An .

Note that for the second clause constants are terms. The terms are those collec-
tions of symbols of the language that stand for individuals (even though they do
not always denote a specific one).

The next step is to define the formulas of the language, but to do that we first
have to introduce the logical symbols. Roughly speaking9, logical symbols are
defined by a setC on of quantifiers and connectives symbols together with amap
assigning to each connective symbol a natural number n corresponding to its
arity. A language L is thus composed of a signature Σ, a setC on with the relative
map and a set of auxiliary symbols (such as brackets). With the aid of logical
symbols we can finally define the set of formulas F mL of the language L in the
usual recursive fashion:

1. R(t1, . . . , tn)belongs toF mL ifR is a relationof typeA1, . . . , An and t1 : A1, . . . , tn : An .
8See (Johnstone 2002, p. 808).
9For the sake of brevity we avoid a precise discussion of free and bounded variables. This discus-

sion is inessential for our purposes and these notions should be clear to anyone familiar with basic
logic. See (Johnstone 2002, p. 809) for details.
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2. c (φ1, . . . , φn) belongs to F mL if c is an n-ary connective and φ1, . . . , φn are
formulas.

3. qx .φ(x) belongs to F mL if q is a quantifier and φ(x) is a formula with free
variable x .

The formulas obtained via the first condition are called atomic formulas. By def-
inition they are completely independent from the choice of connectives. The set
F mL is thus generated combining atomic formulas bymeans of connectives and
quantifiers. In general, formulas are assertions about individuals.

2.2 Deductive systems and theories

Now that we have all the linguistic notions in place, let us turn to the definition
of deductive system. Following (Font, Jansana, and Pigozzi 2003), a deductive
system or a logic in a language L is a pair S = 〈F mL, `S 〉 where `S is a substitu-
tion invariant consequence relation on F mL , i.e., a relation `S⊆ ℘(F mL ) × F mL

satisfying:

1. if φ ∈ X then X `S φ.

2. if X `S φ for all φ ∈ Y andY `S ψ then X `S ψ.

Intuitively `S represents all the inferential proceduresof adeductive system. When
such relation holds between a set of formulas Γ and a formula φ we write Γ `S φ

to mean that we can derive the formula φ, the conclusion, applying the inferen-
tial procedures of `S to the formulas in Γ, the premises. In general, a deductive
system is nothing more than a machinery to make proofs in a certain language,
it is a purely syntactical inferential engine.

As this definition shows, a deductive system is dependent on the language,
or, more precisely, on the set of formulas generated by a certain language. But
there is, as we have seen, a distinction between logical and non-logical symbols,
between the setC on and the signature of a language. The reason for this distinc-
tion is that a deductive system is dependent on the connectives and quantifiers
but not on the signature. Logical symbols play an essential role in inferential
processes, while the non-logical symbols are idle in this respect.

The theorems of S are the formulas φ such that ∅ `S φ, that is, the formulas
that can be proved without any premise. There are different ways to present a
deductive system: for example as an axiomatic calculus, as a natural deduction
calculus or as a sequent calculus. Given that the issue of the number of axioms
is important in Lewis’ definition of the criterion of simplicity, let us spend a few
words on the axiomatization of deductive systems (wewill return to the problem
in Subsection 3.1.1). AHilbert-style calculus is a pair P = 〈Ax, Ru〉 consisting of a
set of axioms and a set of inference rules, where by ‘inference rule’wemean any
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pair 〈Γ, φ〉 and by axiom a rule of the form 〈∅, φ〉 (which is usually written simply
as φ). In what follows we will use the term ‘inference rule’ to refer to inference
rules stricto sensu, not to axioms.

A pair 〈Ax, Ru〉 is a presentation of a deductive system S if Γ `S φ iff φ is con-
tained in the smallest set of formulas that includes Γ together with all substitu-
tion instances of the axioms of Ax , and is closed under direct derivability by the
inference rules in Ru .

The same deductive system can have different presentations: given two pre-
sentations P1 and P2 in the same language, it is sufficient that the consequence
relation `1 associated with P1 is the same as the consequence relation `2 asso-
ciated with P2. This for example happens when, given the same inference rules
and two different sets of axioms Ax1 and Ax2, we can derive all the axioms of Ax1

from Ax2 and vice versa.
We define an S-theory (or just a theory, when S is understood) as a set of for-

mulas Γ closed under the consequence relation `S , i.e., such that if Γ `S φ then
φ ∈ Γ. In words, Γ is closed under the consequence relation if every formula that
can be derived from the formulas in Γ is already in Γ. The smallest S-theory will
be of course the set of theorems of S , and, as can be easily seen, the set of theo-
rems of S is included in every S-theory. In what follows we will use the symbols
T1, T2, etc to refer to theories, in order to distinguish them from ordinary sets of
formulas.

A S-theory T is generated by a set of formulas Θ if, for all φ, φ ∈ T iff Θ `S φ,
that is to say, if we can derive any formula of T from Θ and no formula that can
be derived from Θ is outside T. Given any presentation P = 〈Ax, Ru〉 of S , the set
of theorems of S is generated by (the substitution instances of) the statements
in Ax . Given our previous characterization of the presentation of a deductive
system, we will use the term ‘axiom’ only to indicate the statements used in a
Hilbert-style presentation, and we will employ the term ‘hypothesis’ to denote
the statements used to generate an S-theory different from the trivial one com-
posed only of theorems. We can have different sets of hypotheses for the same
S-theory, and these sets can be partially overlapping or completely disjoint. We
will use the term ‘presentation of theoryT’ to refer to a set of hypothesesΘT used
to generate T.

2.3 Old and new

How do these concepts relate to Lewis’? What we called deductive system has
no counterpart in Lewis’ account, probably because of the fact that he was con-
sidering only one logic, classical logic, and thus he had no need to introduce
further distinctions. What Lewis terms ‘deductive system’ is, in our framework,
an S-theory. An S-theory is then what corresponds to a scientific theory. By def-



R
ivistaItalianadiFilosofiaAnaliticaJunior

9:2
(2018)

85

Giovanni Cinà A Formal Analysis of the Best System Account of Lawhood

inition, an S-theory T is deductively closed, every formulas that can be deduced
from those in T is already contained in T.

Furthermore, an S-theory is axiomatizable in the sense that it can be gener-
ated by a set of hypotheses Θ. We have thus recovered most of Lewis’ original
idea of a deductive systems as “deductively closed, axiomatizable sets of true
sentences”. Is there a sense in which an S-theory is a set of true sentences?

The answer to this question is: no, unless we take some semantic consider-
ations into account. These would add another layer to our framework. For the
rest of this article we will remain at the level of the syntax, running the risk of
oversimplification, and leave the semantic side to be developed in future work.

Let us summarize what we have defined in this section. In the framework
here presented a scientific theory is composed of the following ingredients:

1. a language L, composed of a signature Σ, a setC on of connectives with the
relative maps and some auxiliary symbols.

2. a deductive system S , defined by a consequence relation on the set of for-
mulas generated by L.

3. a set of hypothesis Θ.

A concrete example of a scientific theory presented in a similar fashion can be
found in “Axiomatic Foundations of Classical Particle Mechanics” by McKinsey,
Sugar and Suppes (McKinsey, Sugar, and Suppes 1953).

2.4 Themathematical apparatus of scientific theories

I have so far ignored the mathematical apparatus employed by many scientific
theories. How does mathematics fit into the picture just described? The answer
is: we treat mathematical theories as theories in a model-theoretic sense and
we add them to the other hypotheses. Therefore, if a scientific theory T is us-
ing a particular piece of mathematics, an axiomatization of the mathematical
notions employed in T will be included in the set of hypotheses ΘT . If, for ex-
ample, a scientific theory uses real numbers to represent some parameters, we
will insert in the mathematical hypotheses an axiomatization of the arithmetic
of real numbers.10

In this respect it is worth noting that to be able to axiomatize certain mathe-
matical theorieswemay require a language rich enough to formulate the axioms
(‘mathematical hypotheses’ in our terminology) and a deductive system power-
ful enough to deduce the desired theorems (some mathematical theories may
require second order logic, for example).11 As a consequence, because of the
10As, for example, the one in (Tarski 1994, p. 205).
11For a thorough discussion of this matter see (Parsons 2010).
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mathematics they employ, some scientific theories cannot even be formulated
without assuminga core vocabulary and somekindofminimal deductivepower.

The advantage of this account of mathematics is an extreme flexibility: we
can tailor the mathematical notions to the need of a scientific theory and study
what happens when we modify such notions or their axiomatization (see Sub-
sections 3.1.1 and3.2 for the implications for simplicity and strength). Moreover,
without any specific commitment to the content of the mathematical and non-
mathematical hypotheses, we can reasonably hope to describe both the highly-
formalized scientific theories, wheremathematics is pervasive and there are few
non-mathematical hypotheses, and the non-formal scientific theories, where
very fewmathematical assumptionswill be coupledwithmanynon-mathematical
hypotheses. Another point worth making is that in this account there is no syn-
tactic characteristic todistinguishbetweenmathematical andnon-mathematical
hypotheses, in the sense that both are treated as formal statements (maybe the
former are more heavily formalized than the latter).

3 Redefining the Core Notions

Having defined a scientific theory as an S-theory, I now turn to the discussion
of simplicity and strength. Before analyzing how a theory can be simpler or
stronger than another one, however, there is an important observation tomake.
The comparison between two theories ismeaningful, I believe, only if these the-
ories are about overlapping domains of events. To explain this with an example,
if I am interested in the laws of nature governing the electromagnetic phenom-
ena I will consider theories that model this kind of phenomena, not Population
Biology. This means that at least a naive idea of the intended semantics of our
theories is needed if we want to avoid useless comparisons between unrelated
theories.

With this in mind and the aid of the framework just defined, let us now turn
to simplicity, strength and balance, in this order. In what follows I will intend all
the relations in their weak version, that is, we will use the terms ‘subset’ as short
for ‘subset or equal’, ‘less’ for ‘less or equal in number’, and so on.

3.1 Simplicity

We start analyzing simplicity by having a closer look at Lewis’ formulation.

3.1.1 Conceptual Simplicity

In the Lewisianmodel a theory T1 is simpler than a theory T2 if T1 has fewer ‘ax-
ioms’ than T2. In light of the previous discussion, I maintain that this statement
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is too vague. Translating this definition into the new terminology one obtains
two definitions:

1. T1 is simpler than T2 if T1 has fewer axioms than T2.

2. T1 is simpler than T2 if T1 has fewer hypotheses than T2.

depending on how one interprets Lewis’ term ‘axiom’. There are two observa-
tions tomake. The first one is that 1 is arguably in contrast with other notions of
simplicity. Consider two S-theories T1 and T2 with the same language, the same
deductive system and the same hypotheses. The difference between T1 and T2
lies in the presentation of the deductive system S : the presentation in T1 has,
say, 3 axioms and 2 inference rules; the presentation in T2 has 10 axioms and
2 inference rules. As can be easily inferred, the derivations of theorems in T1
will be generally longer than the derivations in T2, for the derivations in T1 will
requiremultiple uses of the same axioms to obtain lemmas that canbe easily de-
rived in T2. If T1 has fewer axioms then derivations in T1 are more complicated
from a computational point of view (see Subsection 3.1.3). The second obser-
vation concerns the second definition of simplicity, conceptual simplicity from
nowon. We can have two versions of conceptual simplicity, a ceteris paribus one
and a general one:

Definition 1 (Ceteris paribus conceptual simplicity (CPCS)) For everypair of the-
ories T1 and T2 sharing the same language L and the same deductive system S , we
define:

T1 is simplerC PC S than T2 if T1 has fewer hypotheses than T2.

Definition 2 (General conceptual simplicity (GCS)) For everypair of theoriesT1
and T2:

T1 is simplerGC S than T2 if T1 has fewer hypotheses than T2.

As can be easily seen, CPCS is just GCS restricted to theories sharing the same
language and deductive system. In its domain of applicability CPCS is an effec-
tive measure of simplicity, but such domain is extremely narrow and CPCS can-
not be regarded asmore than a limiting case. GCS, on the other hand, is defined
on every pair of theories, and it is probably the closest to (our interpretation of)
Lewis’ relation of simplicity. Notably, ‘having fewer hypotheses’ does not mean
that the first set of hypotheses is included in the other as a subset. Substituting
the condition of set-theoretical inclusion to the condition on the number of hy-
potheses one obtains two different relations: CPCS* and GCS*. By the definition
of S-theory, CPCS* is nothing more than the relation of inclusion between dif-
ferent set of hypotheses generating the same theory (that is, it is applicable only
if T1 and T2 coincide). An interesting version of GCS* is:
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Definition 3 (Mathematical Simplicity (MS)) For every two theories T1 and T2:

T1 is simplerM S than T2 if M H (T1)) is a subset of M H (T1).

where M H (T1)) and M H (T2)) denote the set of mathematical hypotheses of T1
and T2 respectively.

The reason why a small number of hypotheses is preferable is quite clear: a
compact theory is easier to handle and to understand.

Nevertheless, somebodymaywonder why the number of hypotheses should
be an indicator of simplicity in the first place. The obvious objection is: given a
language with conjunction, it is possible to conflate finitely many formulas into
one by taking the conjunction of them (even infinitelymany, if the language has
infinitary conjunctions). This of course makes the counting of hypotheses an
irrelevant matter. This however is not a problem, for two reasons. The first, of
a pragmatic flavour, is simply that there are no theories with hypotheses where
the conjunction is the main connective. The second is that, even if we want to
avoid pragmatic considerations, it is possible to write a simple computer pro-
grams that, in counting thenumber of hypotheses, checkswhether the hypothe-
ses have a conjunction as outer connective. If this is the case, the program con-
sider the subformulas as distinct hypotheses, and restarts the counting (and the
check). As long as we have hypotheses made of finitely many symbols, the pro-
gram will output the correct number of axioms, despite of conjunctions.

Nevertheless, the number of hypotheses is just one of the components of a
theory, andwe should also consider the role of languages anddeductive systems.

3.1.2 Expressive simplicity

As far as the language is concerned, we can compare two theories in terms of the
expressive power of their signatures, of their expressive simplicity. Let us explain
this with an example. Consider two theories T1 and T2 such that in both their
signatures there is a sort A. In the language of T1 there is a symbol for a constant
of sort A, while in the language of T2 there is no such symbol, and thus to refer to
the same object we have to use a paraphrase like “the object of sort A satisfying
conditions x, y, etc”. The same argument can be applied to every other symbol
of the signature: to function symbols (“the function of type A . . . satisfying con-
ditions x, y, etc”) and to relation symbols (“the relation of type A . . . satisfying
conditions x, y, etc”).

The signature of T2 is simpler in the sense that it has less symbols and that
some symbols of T1 can be substituted by a combination of symbols of T2. This
feature can be important if we want to minimize the number of primitives for
foundational purposes. The signature of T1 is simpler in the sense that is less
cumbersome, instead of repeating a long list of symbols we can just employ a
shorter expression. This can make the difference, for example, from a didactic
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perspective or for computational complexity. We have here two conflicting no-
tions of simplicity.

Definition 4 (Expressive Simplicity with Less Symbols (ESLS)) For every two the-
ories T1 and T2:

T1 is simplerESLS than T2 if T1 has less symbols than T2

Definition 5 (Expressive Simplicity withMore Symbols (ESMS)) For every two
theories T1 and T2:

T1 is simplerESM S than T2 if T1 has more symbols than T2

Explicitating a particular kind of symbols in these definitions, respectively sort,
function and relation symbols, we have threemore specific versions of ESLS and
ESMS. Along these lines, the importance of ESLS and ESMS can be weighed rel-
atively to the symbols under examination: we may want a symbol with a piv-
otal role in our theory, say, the constant representing the speed of light, to be
included in the signature, while a conceptually subordinate symbol may be de-
fined in terms of others.

3.1.3 Computational Simplicity

It is also possible to find notions of simplicity connected with the deductive sys-
temof a theory. Consider for example the following case. Given a set of formulas
Γ regarded as true, say, a set of formulas representing empirical observations or
some important theorems, a theory T1 may be judged simpler than a theory T2
if the derivations of the formulas in Γ in T1 are ‘simpler’ than the corresponding
derivations in T2.

But how can a derivation be simpler than another one? Before examining
possible candidates of computational simplicity, one has to qualify two points.
First, there are two variables to consider: which deductive system is used and
how it is presented. A ‘stronger’ deductive system, one which is an extension of
another one, for example, may produce simpler proofs (see below for examples
of what this canmean). Amore compact presentation, one employing fewer ax-
ioms or inference rules, will usually determine more complex derivations. Sec-
ond, as far as computational simplicity is concerned, the choice of connectives
has to be considered as part of the presentation of a deductive system. A wide
set of connectives without the relative axioms or inference rules (say, having the
symbol of conjunction but only axioms and inference rules for the symbol of en-
tailment) cannot enhance the simplicity of derivations and, vice versa, axioms
and inference rules can be used only in the presence of the relative connective
symbol. This is why the choice of connective symbol is relevant for computa-
tional simplicity and not only for expressive simplicity. Here are two proposals
for computational simplicity:
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Definition 6 (Computational Simplicity in Length (CSL)) For every two theories
T1 and T2 and for every set of formulas Γ:

T1 is simplerΓC SL than T2 if all the derivations of the formulas in Γ in T1 are
shorter than those in T2

To be able to compare the lengths of proofs we have to introduce a measure of
such length (usually the number of lines).

Definition 7 (Computational Simplicity in Time (CST)) For every two theories
T1 and T2, for every set of formulas Γ and given a suitable automated theorem
prover (a computer program that produces derivations), we define:

T1 is simplerΓC ST than T2 if all the derivations of the formulas in Γ from the
hypotheses in T1 take less time than those in T2

Depending on the prover employed, this may require that T1 and T2 share the
same deductive system. As long as Γ consists of a single formula, we can apply
CSL and CST without worries. But if Γ contains two ormore formulas one could
have problems of applicability. Consider a case where T1 is simplerΓ∗C SL than T2
andT2 is simplerΓ+C SL thanT1, where Γ∗and Γ+are twodisjoint subsets of Γ. In this
case CSL cannot be applied relatively to Γ (an analogous argument can bemade
for CST). To overcome this impasse and define a universally applicable version
of CSL (CST respectively) we may define a total measure of length (respectively
time) for thederivationsof the formulas in Γ and thencompare the totalmeasure
in T1 with the total measure in T2 instead of comparing derivations pairwise.
This approach leads to a generalized version of CSL (respectively CST).

It remains to say why these notions of simplicity are interesting candidates.
A common agument can bemade for CSL and CST. It is essentially an optimiza-
tion argument: given any application of a theory (for example checkingwhether
some formulas follow from the theory or not) we prefer the theory that requires
less effort to be used. Indeed, the fact that a theory is computationally expensive
can be a reason to change or improve the theory.

3.2 Strength

For Lewis a theory is stronger than another if it has more informational content
(Lewis 1999, p. 41). If we interpret the informational content of a theory T as
all the formulas that can be derived from the hypotheses of T we have that, by
definition of S-theory as a deductively closed set of formulas, the informational
content of T coincides with T. If one sticks to this interpretation it is possible to
formulate strength as:

Definition 8 (General Strength (GS)) For every two theories T1 and T2:

T1 is strongerG S than T2 if T2 is a subset of T1
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GS is interesting because it encodes the fact thatwe can reduce one theory to an-
other, that is, we can prove all the statements of the first one inside the second
one. There are cases, however, where GS cannot be applied. A sets of formulas
can be included in another only if they share the same language, or the language
of the bigger set is an extension of the other one. Another approach could be the
following. Given a set of true formulas Γ, say, the formulas representing the ob-
servationsmade, the informational content of theory T is the portion of Γ that is
derivable from the hypotheses of T, that is, the intersection between Γ and T. Of
course the formulas in Γ have to refer to the shared part of the intended domain
of interpretation, otherwise one of the two theories will be weaker a priori. We
then have:

Definition 9 (Informational Strength (IS)) For every two theoriesT1 andT2, and
given a set of formulas Γ:

T1 is strongerΓI S than T2 if the informational content of T1 relative to Γ is bigger
than that of T2

where by bigger I mean cardinality-wise. One can of course restrict this notion
substituting ‘is bigger than’ in the definition with ‘includes’ obtaining IS*. Ob-
viously, IS* entails IS for every Γ.

We could also relate the notion of strength to that of deductive system:

Definition 10 (Computational Strength (CS)) For every two theories T1 and T2:

T1 is strongerC S than T2 if `T2 is a subset of `T1

In other words, the deductive system of T1 is strongerC S than that of T2 if in T1
we can derive every formula derivable in T2 and some more. Notably, if T1 and
T2 share the same set of hypotheses then CS implies GS and IS* for every Γ. CS
holds even though T1 and T2 do not share the language, as the language of, say,
T1 can be an extension of that of T2.

Along the same lines of CS one can introduce a notion of strength connected
with the mathematical apparatus of theories. A first option can be the inverse
relation of MS:

Definition 11 (Mathematical Strength (MSt)) For every two theories T1 and T2:

T1 is strongerM St than T2 if M H (T2) is a subset of M H (T1)

We have here a straightforward example of the conflict between a relation of
strengthanda relationof simplicity: ifT1 is simplerM S thanT2 thenT2 is strongerM St

than T1. However, this is not the case in general for the notions that we defined,
for example Expressive Simplicity is independent fromMathematical Strength.
Hence the trade-off between simplicity and strength mentioned by Lewis is a
consequence of particular selections of notions of simplicity and strength.
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Alternatively, one can impose a further condition to have amore informative
relation:

Definition 12 (Strict Mathematical Strength (SMS)) For every two theoriesT1 and
T2:

T1 is strongerSM S than T2 if M H (T2) is a proper subset of M H (T1)

This last relation might be appealing if we think that a particular mathematical
theory is essential to model a certain class of phenomena, say, Hilbert spaces to
model Quantum phenomena, and we want to draw a distinction between theo-
ries that employ such mathematical machinery and theories that do not.

3.3 Balance

Dependingon thenotions of simplicity and strength adopted,we candefinebal-
ance inmany ways. Following the characterization of simplicity and strength as
binary relations, I will treat balance as a binary relation as well, that is to say,
I will consider relative balance. In the presence of some absolute measures of
simplicity and strength, absent in the present work, one may attempt a defini-
tion of the absolute balance of a theory.

As can be easily checked, apart from SMS all the relations defined are pre-
orders in their respective domain of applicability, that is, they are reflexive and
transitive. With this in mind, let us sketch two general procedures to define the
balance. Suppose we have a set of theories to evaluate and a collection of rela-
tions of simplicity and strength.

The first procedure, of a qualitative nature, consists of aggregating the or-
derings of the set of theories produced by the chosen relations. Formally, this
means that given n orderings R1, . . . , Rn wewant to have a procedure to obtain a
single ordering R . The top theory/theories according to this last relation will be
the best system(s). Of course, depending on how we aggregate these orderings
we will obtain different outcomes. One first question to pose in this respect is:
are all orderings equally relevant or do we regard some criteria as privileged?

A mathematical environment where such an aggregation procedure can be
studied is provided by Social Choice.12 To make an example, in this framework
the condition encoding the idea that all orderings must be equally relevant is
called anonimity (invariance of the aggregator under the permutations of the
input orderings). In this context, given two theories T1 and T2 and k relations
corresponding to the equally relevant selection criteria, we may say that T1 is
better than T2 if T1 is preferable according to k/2 + 1 relations. The extent to
which results and techniques of Social Choice can be applied to the present case
will be explored in future work.
12For a standard reference in the field see (Gaertner 2009).
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The second procedure involves the definition of quantitative measures rel-
ative to the chosen relations. If, say, T1 is simplerGC S than T2 we could take the
difference between the number of hypotheses inT2 and the number of hypothe-
ses in T1 as a number representing howmuch simpler T1 is compared to T2. By
similar methods, counting or using percentages, one may associate a function
to each relation in order to evaluate the relative degree of simplicity or strength.
If this attempt succeeds one can then use these functions to construct an al-
gorithm able to analyze the set of theories, apply such functions and combine
the results to find the theories that score the best combination according to the
chosen relations of simplicity and strength. To continue the example above, we
could assign weights n1, . . . , nk to the k relations and say that the score of T1 is
the sumof theweights of the relations inwhichT1 is preferable overT2. We could
then conclude that T1 is better than T2 if T1 has a higher score.

Before concluding, we make three final remarks. The first is that the choice
of the collection of relations of simplicity and strength does not influence the
balance function just by changing the arity of its input. In the second method-
ology a particular choice of relations might change the internal structure of the
algorithm. For example, if we employ General Strength wemight want the algo-
rithm to check this relation first, to know whether one theory is reducible to the
other. The second remark is that in both cases if the chosen relations cannot be
applied to the set of theories, because theories do not share enough features for
the relations to be applied, we could not find any best system. The third remark
concerns the viability of the two methodologies. Both of them are applicable
only if the chosen relations are decidable. If they are not, then in the first case
we might not get the orderings at all, and in the second case the algorithmmay
not terminate.

3.4 Conclusion

Let us draw some conclusions. In light of the formal analysis outlined and of
the examples offered, I argue that the aforementioned framework is appropriate
for a precise characterization of the notions of simplicity, strength and balance.
Moreover, I believe that the plurality of definable notions of simplicity (respec-
tively, strength and balance) casts doubt on Lewis’ reliance on a single concept
and demands for a more comprehensive discussion. Simplicity, strength and
balance are, I think, multifaceted ideas, and the search for a unique character-
ization could be misleading. This of course does not imply that such notions
have to be vague, as the present work showed.

Indeed we have alternative versions of BSA depending on

1. which relations of simplicity and strength we use

2. how do we aggregate them to obtain the balance
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It is already hard to reach a consensus on the first item. For an experimental
physicist, interested in testability and implementations, theories may be com-
pared with an eye for their computational features. A philosopher, on the other
hand, could think that the best theory is one with few primitives.

The advantage of our framework, as long as it is considered tenable, is that
now we can look at specific, well defined candidates for relations of simplicity
and strength. Likewise, we can design and analyze procedures to obtain the bal-
ance. This means that the discussion about item 1 and 2, although still philo-
sophical in nature, is nowmore formally grounded.



R
ivistaItalianadiFilosofiaAnaliticaJunior

9:2
(2018)

95

Giovanni Cinà A Formal Analysis of the Best System Account of Lawhood

References

Armstrong, David M. (1983).What is a Law of Nature? Cambridge: Cambridge
University Press.

Bird, Alexander (1998). Philosophy of Science. London: UCL Press.

— (2008). “The Epistemological Argument against Lewis’s Regularity View of
Laws”. In: Philosophical Studies 138, pp. 73–89.

Carnap, Rudolf (1937). The Logical Sintax of Language. Trans. by A. Smeaton.
London: Routledge 2001.

Chang, Chen Chung andH. Jerome Keisler (1990).Model Theory. 3rd ed. Studies
inLogic and theFoundationsofMathematics 73.Amsterdam:North-Holland.

Cohen, Jonathan and Craig Callender (2009). “A Better Best System Account of
Lawhood”. In: Philosophical Studies 145, pp. 1–34.

Da Costa, Newton and Steven French (2000). “Models, Theories, and Structures:
Thirty Years On”. In: Philosophy of Science (Proceedings) 67, S116–S127.

Font, Josep M., Ramon Jansana, and Don Pigozzi (2003). “Survey of Abstract Al-
gebraicLogic”. In:StudiaLogica 74 (Special issueonAbstractAlgebraicLogic,
Part II), pp. 13–97. With an update in 2009, 91: 125-130.

Gaertner, Wulf (2009). A Primer in Social Choice Theory. Oxford: Oxford Univer-
sity Press.

Jaeger, Lydia (2002). “Humean Supervenience and Best-System Laws”. In: Inter-
national Studies in the Philosophy of Science 16.2, pp. 141–155.

Johnstone, PeterT. (2002).Sketches of anElephant: AToposTheoryCompendium.
Vol. 2. Oxford: Oxford University Press.

Lewis, David (1973). Counterfactuals. Oxford: Blackwell.

— (1986). Philosophical Papers. Vol. 2. New York: Oxford University Press.

— (1994). “Humean Supervenience Debugged”. In:Mind 103, pp. 473–490.

— (1999).Papers inMetaphysics andEpistemology. Cambridge:CambridgeUni-
versity Press.

McKinsey, John C.C., A.C. Sugar, and Patrick Suppes (1953). “Axiomatic Founda-
tions of Classical Particle Mechanics”. In: Journal of Rational Mechanics and
Analysis 2.2, pp. 253–272.

Mumford, Stephen (2004). Laws in Mature. London: Routledge.

Parsons, Charles (2010). “SomeConsequences of the Entanglement of Logic and
Mathematics”. In:Reference and Intentionality: Themes fromFøllesdal. Ed. by
W.K. Essler andM. Frauchiger. Frankfurt: Ontos Verlag.



R
ivistaItalianadiFilosofiaAnaliticaJunior

9:2
(2018)

96

Giovanni Cinà A Formal Analysis of the Best System Account of Lawhood

Psillos, Stathis (2002). Causation and Explanation. Chesham: Acumen.

Robert, John (1999). ““Laws of Nature” as an Indexical Term: A Reinterpretation
of Lewis’s Best-System Analysis”. In: Philosophy of Science 66 (Proceedings),
S502–S511.

Tarski, Alfred (1944). “The Semantic Conception of Truth and the Foundations
of Semantics”. In: Philosophy and Phenomenological Research 4.3, pp. 341–
376.

— (1994). Introduction to Logic and to the Methodology of Deductive Sciences.
4th ed. Oxford: Oxford University Press.

Van Fraassen, Bas (1989). Laws and Symmetry. Oxford: Clarendon Press.


	The Best System Account
	The contemporary debate and the need for a more precise version of BSA

	The Formal Framework
	Logical languages and formulas
	Deductive systems and theories
	Old and new
	The mathematical apparatus of scientific theories

	Redefining the Core Notions
	Simplicity
	Conceptual Simplicity
	Expressive simplicity
	Computational Simplicity

	Strength
	Balance
	Conclusion


