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I would argue that, by now, it is safe to say that the philosophy of information
has developed in the last few years as a proper philosophical field of research. In
the pages of RIFAJ we followed this development in two main occasions, when we
interviewed Luciano Floridi in our second issue, in 2011, and when we reviewed
Floridi’s first Italian publication, in 2013. The present report may be seen as an
addition to the two former publications and, at the same time, as a way of trying to
present a broader consideration of the philosophy of information.

In spite of its young age, the philosophy of information is a broad field of re-
search. It is broad not only in the sense of the topics and questions covered, but
also from the methodological perspective: within the literature, one can find work
on the technical information theory and computer science, on philosophy of science
applied to information and digital technologies, on metaphysics and the debates
about realism, on the ethical and societal aspects of information and communication
technologies, etc. This mix of different methodologies and areas of research makes
for what I think is a very vibrant and active environment, in which, moreover, sig-
nificant philosophical insights can come from research which many would not even
define as ‘philosophical’. As a further consequence of this, the approach I found
during the workshop was open to considerations and, possibly, critiques of different
kinds.

Within this broad range of topics and fields, the organisers of the workshop –
Phyllis Illari and Giuseppe Primiero – decided to focus on data and its related con-
ceptual challenges in science and technology. Data can be considered a traditional
subject of research in the philosophy of science, as for instance the work of Bogen
and Woodward (1988) and Hacking (1983) show, but has become a central theme
in more recent research, as a consequence of the increasingly important role data
plays in both science and other elements of the human society (think, for instance,
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of the importance big data and data more in general have in current discussions
about the economy as well as policy-making). Within this framework, conceptual
research and theoretical considerations of data can prove to be useful and relevant.

Speaking of the specific talks of the workshop, here, for matters of space, I had to
focus on six presentations. In particular, I start off with the report of Emma Tobin’s
talk about the classification of proteins through data. In the talk, Tobin argued
against traditional monism, suggesting that the case of proteins can be considered
as a new element highlighting the flaws of monism and natural kins essentialism.
In order to show this point, Tobin focused on scientists’ practices of classification
through online databases.

Similarly to Emma Tobin, Sabina Leonelli considered what scientists practically
do with data and how they curate it on order to extract useful knowledge. In the
talk, this kind of research was extended to include what happens when something
goes wrong with the data and was used to argue against what can be considered
the received view on data (i.e. data as something which is there). As a conse-
quence of the problems of such received view, Leonelli proposed a new, relational,
characterisation of what data is.

Rob Kitchin’s talk was an especially useful one, as it clearly summed up the
different definitions of big data and the different views on its influence on episte-
mology. In fact, in the talk Kitchin discussed the question regarding how big data
is changing traditional ways of doing research in the different sciences, including
the social sciences and the humanities, wondering whether we can really talk of
big data as a paradigm-shift for science.

Causation and its philosophical importance and characterisation was one of
the recurring elements of the talks. Billy Wheeler considered recent views in the
philosophy of causation, according to which causation is the transfer of information,
and, a part from describing the features and benefits of these, focused on a definition
of what is it that is transferred, in the sense of the best way of characterising
information from the perspective of causation.

Within a similar framework to the one of Wheeler’s talk, Wolfgang Pietsch pre-
sented his view about the epistemological challenge of big data and a consequent
kind of science hugely reliant on data. In particular, Pietsch’s main goal in the talk
was proposing a specific account of causation which he finds capable of explaining
current data practices and debates about the use of data in science.

As for the debates about the role of data in science, Teresa Scantamburlo anal-
ysed the assumptions and philosophical underpinnings of disciplines where data is
increasingly central, such as machine learning and pattern recognition. In the talk,
Scantamburlo argued that these assumptions are significantly similar to a Humean
kind of empiricism and, in particular, its approach towards reason and theories.
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1 Data in Protein Classification
Emma Tobin (University College London)

In her talk, Emma Tobin addresses a classical issue in philosophy of science – natural
kinds and classification (see Bird and Tobin, 2015) – and considers the specific case
of data in protein classification. In general, in the classification literature we can
find what Tobin calls a great divide. In fact, on the one hand, as a consequence
of the so-called species problem, many philosophers hold a pluralistic view on the
classification of biology: that is, since scientists have many and different ways to
define and classify species, philosophers tend to conclude that there is not a single,
best, natural way of dividing animals in species (see e.g. Ereshefsky, 1998). On the
other hand, chemical elements have been traditionally taken to be the instances of
the fact that there is only one way of dividing nature, because nature has an order we
can reflect in classification; this is why many philosophers hold a monistic view on
the classification of chemistry (see e.g. Hendry, 2006). Within this framework, Tobin
thinks that proteins are an interesting case, because, being biochemical entities, they
lie at the interface of the divide and, thus, lead to the following question: should
we argue that monism can be extended to macromolecules (bottom up approach),
or is there a species problem for proteins as well and we should be pluralistic (top
down approach)? This is the main question of the talk.

In order to try and answer the question, Tobin starts off with a definition of
proteins. Generally, proteins are defined as <<linear chains of amino acids bonded
in peptide bonds>> (Tobin, 2009), that is they are essentially defined in terms of
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amino acid sequences. As a consequence, we may think that the structure of the
amino acid sequences is the criterion of the classification of proteins, thus arguing
in favour of a structural kind of monism, also knows as microstructuralism. However,
Tobin highlights that the problem with this position is that proteins’ structure is
actually a process divided in different steps, in the sense that the amino acid se-
quences are the initial primary structure which then folds in upper level structures:
the path from the amino acid sequence to the folding is not always the same and, for
instance, can be affected by external elements; moreover, the amino acid sequence
is not necessarily connected to the protein’s function, as for example proteins with
the same structure do different things when in different places. Hence, according to
Tobin, the latter and other phenomena suggest that structures are not really a good
basis for classification: by focusing on structure only, one would miss out on many
other features of proteins which are fundamental for classification. In other words,
on Tobin’s view, microstructuralism is not a tenable position.

In order to better sustain her position against microstructuralism, Tobin argues
that it has empirical grounding: with a move typical of recent philosophy of sci-
ence in practice, she focuses on the way scientists practically classify proteins. And
this is where data comes in: as a matter of fact, currently most of the results of
the classification work on proteins is uploaded by scientists on online databases.
In particular, Tobin considers the Protein Data Bank (PDB), which is the primary
repository of protein structures: what happens with the PDB is that scientists de-
termine structures of proteins with a number of techniques and then their results
are given an identifier and released on the database; journals require the PDB
identifier before publishing a protein discovery. As a consequence, one could ar-
gue that the PDB case supports a monistic, bottom up view on proteins, in the
sense that PDB identifiers are the unique and natural way of classifying proteins.
Nevertheless, Tobin thinks that scientists’ practices actually suggest the opposite.
In fact, the techniques scientists use in order to find out about proteins’ structure
are highly indirect and do not consist in the direct imaging of the structure. For
example, one of these techniques – X-ray crystallography – requires proteins to be
crystallised, which is not possible for every protein and uses much idealisation and
approximation; after the crystallisation, the crystallised proteins are beamed by X-
rays and, from the different angles and intensities of the diffracted beams scientists
design 3-D electron density maps. Moreover, another element of X-ray crystallog-
raphy which lets us see that it is a very indirect process is the strong presence of
mathematical representation, for instance in the generation of the coordinates and
3-D maps. As a consequence, Tobin argues that what we see in the PDB is not
simply the structure of the protein, as it is very idealised and dictated by contextual
things (technology, funding, etc.).

Furthermore, Tobin argues that another reason why the monistic approach based
on structure is flawed is that with proteins’ classification we can find a situation
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which is similar to the one of species in biology. As a matter of fact, the PDB is the
primary but not the only and unique database for protein classification: there are
hundreds of other databases, which use different criteria to classify proteins. For
instance, the CATH database divides the protein structures of the PDB into structural
domains, which in turn are grouped in evolutionary superfamilies; similarly, the
SCOP (Structural Database of Proteins) focuses on the structural and evolutionary
relationships between proteins of which we know the structure. The presence of
these different database is interesting because they divide proteins differently, to the
extent that certain proteins are classified in different ways in the different databases:
for example, papain is considered as a single domain by SCOP, while it is split in
two domains by CATH. The presence of different criteria of classification and the
fact that the same elements are classified as different kinds is very similar to the
species problem of biology, to the point that, in Tobin’s opinion, we could argue that
there is a species problem in proteins’ classification as well.

The monist, though, could reply by highlighting that, actually, secondary databases
such as SCOP and CATH take the data from the PDB, and could thus suggest that,
metaphysically, we can be monists about protein structure and that the different
ways in which data is organised reflect a data deluge problem, which is an episte-
mological – not metaphysical – problem. For Tobin, the problem with this response
is that there is no agreed way of dividing the PDB data. As a matter of fact, before
using the secondary databases, scientists have to identify – “choose”, as scientists
call it – the so-called domains of the proteins, which are parts of the structure ca-
pable of independently existing and functioning; thanks to the division in domains,
scientists can reduce the complexity of the structure to simpler units. Once again,
the point here is that there are different (both manual and automatic) ways of doing
domain partitioning, which itself is an indirect process relying on existing knowl-
edge. More particularly, although there is a benchmarking dataset (P-Domains)
measuring the consensus about the domains, scientists agree only on very simple
cases: for proteins with more complex structures, domain partitioning is subjective
and requires a choice. As a consequence, Tobin argues that the microstructural
response is flawed. The monist, though, may have another response, saying that
one day we will know which is the right database and the right way of classifying
proteins, it is just that we do not know it yet. However, Tobin highlights once again
how classifying proteins via structure is difficult and, crucially, the structure does
not tell us enough about proteins themselves.

Therefore, Tobin concludes that structural monism about proteins is not tenable
and argues in favour of a pluralist, top down approach, similar to the one many
philosophers hold in the case of biological species. Scientists’ practices with data
regarding proteins and databases are significant, insofar as they enlighten this
point.
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2 Data Journeys: Openness and Shadows
Sabina Leonelli (University of Exeter)

Sabina Leonelli’s talk can be seen as a way of reflecting on a foundational aspect
of the philosophical framework she has recently established. As a matter of fact, in
the last few years Leonelli has focused on a philosophical consideration of data as
used in the scientific practices (biology and model-organism biology in particular),
highlighting their assumptions, epistemic features and more generally philosophical
relevance (see e.g. Leonelli, 2014). Her talk begins with a consideration of the usual
conceptualisation of data – i.e., data as a given –, then touches on a few of the topics
and concepts she has mostly focused on in her research (data journeys and data
reuse) and, within this framework, reflects on the conceptual consequences of new
issues relating data travels (data absence, shadows of data, dark data, etc.).

Leonelli starts off by suggesting that the discourse around big and open data
seems to be very much connected with ideas about what is available and what are
the best ways to exploit the values of what is there. For instance, when we speak
of open data, we usually speak of the ways in which we should open up data which
is already there in order to exploit its value. Similarly, big data discourse normally
involves issues such as the gathering, integration and analysis of data as an already
available resource. These elements are now also reflected in data policies, whose
idea is opening up e.g. government public spending in order to be more transparent
and accountable about what is going on and – again – what is there. Even from an
etymological perspective, data means something which is given. On this view, data
seems an entity which exists and, thus, can be used as evidence for statements of
different kinds. While this, in a way, could be seen as the received view on data,
Leonelli suggests that it might not be enough when it comes to the diverse activities
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which are now possible with data. As a matter of fact, data is not only something
already available, because it can actually also be made and produced under very
specific conditions. These elements can be found in the discourse about open and
big data, insofar as data is presented as a commodity, the precious outcome of
labour and investments, but the emphasis is mostly about the subsequent passage,
i.e. the access, exploitation and re-use of the data when it is made available. Is this
view of data as a given a good way of accounting for the epistemological value of
data? Is it the only possible view?

In order to find a possible answer, Leonelli suggests that we focus on databases
and data journeys. The idea, here, is that the cases of databases and data journeys
are a good window for exploring data practices and the epistemological value of
data. Leonelli has written extensively on these topics, especially by studying the
data practices of scientists working in modal-organism biology (Leonelli and Ankeny,
2012) and what it takes for data to travel from the laboratory in which it is produced
in the first place to new laboratories in which it can be used for possibly different
goals. When it comes to databases, for example, this kind of research consists in
looking at the ways in which data is produced, submitted to the database, how it
is curated, visualised and made searchable so that as many scientists as possible
can reuse it. Why are these practices interesting from the perspective of philosophy
of science? Because the study of data practices reveals the epistemic conditions
under which data can travel and be used as evidence for scientific claims; such
epistemic conditions include the way in which data is donated and/or submitted to
the database, the institutional support for curators, the conditions and presence of
the infrastructures (databases, but also data-journals), the packaging competences
and technologies (the procedures of cleaning, selecting, mining data and organising
it through common formats, metadata, labels and visualising tools), etc. That is,
the research on the data practices of scientists highlights the complexities of data-
travelling and the possible problems affecting it.

Having summed up the most important elements of her research on data travels
and their conditions, Leonelli turns to consider situations in which data is not there,
is not given, but can nonetheless represent a useful piece of information and be
used for good scientific research. What happens in these cases and how should we
conceptualise data so that we can understand them? For instance, data may be:
missing or incomplete; negative, i.e. data giving you evidence for something which
is not there, for the absence of some phenomenon; unobtainable, e.g. because of
lack of resources or costs; unreliable, e.g. produced in non-reproducible conditions;
invisible or ignored, e.g. not seen as relevant data by the curators and thus not
circulated; untagged and unclassified, i.e. unusable because it is not retrievable;
unintelligible, e.g. data about an organism about which there is no previous knowl-
edge; inaccessible, e.g. because it is private or confidential; immobile, i.e. it cannot
be made to move because of, for instance, costs, lack of infrastructure (e.g. a very



RIVISTAITALIANADIFILOSOFIAANALITICAJUNIOR
6:1

(2015)

72

Stefano Canali Seventh Workshop on the Philosophy of Information

big archive which cannot be digitalised and thus has to stay in a place); loss or
missed, e.g. where the labels, tags and other packaging features fail completely.

When thinking about data journeys and the latter forms of data absence, Leonelli
argues that a few general considerations can be drawn: the epistemic role of data,
the extent to which it is going to be useful to produce knowledge, is heavily depen-
dent on how data has been organised, processed, disseminated and contextualised
and on whether it gets missed, stuck, abandoned, etc.; that is, data journeys affect
what does and does not count as data and for whom. So, which kind of conceptual-
isation of data can capture the previous considerations? According to Leonelli, we
should completely give up on conceptualisation based on manipulation: for instance,
Ian Hacking (1983) proposed to consider data as whatever comes out of the machines
in the lab; the problem with this view, for Leonelli, is that often what we consider as
data does not come out of usual laboratory machines (e.g. data can be the result of
simulations). Equally, we should also give up a notion of data based on its intrinsic
properties, i.e. data as representations of some kind that can be used independently
of the context. Leonelli proposes a different way to conceptualise data: we should
think of data as any product of research activities which is collected, stored and
disseminated in order to be used as evidence for knowledge claims; that is, data is
a relational concept, because any object may be – and shift to become – data as
long as it fulfils the previous features. In this relational sense, Leonelli argues that
we can better understand the epistemology of data and why data can be useful even
when it is absent: data should not be considered as an immutable commodity (as,
for instance, Latour (1986) does), something which is relevant only if it is there and
is given; the relevance of data can change and the change depends on the journeys,
the relations established with the data.
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3 Big Data, New Epistemologies and Paradigm Shifts

Rob Kitchin (National University of Ireland Maynooth)

In his talk, Rob Kitchin addresses one of the big questions which regards big data
and comes up in different forms and with different levels of depth in other talks.
The question is about the way in which big data is changing epistemology: are
we witnessing a paradigm shift as a consequence of big data? In other words,
is big data a revolution on the epistemological level, is it challenging established
epistemologies? Positive answers to these questions can often be found in the
literature as well as in more general discussions about big data: for instance, Gray
(see Hey, et al. 2010) argues that revolutions in science are usually preceded by
revolutions regarding measurement and Boyd and Crawford (2012: 665) suggest
that big data <<is a profound change at the levels of epistemology and ethics>>.
Kitchin’s talk intends to critically assess these views.

First of all, what is big data? Usually, big data is defined in terms of three
dimensions (see e.g. Beyer and Laney, 2012), that is in terms of the high volume
and variety of the data collected and the high velocity of the collection. However,
in Kitchin’s opinion this definition is not enough and it is necessary to consider
other specific features of big data, which stand out in comparison with small data:
big data is exhaustive, in the sense that it can capture entire domains and does
not need samples; it has a high level of resolution and is indexical in identification;
it is strong in relationality and capable of conjoining different sets; it is highly
flexible and scalable (see Kitchin, 2014: 1). As for practical examples, big data
is, for instance, the number of transactions collected by supermarkets, or, in the
context of cities, big data is the result of collecting data in a direct and manual
(e.g. CCTV), automated (e.g. phones automatically sending data to providers) or
freely volunteered (e.g. wearable devices, social media) way. So, what can be done
with big data? As a consequence of its features, big data is necessarily messy and
unstructured data and needs to be analysed to be useful: in order to analyse the
data, what is used are techniques of machine learning, capable of automatically
mining the data, finding the patterns and making predictions.

So, do big data and automated analytics imply a new paradigm-shift in sci-
ence? In order to reply, Kitchin begins with Kuhn, who famously introduced the
notion of scientific paradigm and paradigm-shift, in the sense of the historical mo-
ment in which an accepted set of theories, notions, experimental techniques and
methodologies, etc. – a paradigm – declines and is changed in favour of a new one.
According to Gray (see Hey et al., 2009), Kuhn’s notion of paradigm-shift should
be applied to the case of measurements: that is, real paradigm-shifts in science
take place when the nature of data and the analysis concerning data change; in
particular, Gray identifies three main paradigms in the history of science and ar-
gues that with big data we have entered a fourth paradigm. What is this fourth
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paradigm? According to many, it is a radical form of empiricism: the idea is that,
thanks to the automated analysis of a huge amount of data, it is not necessary to
actively engage with data through theory because data can speak for itself. For
instance, this is what Chris Anderson (2008) thinks, when he argues that big data
implies <<the end of theory>>. But, why and how is big data sufficient? The
point is that the computational power of automated analytics makes it possible to
apply an ensemble approach, which consists in using every type of algorithms and
see which one is the best and works, while normally scientists would choose and
apply only one method. As a consequence, the idea here is that the answers we
get from the ensemble approach are better, because they are not subject to the
biases of humans choosing one analytical method, and are objective explanations,
because they are not the subjective applications of a theory. As a consequence,
big data are enough because its patterns and correlations give us answers that are
not subject to human biases and theories: there is no need for any a priori model,
hypothesis or subjective choice, as the patterns of the data are always useful and
true, value-free and universal, to the point you just need data-scientists or software
rather than domain experts. In Kitchin’s opinion, these ideas regarding big data
and epistemology are powerful and fascinating, but are not free of flaws and can be
criticised. As a matter of fact, first of all, the idea of big data as capturing whole do-
mains is flawed, because, even if data is big, it still remains a sample: for example,
Twitter is a very big and quite inclusive kind of sample, but it is still a sample as not
everyone is on Twitter. As a consequence, big data is not free of any bias, since it
is at least subject to sampling bias. Moreover, the fact that algorithms are capable
of making automatic discoveries does not entail that discoveries are theory-free or
that the data speaks for itself: algorithms are designed by humans, who rely on
scientific theories and act in certain contexts with certain values. Linked with the
previous points, it is not either true that data can speak for itself and be meaningful
independently of the context in which it was generated and to which its patterns
refer.

In contrast to the former forms of radical empiricism and their problems, Kitchin
argues that a different view on the epistemology of big data can be found, i.e.
data-driven science: data-driven science can be considered as a mixed approach,
according to which one can start off with an initial exploration of the data only, by
searching for correlations and patterns and generating hypotheses from the data
rather than the theory; theory, however, guides the whole process, at the level of
choosing the algorithms, the most interesting correlations and patterns, etc. The
idea, then, is a sort of mix between induction, used to generate hypotheses from
the data, abduction, used to guide the formulation of hypotheses, and deduction,
used to assess the validity of hypotheses. As such, one could argue that data-
driven science is a new scientific paradigm, because it is a new way of generating
knowledge starting from the data. Presented in this way, hence, data-driven science
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is very different from the ideas of data speaking for itself and the end of theory and
the point is that the revolutionary epistemology of big data consists in this initial
exploration, which informs the generation of scientific hypotheses.

After having analysed what he thinks are the two main epistemologies related
to big data – empiricism and data-driven science –, Kitchin switches to considering
specific disciplines where the application of big data epistemologies does not seem
so straightforward: the social sciences and humanities. In these two broad disci-
plines, traditionally there is not much statistical analysis and, even where quan-
titative methods are traditionally used, as in economics, political science, human
geography, sociology, etc., more recently there has been a move towards qualitative
approaches.

Hence, can big data be applied to the social sciences and the humanities? As
for the social sciences, big data is seen as an opportunity by positivistic social
scientists (who think that the scientific method can be used to study and explain
social phenomena): in fact, thanks to big data, social scientists are able to design
social models that are much finer-grained and wider-scale; all of this can be used by
positivistic scholars to respond to the classical critiques and issues of their views,
such as reductionism and universalism. However, big data is an opportunity for
post-positivistic social scientists as well, for example because of the presence of a
huge amount of new (e.g. social media) or previously inaccessible (e.g. digitalised
archives) data. At the same time, though, big data poses challenges: carrying out
mechanistic analyses seems too simple for many cases; social trends may not entail
causes, thus not being very useful; in big data there is a lot of what, but not much
how; big data is sometimes seen as a treat to certain expertise not based on data.
In similar ways, big data is both an opportunity and a challenge for the humanities,
in particular in the form of so-called digital humanities. Kitchin argues that, in
the digital humanities, one can find two main approaches to the role of big data:
according to some scholars, big data and related technologies bring methodological
rigour and objectivity to disciplines which were previously lacking them; on the other
hand, others think that big data epistemologies can improve current methodologies,
of which they may become a sort of extension, but not a replacement. Considering
the challenges of big data, many highlight how big data methods may make the
humanities mechanist and reductionist, sacrificing depth for width. Hence, the use
of big data and related analytics in the social sciences and the humanities seems
more complex than it is for the other sciences. An additional and specific challenge
concerning both the fields regards the role of small data: in this picture, what
happens to small data, on which these fields have successfully been based up until
now? It is difficult to think that big data methodologies will entirely replace or
delete the study and use of small data, which have a proven track record of giving
powerful insights. Moreover, most of big data was not originally produced to be
subject of research in the social sciences or humanities: for example, Twitter data
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was never produced to give information about health. This means that most of big
data needs to be re-purposed (this has problems to be solved, see e.g. Illari, 2014)
and, in addition, that big data can provide an interesting but surface snapshot,
opposite to the very specific and deep insights which are the goal of small data
research. However, Kitchin thinks it will increasingly be possible to apply big data
methodologies to small data as a consequence of the sharing, opening up, reusing
policies which scale the infrastructure of small data.

So, concluding his talk, Kitchin draws a few general conclusions about big data
and its consequences on the scientific epistemologies. In his opinion, big data
and related analytics are a disruptive kind of technology, insofar as, by radically
altering the nature of data, they broaden the objects of research and provide new and
powerful ways to analyse phenomena. As such, thus, there is no doubt that big data
is capable of influencing and radically changing the epistemologies of the sciences;
at the same time, big data poses new social, political and ethical questions. As for
epistemology, the big question is how precisely big data is going to change the ways
we do science, and the talk has consequently focused on critically assess ideas on
how this change may take place. For the sciences, the radically empiricist approach
of the end of theory and data speaking for itself is quite popular in many discussions,
but seems to be flawed; on the other hand and as a consequence of flaws of the
empiricist approach, the data-driven one seems more promising and likely to win
out in the long run as a new paradigm. As for the social sciences and humanities,
the application of big data is more complex and, while big data surely offers many
significant opportunities to these disciplines, it seems difficult that the current and
established epistemologies, based on small data, will be replaced; probably, big
data lead to more pluralistic approaches. Therefore, the question about whether
big data is going to establish a new in the sciences remains an open question, but
Kitchin’s guess is that more pluralistic and “mixed” approaches will be the ones to
stand out.
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4 Causation and Information: What is Transferred?
Billy Wheeler

In his talk, Billy Wheeler considers the recent philosophical view on causation,
according to which causation, in the world, is actually the transfer of information;
in his opinion, this is a promising view on the philosophical level and the practical
one, especially for the design of algorithms and analytical methods for data.

The starting point of Wheeler’s talk is the so-called Conserved Quantities View
(CQV). Usually, when we think of causation, we tend to think of relations between
events in time; the CQV takes a different approach, focusing on causal processes
rather than events and suggesting that causal processes (in contrast with pseudo
processes, see Salmon, 1977) are those processes which possess a conserved quan-
tity (e.g. charge, momentum, etc.). That is, for example, considering the charge of
an object, we can speak of a causal process between t(1) and t(2) if the charge has
been conserved between t(1) and t(2). Within the CQV, then, the traditional way of
thinking of causation as the interaction between two things producing something is
explained in terms of the exchange of the conserved quantity between two causal
processes. While the view is good for a number of reasons, two big problems have
been highlighted in the literature: we often invoke the absence of an object or a
process as a cause of something (e.g. not watering plants causes their death), but
it is difficult to see how there can be exchange of a conserved quantity with an
absent object or process; secondly, the CQV has an issue of applicability to the
special sciences (and, consequently, their datasets), because in the latter very few
quantities are governed by a conservation law. These issues can be seen as the
motivation for a new version of the CQV and, in particular, an information-based
view of causation; this has firstly been proposed by Krajewski (1997) and more
recently by Collier (2011) and Illari and Russo (2014). The basic idea of the view,
which Wheeler calls i-CQV, is that what is conserved in causal processes is infor-
mation. The advantages of the view is that, by using information as a reference, the
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problems affecting the CQV are potentially solved: as for the problem of absence,
in information theory absence can be data and thus a piece of information (e.g. the
fact that the alarm clock has not ring yet is itself a piece of information, notifying
that the pie is not ready); as for applicability, information is a more general concept
compared to physical quantities and can be applied to the special sciences and a
wider number of cases. In addition, the fact that we deal with information makes
the i-CQV a more suitable concept for, possibly, writing algorithms searching for
causation in data.

Thus, i-CQV seems a very useful and interesting way of treating causation. But,
if causation is really the transfer of information, what is information? What is it that
we measure as a conserved quantity? Having defined the i-CQV and highlighted its
potential benefits, Wheeler switches to considering these questions about the nature
of information and, specifically, he analyses three notions of information: information
as ‘knowledge update’, information as ‘entropy’ and information as ‘computational
complexity’. Wheeler states that he is not an advocate of any of these views in
particular, as he has not made a decision about which is the best one, and that
his consideration is not aimed at assessing these notions in themselves as views of
information, but rather as for how good they are for analysing causation.

So, the first concept Wheeler considers is the idea of information as a knowledge
update. This seems the notion of information which is presupposed by epistemic
logic, i.e. the idea that an agent has a number of hypotheses about how the world
is and, every time she learns something new and gains knowledge, her range of
hypotheses goes down; this notion of information is probably the most intuitive and
the closest to our ordinary use of the term ‘information’, the idea that, when you
are informed of something, this changes the way you see the world. Moreover, it
is a qualitative theory and gives a semantic notion of information. But, is this view
good for analysing causation? In other words, how would information be conserved
within this view? Wheeler suggests that, here, the most natural suggestion would
be in the following terms: the sum total of updates received by the agent from A and
B at a time t(1) is conserved insofar as it equals the sum total of updates received
by the agent from A and B at time t(2). Would this work? Wheeler thinks that there
are problems. Firstly, on this view knowledge can only be updated once: once the
agent learns something new, the range of hypotheses goes down and, if you learn
something new again, there is no more change in range; we could solve the issue
through counterfactuals (“the agent gets a knowledge update at time t(2); however,
if she had had exposure to that information at time t(1), her range reduction would
have been equal to what it would have been at t(2)”), but this may create problems
of circularity when analysing causation and the CQV itself has been criticised in the
past because of its reliance on counterfactuals. The second problem is that a person’s
range of hypotheses may change between t(1) and t(2) and the information acquired
at t(2) may be different depending on what she has learnt between t(1) and t(2) (e.g.
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it might be less or more informative and the agent might exclude or include different
hypotheses); a possible solution – using an Hintikka approach on time fixing – would
make the view useless for conservation. Thirdly, the knowledge update conception of
information also presents the issue of the influence of background beliefs; defining
an ideal agent might be the solution here, but it would be very arbitrary. As a
consequence of these three issues, Wheeler argues that this view is hard to defend.

The second concept of information Wheeler considers in his talk is the one
based on entropy, which comes from Shannon’s mathematical theory of communi-
cation (Shannon and Weaver, 1949). According to this view, the informativeness of
a message is defined in terms of the uncertainty that is resolved at the end of the
receiver. As such, this notion has been vastly influential and is philosophically inter-
esting, as we can think of causal processes as Shannon’s communication channels.
More specifically, a possible way to think of the conservation of information from the
perspective of entropy may be arguing that the sum total of uncertainty resolved at
points A and B at time t(1) equals the sum total of uncertainty resolved at A and B
at t(2). Would this concept work? Wheeler thinks that it is better than the previous
one, but it still has problems. Firstly, it requires an intervention, in the sense that it
requires the presence of a receiver intervening to receive a message in a channel;
interventions are problematic because they may already presuppose a concept of
causation, but Wheeler is not sure as to whether measuring entropy really counts
as an intervention or not. This problem might be overcome by defining entropy as
choice of a source rather than a receiving end, but that is problematic if you want to
measure at each stage of the process and not just at the beginning. A second objec-
tion to this view may be that it just reduces to the familiar definition of causation in
terms of probability; a possible response to that would be that this is a probabilis-
tic account which is very different from the traditional Reichenbach-inspired views
of causation as raising of chances, but, in any case, talking of probability would
probably require an interpretation of probability itself.

The last notion Wheeler talks about is the computational complexity view, also
known as algorithm or Kolmogorov complexity. This is the idea that the informa-
tiveness of a message is equal to the sum total of computational resources that is
required to produce that message and goes back to Kolmogorov and Solomonoff’s
work in the 1960s. A possible way in which this could work within the i-CQV is
that the sum total of computational resources required at time t(1) equals the sum
total of computational resources used to describe A and B at t(2). This seems the
concept of information that Collier (1999) presupposes in his work, as his idea is
that what is transferred is essentially the amount of complexity. Moreover, this
view has significant advantages: interventions are not necessary, as any particular
point in a world line can have a fixed amount of information expressed in terms of
computational resources; interpretations of probability are not necessary either; in
addition, the notion is general enough to be applied to the causal process of all
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scientific fields and very suitable to be used as a basis for designing algorithms to
search for causality in big data.

Wheeler does not think that there are major problems with this view, but there
rather is an open question: if we want to measure complexity by measuring the
length of computational resources, we have to measure data; then, what is the data
in the causal process? We could say that it does not really matter: we could measure
data in any language and the difference in length of complexity would not matter,
because the invariance theorem of complexity theory shows that any structural
feature demonstrated from encoding in one language is automatically going to hold
in another language. The problem with this, though, is that, if we change language
between t(1) and and t(2), complexity will not be conserved but this will not imply
that causation does not take place. A second way of thinking about complexity is
in physical terms, as Collier does when he argues that for physical systems it is
energy which is conserved. The problems with this proposal is that, as we have
already seen, energy does not seem to work outside the physical sciences; Collier
(1999) responds to that by saying that it does not matter, since each field will have
its own interpretation of substance, but the response is problematic as well because
in many fields the interpretation is not obvious and, anyway, inter-field causation
would be impossible. Hence, as a consequence of all these problems, Wheeler
argues that we should go for a radical view, according to which the physical world
is not basic, but is emergent out of a more basic reality which is computational
and, thus, physical processes are actually computational processes; this is the view
originally given by John Archibald Wheeler as the “it from bit” hypothesis, sometimes
called digital realism. The best mathematical model for this view is the concept of
‘cellular automata’ developed by Wolfram (2002): the idea is taking causal processes
as series of computations in the basic cells and, then, defining information as the
length of the program in the operating language of those cellular automata; in
this way, the language is fixed by the identification of a transcendent operating
system. Of course, Wheeler does not suggest that this rules out significant questions
about this view, which could as well be considered crazy and making metaphysical
assumptions going beyond basic empiricist constraints; other problems regard how
we know the basic operating language of the cellular automata and the fact that
the idea of programs running the automata seems very similar to the idea of laws
of nature and we would thus need a definition of causation based on laws, which
might be problematic as well. Nevertheless, the it from bit hypothesis may prove to
be the best way to describe what is really transferred during causal processes.
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5 Difference-Making as a Notion of Causation for Data-
Intensive Science
Wolgang Pietsch (Technische Universität München)

The basic question of Wolfgang Pietsch’s research concerns the way the reliance
on data and related technologies in science is changing the methodology of science
itself. According to many, as highlighted in Kitchin’s talk, scientific methodology
has changed towards a new kind of science, where data is a sufficient guide thanks
to its massive availability: scientists just need to analyse the data and look for
correlations, so that they do not need theories, because data can per se tell us
everything, and do not need to find causation, because correlations are enough.
A good synthesis of these positions can be found in Anderson (2008), who argues
that <<the new availability of huge amounts of data, along with the statistical
tools to crunch these numbers, offers a whole new way of understanding the world.
Correlation supersedes causation, and science can advance even without coherent
models, unified theories, or really any mechanistic explanation at all>>. According
to Pietsch, it is quite easy to debunk statement such as the one of Anderson and,
in fact, this has largely been done in the literature (see e.g. Boyd and Crawford,
2012); however, the real challenge to philosophy of science is identifying the grain of
truth rather than simply debunking, because there may be some truth under these
exaggerated positions.

First of all, Pietsch reflects on the very idea of big data. What is big data
in the first place? As explained in Kitchin’s talk, the usual definition of big data
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is the 3V definition. Similarly to Kitchin, Pietsch thinks that this definition may
be considered problematic, because it uses relational concepts only and thus one
would need to clarify the specific point of the volume/variety/velocity. In addition
and more importantly, the definition mostly refers to the technical challenges of
big data and, hence, is not really useful for analysing data-intensive science and
methodological elements. A possibly more useful way of defining big data deals with
the idea that there is something happening to sampling, in the sense that thanks to
big data we no longer need to choose a specific sample because we the data may
represent all – or at least a significant subset of – the configurations of phenomena.
Another crucial aspect of big data definitions which are useful for understanding the
scientific use of data regards the automation of scientific processes. For example,
Jim Gray (Hey et al., 2009: xvii-xix) argues that the availability of a huge amount of
data and data-handling technologies enables scientists to ask questions about more
generally as well as causally complex. As for the issues this kind of data-intensive
science deals with and the ways it solves them, Pietsch thinks that it is mostly
about predictions, many instances of observations and thus variables, nonparametric
modelling. These issues are similar to the ones of statistics, for which the presence
of big data poses many challenges and produces significant changes: this is why,
according to Pietsch, there is currently a paradigm-shift developing in statistics.

So, what happens to causation in the light of data-driven methods? Against the
naive idea of causality being superseded by correlations as a consequence of big
data, Pietsch wants to propose an account of causality which is capable of dealing
with data-intensive science and/or is useful to analyse the methods of data-intensive
science. In order to do that, an account of causality should meet a few requirements:
it should fit the variational nature of evidence; it should not require a strong notion
of intervention, because data has usually an observation-based nature; it should in
some way account for the intuition that data-intensive science is theory-free, or at
least suggest a new role for theory in inductive rather than deductive terms (this is
one of the reasons Pietsch thinks that mechanist accounts of causation, here, may
have problems); it should account for the contextuality of causation. So, Pietsch
begins with a basic idea of counterfactuals, firstly formulated by Hume (1739: 70),
according to whom, <<if the first object had not been, the second never had ex-
isted>> and then specified by Lewis in terms of a causal chain of events of which,
if one had not happened, the other would not have happened either, and in terms
of the semantic framework of possible worlds, to evaluate the truth-values of the
counterfactuals’ conditionals (see Menzies, 2014). As a consequence, the account
of causation that Pietsch presents is a difference-making account which, inspired
by Mill’s method of difference (see Pietsch, 2014), is based on the counterfactual
idea and also includes a notion of causal irrelevance, introduces context depen-
dence. While the notion of causal irrelevance does not play a substantial role in the
philosophical discussion on causation, Pietsch thinks that it is a powerful tool; for
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instance, causal irrelevance is useful for the evaluation of counterfactuals and in the
context of analogical inference and probabilistic independence. The account is pre-
sented as follows: “in the context B in which the conditions C and the phenomena A
occur, C is causally relevant to A if and only if the following counterfactual holds, if
C had not occured, A would not have occured either”; ‘in the context B in which the
conditions C and the phenomena A occur, C is causally irrelevant to A if and only
if the following counterfactual holds, if C had not occured, A would still have oc-
cured”. As for the context dependence, the context needs to be constant in the sense
that only the causally irrelevant elements may change. As for the counterfactu-
als’ evaluation, Pietsch suggest that the two main traditional evaluation methods –
Goodman’s one and the more popular one by Lewis, based on the similarity between
possible worlds – should be ditched in favour of this different approach, inspired by
the method of difference, relying on causal irrelevance: the comparisons does not
take place between possible worlds, but rather between phenomena which in the
world differ only in terms of the causally irrelevant circumstances. According to
Pietsch, this account of causation fits quite well with what is currently happening
in data-intensive methods: as a matter of fact, in data-intensive science what hap-
pens is that, as a consequence of the huge amount of data, instances are compared
between the data and the goal is getting predictions from that. Furthermore, this
account fulfils well the previous conditions of adequacy, insofar as it fits the varia-
tional nature of evidence, does not rely on a strong notion of intervention, does not
use underling knowledge of mechanisms and explains the importance of contextual-
ity. As a practical example of application of this notion to a case in data-intensive
science, Pietsch mentions the usage of the algorithms of classification trees, which
in some simple cases is identical to the method of difference and, in more compli-
cated ones, is significantly similar (for instance, the condition of the stableness of
context is equally required).
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6 Big Data: The Empiricist Approach and Its Philo-

sophical Underpinnings
Teresa Scantamburlo (University of Ca’ Foscari, Venice)

Teresa Scantamburlo’s talk looks at the philosophical underpinnings of the current
scholarship in machine learning and pattern recognition for big data analysis, sug-
gesting that they are very much related to traditional empiricism.

First of all, Scantamburlo starts off with a definition of big data. As stands
out from the other talks, defining big data is a main issue within current academic
work and often scholars, before even arguing something about big data, have to
specify the definition they think is the best one. In this case, Scantamburlo es-
sentially agrees with Rob Kitchin’s broad definition of big data (volume, velocity,
variety, exhaustivity, resolution and indexicality, relationality, flexibility) and con-
trasts it with Viktor Mayer-Schönberger and Kenneth Cukier (2013)’s view, which
she thinks syntheses well the main trends of current machine learning views. As
a matter of fact, according to Mayer-Schönberger and Cukier, the most important
and characterising features of big data are the following: the possibility of seeing
phenomena from several angels and perspectives; the fact that you can get a sense
of the main general directions of phenomena; the superiority of predictions based
on correlations as opposed to explanations and causation. In addition to Kitchin’s
view, Mayer-Schönberger and Cukier’s points can be considered similar to what
Boyd and Crawford (2012) call mythologies of big data, including the idea that big
data entails the end of theory because data can speak for itself and the triumph of
correlations over causation. Scantamburlo highlights how, for Boyd and Crawford,
most of these ideas regarding big data are, precisely, mythologies and, for instance,
claims of objectivity are misleading, bigger data is not necessarily better data, big
data is not always universal and loses meaning when out of context and has often
limited access.

As a consequence of the latter and other critiques regarding the myths of big
data, Scantamburlo believes that we are currently witnessing a sort of reconciliation,
somehow trying to recombine the radical empiricist approach according to which
data can speak for itself, correlations are enough, etc. with theoretical models and,
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more in general, the sphere of reason; this alternative approach is what has been
defined as data-driven science. On Scantamburlo’s view, the efforts of reconciling
data and theory can be seen as a sort of solution of Hume’s division between reason
and matters of fact. In other words, Scantamburlo thinks that, while we are trying to
find an alternative and critical way of looking at big data, this alternative way is an
opposition to Hume’s notion of induction; at the same time, in fact, the development
of big data analysis and machine learning is the result of a Humean view of induction
and distinction between different kinds of knowledge. That is, looking at the big
data discourse from a Humean perspective can enlighten the roots of the discourse
and let us better understand why data is increasingly trusted, while at the same
time being unreasonable (see Halevy et al., 2009).

So, according to Scantamburlo, certain features of the big data discourse can
be better understood by analysing their philosophical underpinnings and, particu-
larly, having Hume’s anti-rationalist approach in mind. Hume introduced an idea of
induction based on probable reasoning and regularity, in the sense that we know
the world just by repeating experiences and it is a spontaneous process that we
tend to naturally trust. This is the main way in which machine learning and pat-
tern recognition developed the idea of inductive inference: you have some instances
that you have observed, and this is useful insofar as, when a new instance occurs,
you can make a prediction on it. Statistical learning theory basically repeats the
same story: an algorithm takes some training examples on a particular target and
then, after the training phase, each time a test instance appears, through a mapping
function the algorithm can predict its outcome. Interestingly, this way of thinking
about inductions has led machine learning and patter recognition researchers to
think of models of data as if they were models of phenomena, to the point that
data analysis models are seen as equivalen to theoretical and scientific models;
the problem, though, is that data analysis models comprise a limited knowledge of
phenomena, while theoretical models are more general because they directly refer
to phenomena.

So, having highlighted the two Humean philosophical underpinnings of the con-
ception of induction in machine learning and pattern recognition and taking these
into account, Scantamburlo suggest two main questions which remain open and
need further research. The first one regards the way in which we should consider
induction itself in these two disciplines: the two main approaches – abstraction and
generalisation – are correlated, but are not really the same; in the machine learning
ad pattern recognition literature, though, they are often treated as if they were the
same and, as a consequence, it is often difficult to distinguish them and understand
their conclusions and results. Secondly, Scantamburlo argues that another question
regards how we can use machine learning and pattern recognition algorithms for
models of data and models of phenomena, without making confusion between the
two of them.
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