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Lavori in corso
Stefano Canali, Pietro Angelo Casati

Cari lettori, è con piacere che apriamo la pubblicazione di RIFAJ Vol.7 N.2. Si
tratta di un’uscita un po’ particolare, legata ad alcune novità riguardo al futuro
del progetto RIFAJ.

In sei anni di attività la Rivista hamantenuto una presenza costante, pubbli-
cando puntualmente due numeri all’anno, ampliando il raggio delle iniziative
correlate e coinvolgendo unmaggior numero di collaboratori sia nella Redazio-
ne sia nel Comitato Scientifico. Ha dato a tanti la possibilità di mettersi in gioco
in prima persona e per la prima volta. Molti di noi sono passati da laurea trien-
nale amagistrale e dottorato, spostandosi nel frattempo in giro per (quasi) tutto
il mondo.

Data la stabilità raggiunta, pensiamo sia giunto il momento per dedicarci al-
lo sviluppo di alcune potenzialità inespresse, così da portare il progetto ad uno
stadio successivo. Nei prossimimesi RIFAJ andrà incontro ad una profonda rivi-
sitazione, volta adunacrescita in terminidi qualità scientifica,maturità e attività
correlate. In quest’ottica abbiamo deciso di pubblicare il presente e il prossimo
fascicolo con un numero ridotto di contributi, così da investire tempo ed ener-
gie nella ristrutturazione del progetto. Sarà perciò assente il consueto contorno
di recensioni, interviste e report, nonché Firma d’Autore ed Ex-Cathedra, soli-
tamente presenti nei nostri numeri tematici. In particolare, il volume corrente
presenta due articoli, accomunati dal fatto di proporre revisioni di prospettive
inaugurate da Saul Kripke.

In “Epistemic Logic and the Problem of Epistemic Closure”, Davide Emilio
Quadrellaropresentauna logicadella conoscenzaalternativa alle logichepropo-
sizionali modali di tipo kripkeano. L’intento dell’autore è di servirsi dei “mondi
impossibili” per evitare il compromesso con il controverso principio di chiusura
epistemica.

In “ANewModel for theLiar”, LucaCastaldopresentaunnuovomodelloper il
linguaggio dell’aritmetica di Peano con l’aggiunta del predicato unario di verità.
Estendendo il punto fisso minimo di Kripke e impiegando una particolare logi-
ca a quattro valori, l’autore intende sopperire ad un’inadeguatezza del modello
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kripkeano, che non consente di distinguere tra i cosiddettimentitori e quelli che
potremmo chiamare assertori.

Entrambi gli articoli vertono dunque sulla Logica, in linea con quello che era
stato presentato come uno Special Issue di Logica. Tuttavia, dato l’alto numero
di potenziali contributi, la ricchezza del dibatto e la quantità e qualità di eventi e
pubblicazioni sul tema, crediamo sia necessario costruire un numero tematico
più corposo. Ci fa quindi piacere anticipare fin da subito che stiamo lavoran-
do alla costruzione di un nuovo Special Issue di Logica, con uscita prevista a
novembre 2017, per cui a breve diffonderemo un Call for Papers and Reviews.
In attesa delle grandi novità, invitiamo ad inviare contributi, sottoporre nuove
proposte e leggere i prossimi numeri.

Cogliamo infine l’occasione per ringraziare tutti coloro che ci hanno scritto,
letto e supportato in questi sei anni.

Restate sintonizzati1.

1A proposito di “sintonizzazione”, vi invitiamo a seguirci sulla pagina Facebook di RIFAJ (face-
book.com/RifanaliticaJun), che grazie all’amministrazione di Dario Mortini è decisamente più atti-
va che in precedenza e diventa sempre più ricca di segnalazioni, link notevoli, interviste variegate,
spunti interessanti, nonché dilettevoli meme.

https://www.facebook.com/rifanaliticajun/
https://www.facebook.com/rifanaliticajun/
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Epistemic Logic and the Problem of
Epistemic Closure
Davide Emilio Quadrellaro*

Abstract. This paper argues that propositionalmodal logics basedon
Kripke-structures cannot be accepted by epistemologists as a mini-
mal framework to describe propositional knowledge. In fact, many
authors have raised doubts over the validity of the so-called princi-
ple of epistemic closure, which is always valid in normalmodal logics.
This paper examines how this principle might be criticized and dis-
cusses one possible way to obtain a modal logic where it does not
hold, namely through the introduction of impossible worlds..

Keywords. Epistemology, EpistemicLogic, EpistemicClosure, Rantala
Semantics, Logic of Knowledge, Impossible Worlds.
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1 Introduction

Thepurpose of this article is to describe aminimal logic of knowledgewhich can
be used by epistemologists with different philosophical orientations. A first way
to proceed is describing a modal logic based on a Kripke-semantics, specifying
how the accessibility relation should be restricted in order to represent knowl-
edge. However, it is not difficult to prove that this standard formal epistemolog-
ical analysis implies the validity of the principle of epistemic closure, namely of
the fact that, if oneboth knows that p and that if p thenq , thenhe/she also knows
that q . This principle, however, has been object of criticism and objections by
some epistemologists. Therefore, if we are looking for a general modal logical
framework that canbeusedbyphilosopherswithdifferent orientations, wehave
to construct a formal systemwhere the closure principle does not hold. An inter-
esting way to proceed is working with the semantics which has been developed
by logicians to account for the paradox of the logical omniscience. In fact, if we
introduce the “impossible worlds” and we construct a Rantala-semantics based
on them, we obtain a weaker logic where the closure principle does not hold.

In the first part of this article I present the modal logic T, which is generally
considered theminimal formal system for the logic of knowledge. Firstly I intro-
duce the syntax and the semantics of modal logic, secondly I characterize how
the accessibility relation Ra has to be restricted in order to obtain the logic T.
In the second part I prove that the principle of epistemic closure follows from
T and I try to underline some critical aspects of it. In the third part I introduce
an alternative logic for knowledge where the closure principle does not hold,
namely a modal logic with impossible worlds and a Rantala-semantics. Finally,
in the fourth part, I evaluate this proposal, trying to underline both upsides and
downsides of it.

2 The standard logic of knowledge

A first way to give a formal account to epistemological concepts such as belief
and knowledge is to adopt the language of modal logic. Even if the modal oper-
ators ^ and � are usually read as possibility and necessity, we can also adopt an
epistemic interpretation of them. On this alternative reading we will translate a
logical formula like �p not as “it is necessary that p” but rather as “it is known
that p”, “it is believed that p” or “it is certain that p”. Following each of these
interpretations we can formulate a different modal logic, in order to formalize
the specific features of the considered epistemic operator. In what follows I will
be interested exclusively in the former of these alternatives and I will focus my
attention on the logic of knowledge.

Working with an epistemological interpretation of modal logic, it is worth
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specifying who is the subject of the knowledgewe are speaking about. If we read
�p simply as “it is known that p”, themeaning of this operator remains not clear
enough. What does it mean, in fact, that something is known? Does it mean
that someone knows it? Or does it mean that everyone knows it? Therefore, in
order to be as clear as possible, we should adopt a more intuitive terminology
and make explicit the fact that we are working with a propositional notion of
knowledge andwithin a logic of individual agents. The box operator will be sub-
stituted by a K (for “knowledge”), followed by a letter that indicates who is the
agent that knows the considered proposition. Modal formulas will look, thus,
like Ka p and Kb p and they will be read as “the agent a knows that p” and “the
agent b knows that p”. In what follows, we will be interested in formal systems
with only one agent, but it is important to keep in mind that we can introduce
many K -operators, in order to map the knowledge of more than one subject1.

Let us now move, after these introductory remarks, to give a precise defini-
tion of the syntax of the propositional modal logic for knowledge. We proceed
extending the alphabet of classical propositional logic with a knowledge opera-
tor Ka .

Definition 2.1 (Alphabet of Propositional Modal Logic for Knowledge). An al-
phabet for propositional modal logic for knowledge is defined as the union of
the following disjointed sets:

• A denumerable set of atomic propositional variables P = {p0, p1, ...}.

• The set of the logical connectives C = {¬, ∧,→}.

• The set of the knowledge operator O = {Ka }.

• The set of auxiliary symbols A = {(, )}.

Given the alphabet, it is possible to define inductively the set of the formulas of
the logic of knowledge.

Definition 2.2 (Formulas of Propositional Modal Logic of Knowledge). The for-
mulas of the modal logic of knowledge are given by the following definition by
induction:

1. If ϕ is an atomic propositional variable, then ϕ is a formula.

2. If ϕ is a formula, then also its negation ¬ϕ is a formula.

3. If ϕ and χ are formulas, then also their conjunction (ϕ ∧ χ) is a formula.

4. If ϕ and χ are formulas, then also the conditional (ϕ→ χ) is a formula.

5. If ϕ is a formula, then also Kaϕ is a formula.
1For the introduction of multiple agents see both Hendricks and Symons, (2015, pp. 9-11) and

Holliday, (forthcoming, pp. 5-7).
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6. Nothing else is a formula.

The semantics of the logic of knowledge is provided by a Kripke-structure,
which is the standard way to interpret modal languages.

Definition 2.3 (Kripke-structures). Given a propositional modal logic of knowl-
edge, a Kripke-structureM is a triple 〈W, Ra, V 〉, where:

1. W is anon-empty set. Intuitively,W is a set of “possibleworlds” or “possible
scenarios”.

2. Ra is a binary relation overW , i.e. a subset ofW ×W . Intuitively, we read
vRaw as “the possibleworldw is epistemically accessible from the possible
world v by the agent a”.

3. V is a function that assigns to every atomic propositional formula a subset
ofW . Intuitively,V specifies in which possible worlds each atomic formula
is true.

Given the Kripke-structures, we can define the notion of truth in a world:

Definition 2.4 (Truth in a world). Given a propositional modal logic for knowl-
edge, a Kripke-structureM and a worldw , the notionM �w ϕ of being true in a
world is defined as follows:

1. when ϕ is atomic, thenM �w ϕ iffw ∈ V (ϕ);

2. when ϕ has the form ¬χ, thenM �w ϕ iffM 2w χ;

3. when ϕ has the form (χ ∧ ψ), thenM �w ϕ iffM �w χ andM �w ψ;

4. when ϕ has the form (χ → ψ), thenM �w ϕ iffM 2w χ orM �w ψ;

5. when ϕ has the form Ka χ, thenM �w ϕ iff for every possible world v such
thatwRav ,M �v χ.

The definition of truth in a world allows us to define two further important no-
tions. We say that a formula ϕ is true in a model M if and only if it is true in
every worldw ∈W of the Kripke-structureM. We say that a formula ϕ is a valid
formula if and only if it is true in every world w ∈ W of every Kripke-structure
M.

What we have described so far is the minimal system K of modal logic, with
theonlypeculiarity that the informal reading thatwehaveassumed for themodal
operator is “the agent a knows that...”. Nevertheless, it is clear that to obtain
a logic of knowledge this is not enough. What one needs, rather, is to specify
the formal properties that are typical of knowledge and to represent them in the
logic. Putting specific restrictions over the accessibility relation Ra , it is possible
to obtain many modal logics stronger than K, where more principles are valid
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formula. The problem is that it is not sufficiently clear which modal system
photographs in the correct way the formal properties of knowledge. Since the
purpose of this article is to examine which logic can be accepted by epistemolo-
gists with different philosophical orientations, we will extend K only with those
principles which are generally taken for granted in the epistemological debate.
Therefore, the only restriction that we want impose to our logical system is that
it has to satisfy the following principle:

(T) Kaϕ→ ϕ

What (T) says is that, if one knows aproposition, then this very sameproposition
must be true. This does not only follow from any analysis of knowledge as true
belief plus something, but it also seems to be a valid minimal description of the
meaning of knowledge. Indeed, if one says that he/she knows that p but it is not
the case that p, it seems reasonable to conclude that he/she does not know that
p, but rather only believes that p2.

If we want that the principle (T) holds in the logical framework that we are
considering, we have to put a restriction on the accessibility relation Ra . More
precisely, as we prove with the following theorem, we have to restrict our atten-
tion to those Kripke-structures where the accessibility relation is reflexive. The
modal logic that we obtain when we work only with reflexive accessibility rela-
tions is called T.

Theorem 2.1. Given the language of propositional modal logic and its Kripke-
structureM = 〈W, Ra, V 〉, the formula (T) Kaϕ → ϕ is a valid formula if and only
if the accessibility relation Ra is reflexive.

Proof: Assuming that the accessibility relations Ra inM is reflexive, then given
any possible worldw ∈W we have thatwRaw . Therefore, sinceM �w Kaϕ holds,
thenM �v ϕ holds in every world v such that v is accessible from w . But for
reflexivity we have that w is accessible from itself and, therefore, thatM �w ϕ.
Vice versa, assuming that Kaϕ → ϕ is a valid formula then, for every Kripke-
structureM and every world w in itM �w Kaϕ → ϕ. Given the semantics of
the conditional, this amounts to say that it is not the case thatM �w Kaϕ and
M 2w ϕ. But, if Ra was not reflexive, we could construct a Kripke-structure such
as N = 〈W, Ra, V 〉, with W = {v, w } and Ra = {〈w, v 〉}. In N we have that, if
v ∈ V (ϕ) butw < V (ϕ), thenN �w Kaϕ butN 2w ϕ, contradicting our claim that
Kaϕ→ ϕ is a valid formula. Therefore, Ra must be reflexive. �

3 Theprincipleofepistemicclosureand itsproblems

In the previous part of this article I have introduced themodal logicT, in order to
represent someminimal formal properties of knowledge. Moving a step further,

2This aspect is famously stressed by Wittgenstein, (1969).
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it is now possible to prove an interesting result, which says that the principle of
epistemic closure is a valid formula in T. Firstly, let us clarify what wemeanwith
the name of “principle of epistemic closure”.

(CP) If an agent knows that ϕ and he/she knows that if ϕ then χ, then he/she
also knows that χ.

It is straightforward to translate this thesis into the languageof the logicof knowl-
edge. We thus obtain the following formal version of the closure principle:

(FCP) (Kaϕ ∧ Ka (ϕ→ χ))→ Ka χ

We can now prove the following theorem:

Theorem 3.1. Given the logic of knowledge T, the formal closure principle (FCP)
is a valid formula.

Proof: We reason for absurd. If (FCP) was not a valid formula, there would be a
worldw of a Kripke-structureM = 〈W, Ra, V 〉, where (FCP) does not hold. Given
the semantics of the conditional, this means thatM �w Kaϕ ∧ Ka (ϕ → χ) but
M 2w Ka χ. GivenM �w Kaϕ, we have that in every world accessible from w ,
ϕ holds. GivenM �w Ka (ϕ → χ), we have that in every world accessible from
w , ϕ → χ holds. Moreover, sinceM 2w Ka χ, there is at least one world v such
that wRav whereM 2v χ. But in this same world v we have thatM �v ϕ and
M �v ϕ → χ hold too, from which it follows thatM �v χ. Therefore, we obtain
the contradiction thatM �v χ andM 2v χ. �

If our concerns are mainly epistemological this result has a particular rele-
vance. In fact, what we have proved is that even if we work with a weak modal
system, the principle of epistemic closure will hold in it3. Therefore, if we have
some reason to refuse the principle of epistemic closure, then we can not adopt
the formal logic T anymore, for it describes knowledge in a way which is incon-
sistent with our theory. In particular Dretske (1970) offers at least two possible
reasons to refuse the closure principle4. In the rest of this part I will present both
of them, but I will not try to set the question about their validity. Indeed, I only
want to show that it might be reasonable for an epistemologist to reject the clo-
sure principle. In fact, given the possibility that (FCP) is not acceptable, we have
to look for amodal logic for knowledge weaker than the standard one described

3Notice, moreover, that in the proof of the theorem 3.1. we did not make any use of the fact that
the accessibility relation between worlds is reflexive. Therefore, our proof is valid also for the basic
modal logic K.

4Luper, (2016) synthesizes a wide range of arguments against the closure principle, often origi-
nally raised by Dretske and Nozick. However, even if Luper’s reconstruction is clear, I do not agree
with his presentation of the arguments from the “analysis of knowledge”. In fact, the theories of
knowledge supported by Dretske and Nozick are explanations of why the closure principle fails and
not reasons to refuse it. Luper commits, therefore, a sort of inversion of the right order of explana-
tion.
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by theKripke-structures. Ourpurpose, in fact, is not to takepart in the epistemo-
logical debate and to identify themodal logic which better describes knowledge
but, rather, it is to find a minimal logical framework which can be accepted by
epistemologists of different currents.

A first critique to the principle of epistemic closure is linked to skepticism.
In fact, one general way to reconstruct the argument presented by the skeptic is
with the following argument:

(1) I do not know that I am not a brain in a vat
(2) If I do not know that I am not a brain in a vat, then I do not know that I
have hands.

(3) I do not know that I have hands ∴

The premiss (2) of this argument is a consequence of an instance of (CP). If I
know that I have hands and I know that if I have hands I am not a brain in a vat,
then I know that I am not a brain in a vat. Therefore, if I do not know that I am
not a brain in a vat, then either I do not know that I have hands, or I do not know
that if I have hands I am not a brain in a vat. However, since I know that if I have
hands I am not a brain in a vat, we can exclude the second disjunct and obtain
(2): if I do not know that I am not a brain in a vat, then I do not know that I have
hands5.

If skepticism is expressed in the form of the syllogism presented above, there
are two main strategies to criticize it. Either one denies the premiss (1), either
one denies the premiss (2), namely the closure principle. The first hornwas cho-
senbyMoore (1939), who reversed the skeptic’s argument in its contraposed ver-
sion6.

(1) I do know that I have hands
(2) If I do not know that I am not a brain in a vat, then I do not know that I
have hands.

(3) I do know that I am not a brain a vat ∴

5It is worth underlining that, in order to obtain (2) from (CP), we have to take for granted that we
know that if we have handswe are not a brain in a vat. Although thismight seem trivial, there are two
problematic aspects which deserve some further reflections. On the one hand, one may think that
it is much more reasonable to deny the premiss of the argument from (CP) to (2), namely to assert
that we do not know that if we have hands then we are not a brain in a vat, rather than to accept the
conclusion it leads to, i.e. that we do not know that we have hands. On the other hand, there might
be a skeptical scenario that we do not know, or a person who never thought about brains in a vat.
But if one has never thought about a skeptical scenario, it does not seemplausible to say that he/she
knows that if he/she has hands, then he/she is not in the considered skeptical scenario.

6For historical’s sake, let me remark that Moore did not deal with the brain in a vat hypothesis in
his original article of 1939, but he rather considered more traditional skeptical scenarios.
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However, this solution implies that we do actually know that we are not brains
in a vat, which is a conclusion that many might find excessively strong. There-
fore, if we want to remain faithful both to the intuition that we do know that we
have hands, both to the intuition that we do not know that we are not brains in
a vat, we have to abandon the closure principle. Notice that this is not an argu-
ment against skepticism. If we want to criticize skepticism because the closure
principle does not hold we need independent arguments against (CP). On the
contrary, this is an argument against the closure principle, because skepticism
does not hold. So, what this argument needs are independent reasons to refuse
skepticism.

However, Dretske criticizes the principle of epistemic closure also in a sec-
ond more explicit way, bringing some counterexamples to it. Perhaps the most
famous one is the so-called “zebra case”. Imagine that you are in a zoowith your
nephew. While you are walking around, he asks you if you know what is the an-
imal you are looking at. You observe it, you notice that it looks exactly how you
expect a zebra should look like, and you also find a sign with “zebra” written on
it. Without any further doubt you would reply to your nephew’s question some-
thing like: “Sure! It is a zebra”. Thus, you do know that the animal you are ob-
serving is a zebra. But do you know that it is not a disguised mule? Indeed, it
might be a mule so well depicted by the zoo-officers to look exactly like a zebra,
maybe in order to attract more visitors.

Examples like this present a sort of strange situation. On the one hand, we
haveaplentyof reasons tobelieve that the animalweareobserving is a zebra. On
the other hand, we do not know that it is not a disguisedmule. Moreover, we are
also completely aware that mules and zebras are different animals. Therefore:

(i) we know that the animal we are looking at is a zebra;

(ii) we know that if the animal we are looking at is a zebra, then it is not a dis-
guised mule;

(iii) we do not know that the animal we are looking at is not a disguised mule.

Clearly, (i), (ii) and (iii) taken together are an instance of failure of the closure
principle.

Together, these two arguments show that the principle of epistemic closure
is not so obvious and trivial as one might believe at first sight. A closer exami-
nation of it shows both that it has skeptical consequences and that it does not
always fit our intuitions in concrete examples. Therefore, if we want to find a
propositional modal logic which describes some minimal properties of knowl-
edge generally accepted by epistemologists we have to weaken in some way the
logic of knowledge that we have previously presented.
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4 The impossible worlds and the Rantala-semantics

In the context of the logical literature, an alternative to the standard Kripke-
semantics has been provided in order to account for the problem of logical om-
niscience. In fact, one further consequence of adopting a modal logic like K or
stronger is that any agent knows every classical tautology. In fact, since classical
tautologies are valid in every possible world, the agent always knows them, for
theyare trivially true inall theworldswhich theagenthas access to. Although it is
important to keep distinct the problem of the epistemological closure principle
from the one of the logical omniscience, we can try to apply the logical system
used to answer to the latter of theseproblems also to respond to the former one7.

Given the syntax of modal logic that we have already defined, we can intro-
duce a slightly different semantics, namely a Rantala–semantics8.

Definition4.1 (Rantala-structures). Givenapropositionalmodal logic of knowl-
edge, a Rantala-structure R is a quadruple 〈W,W ′, Ra, V 〉, where:

1. W is anon-empty set. Intuitively,W is a set of “possibleworlds” or “possible
scenarios”.

2. W ′ is a set. Intuitively, W ′ is a set of “impossible worlds” or “impossible
scenarios”.

3. Ra is a binary relation overW ∪W ′, i.e. a subset of (W ∪W ′) × (W ∪W ′).
Intuitively, we read vRaw as “the possible or impossible world w is epis-
temically accessible from the possible or impossible world v by the agent
a”.

4. V is a function that assigns to every atomic propositional formula a subset
ofW ∪W ′ and to every formula a subset ofW ′. Intuitively, V specifies in
which possible or impossible worlds each atomic formula is true, and in
which impossible worlds each formula is true.

Asonecan immediatelynotice, thedifferencebetween theKripkeand theRantala
structures relies on the introduction of a set of impossible worlds. To see how
they affect the interpretation of every formula, we shall reformulate also the no-
tion of truth in a model.

Definition 4.2 (Truth in a world). Given a propositional modal logic for knowl-
edge, a Rantala-Structure R and a worldw , the notion R �w ϕ of being true in a
world is defined as follows:

7On the difference between the problem of logical omniscience and the one of epistemic closure
see Holliday, (forthcoming, pp. 8-10).

8The name of Rantala-semantics comes from the Finnish logician Veikko Rantala. Here I follow
thepresentation of its semantics givenbyWansing, (1990), who also provides an interesting compar-
ison between the Rantala-semantics and othermethods to solve the paradox of logical omniscience.
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1. Ifw ∈W ′, namely ifw is an impossible world, then R �w ϕ iffw ∈ V (ϕ);

2. Ifw ∈W , namely ifw is a possible world, then:

(a) when ϕ is atomic, then R �w ϕ iffw ∈ V (ϕ);
(b) when ϕ has the form ¬χ, then R �w ϕ iff R 2w χ;

(c) when ϕ has the form (χ ∧ ψ), then R �w ϕ iff R �w χ and R �w ψ;

(d) when ϕ has the form (χ → ψ), then R �w ϕ iff R 2w χ or R �w ψ;

(e) when ϕ has the form Ka χ, then R �w ϕ iff for every possible or impos-
sible world v such thatwRav , R �v χ.

It is now possible to clarify which is the role that the impossible worlds play in
the new structure now defined. A first notable aspect is that, while in regards
of the possible worlds the notion of truth in a world is defined inductively, the
truth-value of every formula in an impossible world is directly specified by the
assignmentV . In an impossible world we might have that a disjunction is true
even if its two disjuncts are both false, or that even if two formulas are true their
conjunction is false, and so on. The distinguished aspect of this structure is that
the anomalous behaviour of impossible worlds has some consequences on the
evaluation of formulas in “normal” possible worlds. In fact, in order for amodal
formula like Ka p to be true in a possible worldw , the formula p has to be true in
every world v , both possible and impossible, such thatwRav .

Thenotionof valid formulahasnowtobedefined for thenewRantala-semantics:
we say that a formula ϕ is a valid formula if and only if it is true in every possible
world of every Rantala-structure. Given this new definition and thanks to the
introduction of the impossible worlds, we can show that the principle of epis-
temic closure (FCP) is not a valid formula anymore. In fact, even if R �w Kaϕ

and R �w Ka (ϕ → χ), it is still possible that R 2w Ka χ, since there might be an
impossible world i such thatwRa i where i ∈ V (ϕ) and i ∈ V (ϕ→ χ) but i < V (χ).

Moreover, notice that the introduction of impossible worlds does not im-
ply that “everything goes”. We can, as we have already done for K, propose a
strengthening of this logical framework in order to meet at least the essential
properties of the knowledge operator. Exactly as we have argued in the first part
of this article, theminimal requirement for a logic of knowledge seems to be that
if we know a proposition, then this very proposition is true. Again, if we impose
that the accessibility relation is reflexive, then we obtain a logic where the for-
mula (T) Kaϕ→ ϕ is a valid formula. In this way we can define the new logic T’,
obtained by considering only those Rantala-structures where the accessibility
relation between worlds is reflexive.
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5 An evaluation of the Rantala-semantics strategy

In this last part I shall draw some consequences from the previous analysis and
try to evaluate if the Rantala-semantics thatwe have defined provides aminimal
logical framework todescribe the formal properties of knowledge. Firstly, I argue
that it is possible to identify two reasons to believe that the Rantala-semantics
actually describes a valid minimal logic of knowledge. Then I will consider two
objections. While one will result to be only an apparent critique to the Rantala-
semantics strategy, the second one will identify a true limit of it.

(i) A first observation is that the logic T’ that we have defined actually pro-
vides the minimal logical framework for knowledge which we were looking for.
On the one hand, the principle (T) Kaϕ→ ϕ results to be a valid formula in this
system: working in T’we can represent the fact that if an agent knows a proposi-
tion, then that proposition is true. On the other hand, the logic T’ does not force
us to accept the closure principle, since (FCP) is not a valid formula in it. There-
fore, epistemologists with different theories about knowledge can all accept the
modal system T’ as a minimal framework, which reflects only those properties
of knowledge which are unanimously recognized.

(ii)Moreover, theRantala-semantics is sufficientlyflexible toprovidenotonly
a minimal common framework, but also a basis suitable for further develop-
ments. Given the minimal logic T’, it is possible to obtain systems with new ax-
ioms or inference rules imposing new conditions on the accessibility relation
Ra or on the evaluation functionV 9. In this way, the Rantala-semantics can be
used also to representmore complex theories of knowledge, inwhichmore prin-
ciples hold and should be treated as valid formulas. Epistemologists of differ-
ent philosophical orientations will thus share the common framework given by
T’, and they will also be able to describe more complex and rich systems with-
out the need of describing a new and different semantics. Even if T’ is a quite
general and minimal system, we can start from it and obtain step by step new
and stronger logics, which will formalize richer and more complex accounts of
knowledge.

(iii) However, one aspect of the Rantala-semantics that some philosophers
may find problematic is the fact that it makes use of impossible worlds. In fact,
even if we accept to work with the framework of possible worlds of the Kripke-
structures, the introduction of impossible worlds poses some new problems.
Indeed, although possible worlds represent sets and combinations of facts and
events that are not actual, they are still consistent with the laws of classical logic.
Differently, it is not straightforward toaccount forworldswhere themost evident
logical contradictions may hold. In an impossible world both a proposition and
its negation might be true, two disjuncts can be true and the entire disjunction

9Compare with Wansing, (1990), who also presents some examples of restriction.
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false, and so on. Nevertheless, even if impossibleworlds surely present paradox-
ical features, I think that this problem is only apparent.

Firstly, as Nolan (2013, p. 367–370) underlines, almost every metaphysical
theory about the possible worlds can be extended in order to account also for
the impossibleones. Theonly theorywhichhas someproblemswhile explaining
the nature of impossible worlds ismodal realism, which regards possible worlds
as entities really existing. However, there are also some attempts to extend the
modal realist perspective in order to describe impossible worlds10. Moreover,
onemay also decide to follow an alternative direction and to consider the useful
theoretical role of the impossible worlds a valid reason to reject modal realism
and to defend another metaphysical perspective also in regards of the “normal”
possible worlds.

Furthermore, it is notobviousat all that the introductionof impossibleworlds
in epistemic logic forces us to take an explicit position about their metaphysical
nature11. In fact, the specific philosophical problems that a modal logic raises
are linked to the informal interpretation that we decide to give of its operators.
For instance, if we read the box symbol as representing necessity, then we have
to clarify what does it mean that a proposition is necessary in a world w if and
only if it is true in every possible world which is accessible from w . An anal-
ysis of the nature of possible world is essential, in this case, in order to make
sense of the metaphysical interpretation of the system of modal logic that we
are considering. However, if the reading thatwe are adopting is epistemic, we do
not need to take such a metaphysical attitude. As we have already said defining
the Kripke-structures, the label of possibleworld can be substitutedwithout any
problemwith the one of “scenario”. Indeed, the possible and impossible worlds
are only the combinations of facts and events that an agent may find plausible
descriptions of the reality or not. The informal epistemological reading of the
knowledge operator does not call for any metaphysical interpretation. The fact
that an agent knows a proposition if and only if that proposition is true in every
world to which he/she has access only means that that proposition is part of all
the descriptions that he/she considers as possibly valid representations of the
reality.

(iv) Ultimately, despite its many virtues, I think that it is possible to identify
a proper limit of the Rantala-semantics strategy. Let us distinguish two differ-
ent aspects: the failure of the closure principle itself and the explanation of the
fact that it does not hold. Depending on what we ask to an epistemic logic, we
might then give different evaluations to the Rantala-semantics strategy. On the
one hand, as I have already pointed out, the modal logic T’ offers a formal sys-
10Compare with Nolan, (2013, p. 369).
11Wansing, (1990, p. 536) takes an even stronger position, saying that the question itself about the

nature of the impossible worlds is “unsatisfactory”.
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temwhere the closure principle of knowledge is not a valid formula. If we adopt
T’, indeed, we are able to representmany formal properties of knowledge and to
potentially adjust the system–working on the accessibility relation and the eval-
uation function – to meet the characteristics of different epistemological theo-
ries. On the other hand, the Rantala-semantics does not provide an explanation
of why the closure principle fails. Or, even worse, one may argue that it actu-
ally gives a wrong explanation of this fact. Indeed, the “cause” that determines
the failure of (FCP) in the Rantala-semantics is the introduction of the impos-
sible worlds. If we try to interpret this formal aspect from an epistemological
perspective, the result is that the epistemic closure principle does not hold be-
cause the agent consider as plausible descriptions of the reality also scenarios
where the laws of logic do not hold. However, the problem is that this is not
the explanation that the epistemologists who refuse closure – notably Dretske
and Nozick – have provided. Therefore, even if it offers a framework that can be
accepted also by the epistemologists who do not accept the closure principle,
the Rantala-semantics do not reflect in any way their intuitions about why this
principle does not hold12.

Finally, trying to sum up the considerations developed in this last part, it is
possible to sketch an evaluation of the Rantala–semantics strategy. The result
that we obtained can be regarded as twofold and it depends on what we ask to
an epistemic logic. If we want a strong characterisation of a formal system, such
that it reflects all the theoretical features of an epistemological theory, then the
Rantala–semantics strategy does not seem to be the right way to account for the
problems presented by the closure principle. Still, a more modest attitude is
also possible. In fact, we can demand to a formal system only to verify as valid
those principles – and only those – which an epistemological theory regards as
the formal properties of knowledge. In this light, even if it does not provide any
heuristic insight about the failure of (FCP), the Rantala-semantics is an interest-
ing common framework for different epistemological perspectives, which can
also be refined and strengthened in further ways.

12An interesting contribution on this topic is Holliday, (2015), who directly formalizes the episte-
mological theories proposed by Dretske and Nozick. Notice, however, that although in this way a
formal system gains in heuristic power, it also loses the generality that makes it acceptable by epis-
temologists with different ideas.
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Introduction

It seems that

P Every sentence is either true or untrue1.

But, if so, what about the Liar sentence below?

$ The sentence marked with a dollar is untrue.

$ contradicts P, for it is true if, and only if, it is untrue. To (dis)solve the problem,
Kripke (1975) proposes to reject P and, exploiting the 3-valued logic called Strong
Kleene, constructs a partial model for the truth predicate, where sentences like $ are
‘undefined’, i.e. they lack a truth value.

Within Kripke’s model, however, also the so-called Truth-teller

e The sentence marked with a euro is true.

lacks a truth value. Yet, $ and e are, admittedly, very different: the latter can con-
sistently be declared true or untrue; the former cannot. An adequate model for the
truth predicate ought to account for their diversity.

The purpose of this paper is to put forward a new response to the Liar paradox,
which extends and improves the work done by Saul Kripke in his seminalOutline of
a Theory of Truth.

The plan is as follows: after technical preliminaries in § 1 (including the con-
struction of the formal Liar sentence), I go on in § 2 to present a new model for the
truthpredicate alongwith anew4-valued logic, therebyproposing thenewresponse
to the Liar paradox. The final section 3 examines the properties of the model, prov-
ing what I shall call ‘metalinguistic T-Schema’.

A last remark before I begin: In what follows I assume the reader is familiar with
(i) Peano arithmetic, (ii) the arithmetization of syntax, and (iii) Kripke’s Outline of a
Theory of Truth2.

1The either ... or is to be read here as an exclusive disjunction.
2There is an extensive literature on Kripke’s Outline. A more philosophical and informal introduc-

tion is offered by Burgess, (2011). For more information on the mathematical aspects of Kripke’s con-
struction see, for example, Fitting, (1986) and McGee, (1991, §§4-5). The axiomatic theory known as
Kripke-Feferman (KF) was first given by Reinhardt, (1986) and Feferman, (1991). Feferman, (1991) also
determines its proof-theoretic strength. Cantini, (1989) gives a more direct proof-theoretic analysis of
KF and some of its subsystems. In KF, the partial notion of truth advanced by Kripke is axiomatised in
classical logic. Therefore, outer logic (what is provable) and inner logic (what is provably true) of that
system differs substantially. Halbach and Horsten, (2006) (see also Horsten, 2011, §9.5) have proposed
an interesting axiomatisation in partial logic, creating a system, called “partial Kripke-Feferman” (PKF),
within which the two logics coincide. In that system, gaps but no gluts are admitted. Halbach, (2014,
§16) proposes a system that admits both. For critical discussions of Kripke’s position see, among others,
Gupta, (1982, pp. 30-37) and Field, (2008, §3).
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1 The Formalised Liar

1.1 Technical Preliminaries

The object language of this work will be the language of Peano arithmetic (PA) ex-
tendedby the unary truth predicateT . I shall call the language of PA, withoutT ,Lpa ;
the extended language will be called L t

pa
3. As “official” logical vocabulary, I shall

use the existential quantifier ∃, the negation and disjunction symbols ¬, ∨, and the
identity symbol �. As usual, however, abbreviations will be used. A standard Gödel
numbering of L t

pa-expressions will be assumed throughout the work, without go-
ing into details4. The Gödel number (or code) of a formula ϕ is g n(ϕ), and pϕq is the
numeral of g n(ϕ). I shall distinguish between natural numbers and L t

pa-numerals
exploiting boldfaced characters: the natural numbers arewritten “0, 1, 2, . . . , n” (not
boldfaced) and theL t

pa-numerals “0, 1, 2, . . . , n” (boldfaced), where “1, 2, 3 . . .” ab-
breviates “0′, 0′′, 0′′′ . . .”. Formulae with one free variable are indicated by ϕ(vi ); ϕ(t )
denotes ϕ[t /vi ], i.e. the result of substituting t for vi in ϕ. I write ϕ ≡ ψ to indicate
that ϕ and ψ are names of the same formula.

〈M, (E∞, A∞)〉 is Kripke’s minimal fixed point (henceforth: MFP), and
‘〈M, (E∞, A∞)〉 |=sk ϕ’ means that ϕ is true inMFP, according to the Strong Kleene.
Furthermore, I shall make use of the following metalinguistic symbols:

• ¬¬ for “non . . . ”.
• 0 for “. . . or . . . ”.
• 1 for “. . . and . . . ”.
• ⇒ for “if . . . , then . . . ”.
• ⇔ for “. . . if, and only if, . . . ”.
• ∃∃ for “there is . . . ”.
• \∀ for “for all . . . ”.

1.2 λ ↔ ¬T pλq

The Diagonal Lemma5 is, as McGee, (1991, p. 24) put it, “a cornerstone of modern
logic”. He even adds that “most of the results of [Truth, Vagueness, and Paradox]
can be regarded as corollaries to this basic result”. In this section I shall exploit the
typical diagonal construction, in order to obtain the formalised liar antinomy.

3Notice that we are just extending the language of PA, not the theory, i.e. we are not adding axioms
for T , creating a new theory, say PAT. In addition, we can impose a restriction on the induction schema
toLpa -formulae, i.e., an instance of

(ϕ(0) ∧ ∀vi (ϕ(vi )→ ϕ(v ′i )))→ ∀vi (ϕ(vi ))
is an axiom, only ifT does not occur in ϕ.

4See, for instance, Boolos, Burgess, and Jeffrey, (2007) and Smith, (2013).
5Or Fixed Point Lemma, or Self-Referential Lemma.
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Before I begin, the concept of diagonalization of a formula must be introduced:

The diagonalization of ϕ is the expression ∃v0(v0 � pϕq ∧ ϕ).

Even if this notionmakes sense for arbitrary expressions, it is of most interest in the
case of a formula ϕ(v0)with just one variable v0 free. Since an expression of the form
ϕ(t ) is equivalent to ∃v0(v0 � t ∧ ϕ(v0)), the diagonalization of ϕ(v0) is equivalent
to ϕ(pϕq). That is: the diagonalization of a formula ϕ(v0) is true (in the standard
interpretation) if, and only if, it is satisfied by its own code.

There is also a recursive function dia g that, when applied to the Gödel number
of a formula, yields the Gödel number of its diagonalization. That is to say: if the
code of a formula ϕ is n and the code of its diagonalization is m, then dia g (n) = m.
A more formal definition is:

dia g (n) = g n
�
∃v0(v0 � �

? num
�
n

�
? g n

�
∧

�
? n ? g n

�)�,

where ? and num represent, respectively, the concatenation and thenumeral func-
tions, both recursive6.

Lemma 1.1. (THE FORMALISED LIAR) There is aL t
pa-sentence λ, such that

PA ` λ ↔ ¬T pλq

Proof. SincePA represents every primitive recursive function, dia g is representable
in PA. Let Diag(v0, v1) be a formula representing dia g , so that for any a and b , if
dia g (a) = b , then

PA ` ∀v1(Diag(a, v1)↔ v1 � b) (1)

Diag is a complexLpa-formula, not containing the new predicateT .
Let now β(v0) be the formula

∃v1(Diag(v0, v1) ∧ ¬T (v1)) (β(v0))

Intuitively, β(v0) says that the diagonalization of a formula is not true, without yet
sayingwhich formula. Let’s now consider the diagonalization of β(v0), and let’s call
it λ:

∃v0(v0 � p βq ∧ β(v0)) (λ)
6The concatenation function? is such that, if s and t are the codes of two expressions, then s ?t is the

code of the first expression followed by the second. The numeral function num maps each n to the code
of the numeral n. The function dia g could have been defined more precisely by first showing that also
the logical operations of conjunction and existential quantification are recursive. For more information
see Boolos, Burgess, and Jeffrey, (2007, p. 221, §15).
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In other symbols, λ is

∃v0
�
v0 � p βq ∧ ∃v1(Diag(v0, v1) ∧ ¬T (v1))�

This is logically equivalent to β(p βq), i.e. the result of substituting p βq forv0 in β(v0):

∃v1(Diag(p βq, v1) ∧ ¬T (v1)) (2)

Reading (2) in English, we get something like: “there is a number that has two prop-
erties: first, it is the code of the diagonalization of β(v0); second, it is not element of
the extension of T ”. Or, more intuitively: “the diagonalization of β is not true”. In-
teresting enough, the diagonalization of β is precisely λ. Accordingly, λ is logically
equivalent to a sentence that says that λ is not true.

We have thus far constructed, within the formal languageL t
pa , a sentence saying

of itself that it is not true7. The next step consists in proving, within PA, something
about this sentence. Since λ is logically equivalent to (2), we have:

PA ` λ ↔ ∃v1(Diag(p βq, v1) ∧ ¬T (v1)) (3)

We do not know, whether λ is a theorem of PA. We do know, however, that it is the
diagonalization of β, and hence dia g

�
g n(β)� = g n(λ). From this, by (1), follows

PA ` ∀v1(Diag(p βq, v1)↔ v1 � pλq) (4)

That is, pλq is the only closed term satisfying the open formulaDiag(p βq, v1)8. Sim-
ple logic then gives, from (3) and (4):

PA ` λ ↔ ∃v1(v1 � pλq ∧ ¬T (v1)) (5)

Since ∃v1(v1 � pλq ∧ ¬T (v1)) is equivalent to ¬T (pλq), we have:

PA ` λ ↔ ¬T pλq �

This is the formal counterpart of the paradoxical Liar sentence: a sentence that
is provably equivalent to a sentence saying that its code is not element of the exten-
sion of the truth predicate. “But note that [λ] is produced by a simple diagonaliza-
tion construction [...]; and the construction yields a theorem, not a paradox” (Smith,

7Whether this sentence “says of itself that it is not true” is not as obvious as one might think. For an
insightful discussion about self-reference in arithmetic, see Halbach and Visser, (2014a,b).

8Note that (4) is equivalent to the conjunction of PA ` Diag(p βq, pλq) and
PA ` ∀v1(¬(v1 � pλq)→ ¬Diag(p βq, v1)).
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2013, p. 198). The “formal Liar paradox” arises if wewant our theory of truth to prove
the T-Schema ϕ↔ T pϕq for all sentences ϕ ∈ L t

pa .
Yet, this is by nomeans necessary. Kripke (1975) proposes to give up the beloved

T-Schema, constructing a partial model for the truth predicate, where both λ ↔

T pλq and λ ↔ ¬T pλq are neither true nor untrue, i.e. they are undefined. As indi-
cated in the INTRODUCTION, I assume the readerbeing familiarwithKripke’sOutline.
I omit completely the presentation of his work. Here I shall just state two important
features of MFP, described by Kripke (1975, p. 708) as “probably the most natural
model for the intuitive concept of truth”.

Fact 1.2. MFP verifies the metalinguistic T-Schema, i.e.: for all sentences ϕ ∈ L t
pa ,

〈M, (E∞, A∞)〉 |=sk ϕ ⇔ 〈M, (E∞, A∞)〉 |=sk T pϕq

〈M, (E∞, A∞)〉 |=sk ¬ϕ ⇔ 〈M, (E∞, A∞)〉 |=sk ¬T pϕq

Fact 1.3. InMFP both the Liar sentence λ and the Truth-teller τ are undefined.

2 Towards a NewModel

In this section I shall put forward the new response to the Liar antinomy. The gist
of my proposal is that ‘paradoxical’ ought to be treated as a truth value. Liar sen-
tences, according to the present suggestion, do not simply lack a truth value. They
do possess one: they are paradoxical. As has been noted in the INTRODUCTION, the
trigger of my considerations will be the difference between the Liar and the Truth-
teller. Themain goal is to construct amodel within which (i) the difference between
paradoxical and unparadoxical statements is detected, and (ii) every L t

pa-sentence
ϕ has the same truth value asT pϕq (that’s the metalinguistic T-Schema).

The plan is as follows: the next subsection contains philosophical arguments: I
try to explainwhy Kripke’s proposal is not sufficiently satisfactory as response to the
Liar, and why, more generally, hisMFP does not adequately model the truth predi-
cate. In addition, I shall explain why ‘paradoxical’ should be treated as a truth value.
The remaining subsections carry out this idea formally.

2.1 Why?

Without aiming tobe censorious towardKripke’s proposal, but ratherwith the inten-
tionof further developinghis elegant ideas, I think that his construction suffers from
two inadequacies, which can (I hope) be removed. A first, minor problem his pro-
posal is confrontedwith is that using the value ‘undefined’ for paradoxical sentences
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does not seem entirely adequate9 – at least if we adhere to the original meaning at-
tributed to it by Kleene, (1971). A second, major problem is that Kripke’sMFP does
not model the truth predicate in a satisfactory way. Let me elaborate these reasons
in turn.

In both Kleene’s logics (the Strong and theWeak)10, the value ‘undefined’ (u) is
not treated on a pair with ‘true’ (1) and ‘false’ (0): u is not a third truth value11; it
only represents formally the lack of truth values. Secondly, and more important for
the present purposes, u is open to “arbitrariness for a classical value”: undefined
sentences can turn out to be true or false, or can arbitrarily be declared true or false.

Less tersely: as is well known, Kleene introduced the new logics in the study of
partial recursive functions, speaking of which he writes (Kleene, 1971, p. 334):

if whenQ (x) is u,Q (x)∨R(x) receives the value 1, the decisionmust (in the
general case) have beenmade in ignorance aboutQ (x), and in the face of
the possibility that, at some stage in the pursuit of the algorithm forQ (x)
later than the last one examined,Q (x)might be found to be 1 or to be 0.

He goes on (ibid., p. 335) to observe that 1, 0, and u “must be susceptible of another
meaning besides (i) ‘true’, ‘false’, ‘undefined’, namely (ii) ‘true’, ‘false’, ‘unknown (or
value immaterial)’. Here ‘unknown’ is a category, whose valuewe either do not know
or choose for the moment to disregard; and it does not then exclude the other two
possibilities ‘true’ or ‘false’ ”12.

Myquestionnow is: areparadoxical sentences like theLiar open to the samekind
of arbitrariness for a classical value? Might these sentences turn out to be true, or
false? Can we arbitrarily assign them a truth value? Hardly so. These sentences are
paradoxical precisely because the assumption that they are true, or false, generates
inconsistencies.

As already remarked, this is aminor problem. Onemight quite easily change the
interpretation of u and adjust it as pleased to paradoxes13. Nonetheless, the major
problemcontinues to flutter:MFPdoes notmodel the truth predicate adequately, as
it does not account for the difference between Liar and Truth-teller – this difference
having its roots inapeculiarity ofT . Letmemake this claimprecise, byfirst repeating
that the difference between

9Some authors have suggested that paradoxes are overdefined (both true and false), and not under-
defined (neither true nor false). See, for example, Dunn, (1969, 1976) and Priest, (1979).
10See Kleene, (1971, §64).
11Kripke (1975, fn 18) stresses the same point.
12Other philosophers have also suggested, as reported by van Fraassen, (1966, pp. 482-483), that sen-

tences that are normally taken to be neither true nor false (for instance “the king of France is wise”) “are
‘don’t cares’ for ordinary purposes, and there is therefore no reason why we should not arbitrarily assign
them some truth value”.
13For example, Priest, (1979) introduced the so-called ‘Logic of Paradox’ (LP), which has the same truth

tables as the Strong Kleene, but the interpretation of the third value is ‘true and false’, and it is, moreover,
a designated value.
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$ The sentence marked with a dollar is untrue.

and

e The sentence marked with a euro is true.

is that one canmore or less arbitrarily declare e true, or untrue, without stumbling
on logical issues; on the contrary, the only way to declare $ true, or untrue, requires
the abandonment of an important principle about truth, i.e. that nothing is both
true and untrue. Therefore, doing nothing more and nothing less than describing a
simple state of affairs, we can state that

(Fact) the truth predicate is such that, there are sentences that can consistently be in
its extension or in its anti-extension; there are sentences that cannot.

Every theory of truth ought to take (Fact) into account14.
As a matter of fact, in a substantial portion of the Outline, Kripke shows how

to categorise different kinds of sentence. A sentence is paradoxical, e.g., “if it has
no truth value in any fixed point” (Kripke, 1975, p. 708)15. A sentence is ungrounded
andunparadoxical, if it has a truth value in some fixed point, different from themin-
imal one – an example being the Truth-teller. He even emphasises that “the assign-
ment of a truth value to [the Truth-teller] is arbitrary” (ibid., p. 709)16.

The reader might therefore ask, what the point of my objection is – Kripke does
offer a way to distinguish between paradoxical and simply undefined sentences;
Kripke does account for the difference between Liars and Truth-tellers. He surely
does. But the point is that only within themetatheory one can implement that dis-
tinction. Only within an informal “metamodel” of the various fixed-point models
are we able to differentiate between paradoxical and unparadoxical sentences. The
minimal fixed point, which (repetita iuvant) is described by Kripke as “probably the
most natural model for the intuitive concept of truth” (ibid., p. 708), doesn’t see the
difference: in this model the Liar and the Truth-teller are both simply undefined.

If I am right, and if the difference between $ and e is due to the peculiarity of
T expressed by (Fact)17, then I believe it is justified to maintain the Kripke’s model

14A similar point is made by Gupta and Belnap, (1993, p. 100): “The essential thing about the Liar ap-
pears to be its instability under semantic evaluation: No matter what we hypothesize its value to be,
semantic evaluation refutes our hypothesis. A theory of truth ought to capture this intuition. It should
provide awayof distinguishing sentences that exhibit this behaviour from those that donot, and it should
explainwhy certain sentences behave this way”.
15Kripke considers only consistent fixed point, i.e. fixed point where E ∩ A = ∅. So do I.
16Halbach, (2014, p. 196) observes that “Kripke’s main contribution was not so much the construction

of the smallest fixed point [...] but rather his classification of the different consistent fixed points and the
discussion of their use for discriminating between ungrounded sentences, paradoxical sentences, and so
on”.
17Are there any other predicates which are akin toT in this respect? One is there for sure: the predicate

“is heterological” introduced by Kurt Grelling and Leonard Nelson (see Grelling and Nelson, 1907). In a
parallel work, I am trying to extend the solution presented here to handle the Grelling-Nelson paradox
too.
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is not quite accurate. I believe it is justified to maintain that we should try to find a
way to improve it.

Some suggestions have already been made: it is what McGee, (1991, pp. 110-
111) calls a ‘liberalisation of Kripke’s construction’, which allows extension and anti-
extension of T to overlap. This requires a replacement of a 3-valued logic with a 4-
valued logic having both truth value gaps and truth value gluts. The logical-mathe-
matical properties of such a liberalisation have been studied byWoodruff, (1984)18.
Such systems are of great interest for dialetheists19. But for those who do not be-
lieve that something can be ever both true and false, they are of little help. I am one
of those, and additionally I really do not believe that declaring the Liar both true
and false can represent any kind of solution to the paradox. It seems to me that the
paradox is precisely that some sentence shouldbeboth true and false. I can’t digress,
however, to discuss dialetheism – intriguing though it might be.

2.2 How?

Although I am not an advocate of dialetheism, I subscribe Visser’s words, when he
says that “[o]neattractive featureof four valued logic for the studyof theLiarParadox
is the possibility of making certain intuitive distinctions [that is: the distinction be-
tween Liars and Truth-tellers. L.C.] within one single model” (Visser, 1984, pp. 181-
182). And that iswhy I amabout to introduce anew4-valued logic, whose values are:
true, false, paradoxical, and undefined. “Why ‘paradoxical’?” – the readermight ask.
To properly answer this question, I first need to introduce the idea underlying the
new interpretation ofT .

We all agree (I venture) that an adequate interpretation of the truth predicate
ought to have an extension E and an anti-extension A. Now, since (i) I do not want
Liar sentences to simply lay outside E ∪ A with Truth-teller sentences, and since (ii)
I do not want E and A to overlap, I propose to extend Kripke’s interpretation of T

by adding a third set to it, which will contain those (codes of) sentences that, as
stated in (Fact), cannot consistently be contained in E or in A. I shall call this third
set (due to lack of imagination) X . In particular: (E, A, X ) will be the interpretation
of T , the interpretation of Lpa remaining as before, i.e. we letM be the standard
interpretation ofLpa . Consequently, 〈M, (E, A, X )〉will be the interpretation ofL t

pa

with, informally:

(i) E = {g n(ϕ) | ϕ is true}; A = {g n(ϕ) | ϕ is untrue}; X = {g n(ϕ) | ϕ is paradoxical};
18See also Visser, (1984).
19Dialetheism, roughly, is the view that there are true contradictions, and a full exposition of it would

involve a great deal of technical material that we will not go into here. See Priest and Berto, (2013) for an
overview.
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(ii) E ∩ A = ∅, E ∩ X = ∅, A ∩ X = ∅;

(iii) E ∪ A ∪ X , N.

And so now the question arises, what truth value sentences like T pϕq should have,
whenever g n(ϕ) ∈ X . The answer suggested here, unsurprisingly, is that they are
paradoxical. Hence, the reason why I am proposing to take ‘paradoxical’ as a truth
value is that I think the best way to formalise (Fact) is having a threefold interpre-
tation ofT , with extension, anti-extension, and paradox-set. Accordingly, exactly as
though we were allowing E and A to overlap, a fourth truth value is needed. And no
value but ‘paradoxical’ seems to properly suit the paradox-set X .

Now, to carry out this project formally, there are above all three things to be done:
first, we need a new 4-valued logic to handle the value ‘paradoxical’; second, we
need rules determining whether a sentence is true, false, paradoxical, or undefined
in the partial model 〈M, (E, A, X )〉; third, we need a formal definition of (E, A, X ).

2.3 The New Logic

2.3.1 Truth Values and their Structure

Let C be the class of connectives of classical propositional logic. The new 4-valued
logic is defined by the structure:

W = {1, 0, p, u}
D = {1}
C = {fc | c ∈ C}

whereW is the set of truth values (true, false, paradoxical, undefined),D the set of
the sole designated value, C the set of truth functions: for every connective c ∈ C, fc

is the corresponding truth function. That is: if c ∈ C is an n-place connective, fc is a
n-place function with inputs and outputs inW .

As usual, one might order the element ofW by the relation ≤. Since u repre-
sents the lack of truth values, we will have: u ≤ 1; u ≤ 0; u ≤ p. The decision to be
made concerns the new value p. There are three possibilities. One might argue that
‘paradoxical’ represents some sense of ‘overdefined’, in which case we would have
1 ≤ p, 0 ≤ p. Or one might say that, like u, p stands for another case of ‘underde-
fined’, in which case we would have p ≤ 1 and p ≤ 0. Alternatively, one might say, as
I shall do here, that it is neither ‘overdefined’, nor ‘underdefined’, whence we have:
1, 0, and p are not comparable.

This yields a structure P = 〈W, ≤〉, which can be pictured thus:
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P

1 p 0

u

P is aposet (partially ordered set), since theordering≤ onW is a reflexive, transitive,
and antisymmetric binary relation.

Definition2.1 (CONSISTENCYANDCCPO). LetP = 〈D, ≤〉beaposet. FollowingVisser,
(1984, pp. 184-185), define

(a) A subset A ⊆ D is consistent iff each {x, y } ⊆ A has an upper bound in D .

(b) P is a complete, coherent partial order (ccpo), iff every consistent subset A ⊆ D

has a supremum.

Proposition 2.2. P is a ccpo.

Proof. It is easily verified that each consistent pair of elements {u, 0}, {u, 1}, {u, p} ⊆
W has a supremum inW (respectively: 0, 1, p)20. �

2.3.2 Truth Tables and Valuation Function

Instead of defining truth functions singularly21, I shall for simplicity use the truth ta-
bles and I shall write the simple connectives ¬, ∨, ∧ . . . instead of f¬, f∨, f∧ . . . I also
write explicitly conjunction, conditional, and biconditional, although they are de-
fined as usual through negation and disjunction.

¬

1 0
0 1
p p

u u

∨ 1 0 p u

1 1 1 1 1
0 1 0 p u

p 1 p p u

u 1 u u u

∧ 1 0 p u

1 1 0 p u

0 0 0 0 0
p p 0 p u

u u 0 u u

20Gupta and Belnap, (1993, §2C) study the mathematical properties of complete coherent partial or-
ders, which turn out to be useful in investigating truth in three-valued languages.
21For instance:

f¬(x) =



1 if x = 0
0 if x = 1
p if x = p

u if x = u
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→ 1 0 p u

1 1 0 p u

0 1 1 1 1
p 1 p p u

u 1 u u u

↔ 1 0 p u

1 1 0 p u

0 0 1 p u

p p p p u

u u u u u

Do the tables suit our intuitions about paradoxality? I will discuss this question be-
low, inDISCUSSION 2.4. But before that, let me define the valuation function
V〈M, (E,A,X )〉 : L t

pa −→ {1, 0, p, u}. For the sake of readability, I shall writeV instead
ofV〈M, (E,A,X )〉.

(a) For atomicLpa-sentences:

V(ϕ) =



1 if M |= ϕ
0 if M |= ¬ϕ

(b) For atomicL t
pa-sentencesT (n):

V(T (n)) =




1 if n ∈ E

0 if n ∈ A

p if n ∈ X

u if n < E ∪ A ∪ X

(c)

V(¬ϕ) =




1 if V(ϕ) = 0
0 if V(ϕ) = 1
p if V(ϕ) = p
u if V(ϕ) = u

(d)

V(∃viϕ(vi )) =




1 if ∃∃n ∈ N
�
V

�
ϕ(n)� = 1�

0 if \∀n ∈ N
�
V

�
ϕ(n)� = 0�

p if (see below)

u if (see below)

Thedefinition for compound sentences containing connectives is givenon thebasis
of the valuation scheme. The definition for quantified sentences is more intricate,
so let me explain the process that brought me at the definition presented below.
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When does a sentence beginning with a quantifier have semantic value p? The
answer to this question is crucial, since the variousparadoxical sentences are exactly
quantified sentences. More precisely, they have the form ∃v0(ϕ(v0) ∧ ¬T (v0)), where
the code of the sentence is the only object satisfying the formula ϕ(v0), so that for all
other numbers n, ϕ(n) is false.

Now, the semantic rules determining when a quantified sentence is true or false
can be borrowed from the Strong Kleene semantics adopted by Kripke – as I already
did in (d). The problem is that a companion definition for paradoxality, namely

V(∃viϕ(vi )) = p iff ∃∃n ∈ N
�
V

�
ϕ(n)� = p�

is evidently inadequate, since for ϕ(v0) ≡ T (v0) there is indeed a n ∈ N such that
V(T (n)) = p, but the sentence “something is true” is not paradoxical. Certainly,
nonetheless, the condition that there must be a n ∈ N, such that V(ϕ(n)) = p, is
a necessary condition – though not sufficient.

A second thought might be

V(∃viϕ(vi )) = p iff \∀n ∈ N
�
V

�
ϕ(n)� = p�

This also does not work, since it would not make λ, as presented in LEMMA 1.1,
paradoxical. Recall that λ is the sentence ∃v0(v0 � p βq ∧ β(v0)). But the formula
v0 � p βq ∧ β(v0) is not always paradoxical. Quite the opposite, for each n , g n(β),
it is false. Certainly, nonetheless, the condition that V(ϕ(n)) = p for all n ∈ N is a
sufficient condition – though not necessary.

Combining now sufficient and necessary conditions, I shall propose the follow-
ing definition:

(d)

V(∃viϕ(vi )) =




1 if ∃∃n ∈ N
�
V

�
ϕ(n)� = 1�

0 if \∀n ∈ N
�
V

�
ϕ(n)� = 0�

p if ∃∃n ∈ N
�
V

�
ϕ(n)� = p�

1

\∀m ∈ N
�
V

�
ϕ(m)� = p 0 V�

ϕ(m)� = 0�

u if ∃∃n ∈ N
�
V

�
ϕ(n)� = u�

1

¬¬∃∃n ∈ N
�
V

�
ϕ(n)� = 1�

The universal quantifier is defined as usual thus:

∀vi (ϕ(vi )) :↔ ¬∃vi¬(ϕ(vi ))
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To complete the rough description of the new logic, let me add that validity is de-
fined in terms of truth preservation: an inference from Σ to ϕ is valid iff if for each
ψ ∈ Σ, V(ψ) = 1 (the sole designated value), thenV(ϕ) = 1.

It would be interesting to compare this logic with some of the 4-valued logics al-
ready studied in the literature. But this demands a larger discussion than is possible
here. I shall only make one quick remark:

Remark 2.3. Disjunctive syllogism (from ϕ ∨ ψ and ¬ϕ infer ψ) is not valid in the 4-
valued logic called first degree entailment. This is due to the fact that the designated
values of this logic are 1 and b (= ‘both’). As an example, assume that ϕ = b and
ψ = 0; then ¬ϕ, ϕ∨ψ |,F DE ψ, since both ¬ϕ and ϕ∨ψ are designated (namely b), but
ψ undesignated. On the contrary, it is easily verified that in the logic just sketched
disjunctive syllogism is valid, for the only designated value is 122. �

Let us now turn on the truth tables. They are (i) truth-functional, in the sense
that the value of a compound is a function of the values of its immediate compo-
nents; (ii) normal, in the sense that the value of a compound is determined by the
classical rules whenever the components have classical value; (iii) monotonic, for
they preserve the relevant order.

Behind them there are four simple thoughts: first, they are an extension of the
Strong Kleene (K3) – in fact, whenever no component isp, they are exactly as K3; sec-
ond, the value ‘paradoxical’ behaves exactly like u in connection with 1 or 0; third,
the connection of u and p is always undefined; fourth, like K3, they let classical logic
be our guiding light, whenever we have “enough classical information”. Classical
logic, for instance, tells us that a conjunction is false whenever at least one conjunct
is false. Accordingly, if a conjunction has a false conjunct, the whole sentence be-
comes false, independently from the value of the other conjunct.

Discussion 2.4. Do the tables suit our intuitions about paradoxality? Besides the
case of negation, it is hard to determine, since we do not utter, in the everyday life,
many compound sentences containing paradoxes as components. I shall thusmake
no claim to the optimality of the chosen scheme. By way of an example, however,
consider:

♣ The part before the comma of the sentence marked with a clubs sign
is untrue, or 0 = 0 [formalisable as λ ∨ 0 � 0].

♠ The part before the comma of the sentencemarked with a spade sign
is untrue, or 0 = 1 [formalisable as λ ∨ 0 � 1].

22Whether the disjunctive syllogism is a plus or a minus is controversial. See Priest, (2006, p. 154) for a
brief discussion.
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Although these sentences are highly artificial, they ought to be taken into account
when working with formal languages. The former seems to be true, simply because
it is a disjunction containing a true disjunct. And, as already remarked, classical
logic ought to be our guiding light, whenever classical information is enough.

The secondsentencemight give some troubles. According to the tables, it is para-
doxical and this choice is prompted by two considerations. The first: the sentence
is surely neither true nor undefined. Now, if we assume that ♠ is untrue, then both
disjuncts have to be untrue (this implication presupposes, again, to follow classical
logic as far as possible). But the part before the comma is untrue if, and only if, it
is true. The second consideration: it creates a parallel with K3 and with the work of
Kripke. In fact, within Kripke’s framework, ♠ would be undefined, and undefined
is the value ascribed to λ. Since in the new framework λ has a new truth value, the
whole sentence does get a newvalue aswell. Nonetheless, the idea that the sentence
is assigned the value of λ is preserved. �

We can nowmove on to the last part of this section.

2.4 The New Interpretation ofT

To beginwith, I shall exploit Kripke’s construction ofMFP: in the new interpretation
ofT , E and A will be identical to E∞ and A∞ (the extension and the anti-extension of
T inMFP). Of interest is the definition of the paradox-set and the differentiation be-
tween paradoxical and ungrounded-and-unparadoxical sentences. Before I begin,
a quick remark on the choice of letting E and A be identical to E∞ and A∞. Whereas
Kripke maintains that the minimal fixed point is probably the most natural model
for the intuitive concept of truth, I go a bit further: MFP is the most natural model
for the ordinary truth predicate23. In a longer philosophical work I would have de-
fended this claim. But limits in space urges us to move on to the formal definition
of X .

Recall the way Kripke defines paradoxical sentences, namely: a sentence is para-
doxical if, and only if, it does not have a truth value in any (consistent) fixed point,
whereas a sentence is ungrounded and unparadoxical iff it has a truth value in some
fixedpoint, different from theminimal one. Now, onemight be tempted to formalise
Kripke’s characterisation word for word, defining X as the set of all (codes of) sen-
tences that are undefined in every fixed point. Such a definitionwouldmake all Liar
sentences paradoxical, and all Truth-teller sentences unparadoxical – and these are
indeed two desiderata of the new model. But an unpleasant consequence would
23My statement ranges over kripkean models.
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derive from it. Let τ be a Truth-teller24. If I defined X as above, the following, e.g.,
would hold in the newmodel:

V
�(τ ∧ ¬τ) ∨ λ�

= u V
�
T p(τ ∧ ¬τ) ∨ λq� = p (6)

V
�(τ ∨ ¬τ) ∧ λ�

= u V
�
T p(τ ∨ ¬τ) ∧ λq� = p (7)

As (6)-left never gets a truth value in any fixed point, it should be element of X ,
so that (6)-right would be paradoxical in 〈M, (E, A, X )〉. Yet, (6)-left is undefined in
〈M, (E, A, X )〉, because τ ∧ ¬τ is undefined and λ paradoxical25. Similarly for (7).

Therefore, I cannot define X this way, for that would mean abandoning the pro-
spect of constructing a model where every sentence ϕ has the same truth value as
T pϕq. I shall hence posit a different definition.

Kripke, (1975, p. 701) makes the following example: “Suppose we are explaining the
word ‘true’ to someone who does not yet understand it. We may say that we are
entitled to assert (or deny) of any sentence that it is true precisely under the circum-
stances when we can assert (or deny) the sentence itself”. Following this example, I
would suggest:

we are entitled to assert of any sentence that it is paradoxical under the
circumstances when we cannot assert the sentence itself, without being
led to assert that it is untrue.

This informal picture is obviously meant to characterise truth-related paradoxes,
like the Liar or like the example from Kripke, (1975, p. 691), which involves a kind of
cross-reference between statements: Jones says

(I) Most of Nixon’s assertions about Watergate are false.

Suppose now that Nixon’s assertions about Watergate are evenly balanced between
the true and the false, except for one problematic case:

(II) Everything Jones says about Watergate is true.

Suppose, in addition, that (I) is the only statement of Jones about Watergate. It is
easy to verify that we cannot assert (I) (or (II)), without being led to assert that it is
untrue: If we assert (I), we are implying that (II) is untrue. But this implies that (I) is
untrue. Similarly if we deny (I)26.
24Whereas Liar sentenceshave the form ∃v0(ϕ(v0)∧¬T (v0)), Truth-teller sentences are ∃v0(ϕ(v0)∧T (v0)).

In both cases, the code of the sentence in the only number satisfying the formula ϕ(v0).
25Notice that, although I haven’t yet shown it in details, τ is undefined and λ paradoxical according to

the definition of quantified sentences above. See infra, PROPOSITION 3.1, for details.
26Paying attention at some details, also Yablo’s paradoxical sequence (see Yablo, 1993) could be de-

scribed in the samemanner.
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Let me now turn the informal description of paradoxical sentences into a formal
definition. I shall define the set X inductively. After that, I shall explain how the
formal definition relates to the informal characterisation.

First, let ζ(n, S) abbreviate

(i) n = g n(ϕ) 1 PA ` ϕ↔ ¬T pϕq; or

(ii) n = g n(¬ϕ) 1 g n(ϕ) ∈ S ; or

(iii) n = g n(ϕ ∨ ψ) 1 (g n(ϕ) ∈ S 0 g n(ψ) ∈ S) 1

�(g n(ϕ) ∈ S ⇒ g n(ψ) ∈ S ∪ A) 1 (g n(ψ) ∈ S ⇒ g n(ϕ) ∈ S ∪ A)�; or

(iv) n = g n(ϕ ∧ ψ) 1 (g n(ϕ) ∈ S 0 g n(ψ) ∈ S) 1

�(g n(ϕ) ∈ S ⇒ g n(ψ) ∈ S ∪ E ) 1 (g n(ψ) ∈ S ⇒ g n(ϕ) ∈ S ∪ E )�27; or

(v) n = g n(∃viϕ(vi )) 1

∃∃m ∈ N
�
g n(ϕ(m)) ∈ S

�

1 \∀k ∈ N
�
g n(ϕ(k)) ∈ S ∪ A

�
; or

(vi) n = g n(T (m)) 1 m ∈ S .

This gives rise to an operator Γ on the powerset of natural numbers, which is
monotone. It is well known that monotone operators on P(N) have fixed points.
The minimal one will be our set X .

Definition 2.5 (PARADOX OPERATOR). The paradox operator Γ : P(N) −→ P(N) is a
function on the powerset of N, defined thus:

Γ(S) = {n | ζ(n, S)}

Example 2.6. Let S0 = {g n(0 � 0)}. Then Γ(S0) will first of all contain all n, such
that n = g n(ϕ) and PA ` ϕ ↔ ¬T pϕq. Moreover, by condition (ii), it will contain
all n = g n(¬ϕ) such that g n(ϕ) ∈ S0. Now, since the only g n(ϕ) ∈ S0 is g n(0 � 0),
g n(¬(0 � 0)) will be the only (code of) sentence obtained through condition (ii); by
condition (iii), Γ(S0) will contain all n = g n(ϕ ∨ ψ) such that g n(ϕ) ∈ S0 or g n(ψ) ∈
S0 . . . and so forth. In our case, since S0 = {g n(0 � 0)}, Γ(S0) will contain sentences
like g n(0 � 0∨0 � 0) (because g n(0 � 0) ∈ S0), or g n(0 � 0∨1 � 2) (because g n(1 � 2)
∈ A) and so on. Obviously, it will not contain sentences like g n(0 � 0 ∨ 1 � 1) (be-
cause g n(1 � 1) < S0 ∪ A).

Notice that, since g n(λ) < S0 ∪ A ∪ E , sentences like λ ∨ ψ, λ ∧ ψ will not be in
Γ(S0), regardless of the ψ. However, being λ provably equivalent with ¬T pλq, it will
27The reader knows that the conjunction symbol is not part of the official language. I include it anyway,

to obtain a clearer overview.
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be, according to condition (i), in Γ(S0). Consequently, g n(λ ∨ ψ) or g n(λ ∧ ψ)will be
in Γ(Γ(S0)), whenever ψ respects the conditions imposed by the definition. �

In section 2.2, I have claimed that X ∩ E = ∅ and that X ∩ A = ∅. Clearly, if
we start the iteration of Γ as shown in EXAMPLE 2.6, we will not obtain this result.
On the other hand, I have also claimed that X is the least fixed point of Γ, which is
obtained by starting the sequence with S0 = ∅. To show that Γ has a least fixed point,
it suffices to show that it is a monotone function on P(N). After having shown the
monotonicity, it will follow from general theory of inductive definitions that Γ has a
least fixed point.

Lemma 2.7 (MONOTONICITY). Γ is monotone. That is: for all Si, S j ∈ P(N),

Si ⊆ S j ⇒ Γ(Si ) ⊆ Γ(S j )

Proof. Let S1 ⊆ S2 and assume, towards a contradiction

∃∃n ∈ N(n ∈ Γ(S1) 1 n < Γ(S2)) (8)

Let k be a number obtained through existential elimination. From the assumption
that k ∈ Γ(S1) follows:
(i ) k = g n(ϕ) 1 PA ` ϕ↔ ¬T pϕq; or

(i i ) k = g n(¬ϕ) 1 g n(ϕ) ∈ S1; or

(i i i ) k = g n(ϕ ∨ ψ) 1 (g n(ϕ) ∈ S1 0 g n(ψ) ∈ S1) 1

�(g n(ϕ) ∈ S1 ⇒ g n(ψ) ∈ S1 ∪ A) 1 (g n(ψ) ∈ S1 ⇒ g n(ϕ) ∈ S1 ∪ A)�; or
(iv ) k = g n(ϕ ∧ ψ) 1 (g n(ϕ) ∈ S1 0 g n(ψ) ∈ S1) 1

�(g n(ϕ) ∈ S1 ⇒ g n(ψ) ∈ S1 ∪ E ) 1 (g n(ψ) ∈ S1 ⇒ g n(ϕ) ∈ S1 ∪ E )�; or
(v ) k = g n(∃viϕ(vi )) 1

∃∃n ∈ N
�
g n(ϕ(n)) ∈ S1

�

1 \∀m ∈ N
�
g n(ϕ(m)) ∈ S1 ∪ A

�
; or

(vi ) k = g n(T (n)) 1 n ∈ S1.

It can be shown that each of (i )-(vi ) implies that k ∈ Γ(S2).

If (i ), then trivially k ∈ Γ(S2).

If (i i ), as S1 ⊆ S2, g n(ϕ) ∈ S2, and hence g n(¬ϕ) ∈ Γ(S2).

For (i i i ), let me proceed slowly, step by step. First of all, I have to show that:

(i i i ) ⇒ (i i i )[S2/S1] (9)
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That is: if (i i i ) is true (viz. if k = g n(ϕ ∨ ψ) 1(g n(ϕ) ∈ S1 0 g n(ψ) ∈ S1) 1 . . . ), then
also (i i i )[S2/S1] is verified. Now, since we are assuming (i i i ), we are assuming in
particular that (g n(ϕ) ∈ S1 0 g n(ψ) ∈ S1), which implies the second conjunct of
(i i i )[S2/S1], i.e. (g n(ϕ) ∈ S2 0 g n(ψ) ∈ S2) (the first conjunct holds anyway). In order
to show the third conjunct, I shall conduct a proof by cases: exploiting the assump-
tion that (g n(ϕ) ∈ S1 0 g n(ψ) ∈ S1), I shall show that both implies the third conjunct
of (i i i )[S2/S1]. In symbols:

(g n(ϕ) ∈ S1 0 g n(ψ) ∈ S1) ⇒
�(g n(ϕ) ∈ S2 ⇒ g n(ψ) ∈ S2 ∪ A) 1 (g n(ψ) ∈ S2 ⇒ g n(ϕ) ∈ S2 ∪ A)� (10)

Assume first that g n(ϕ) ∈ S1. Then g n(ϕ) ∈ S2, and therefore the second conjunct of
(10) is true. To show the first conjunct, notice that from the assumption that g n(ϕ) ∈
S1 follows that g n(ψ) ∈ S1 ∪ A and hence that g n(ψ) ∈ S2 ∪ A. This verifies the first
conjunct of (10) and concludes the first part of the proof by cases, that is to say: if
g n(ϕ) ∈ S1, then the third conjunct of (i i i )[S2/S1] is true.

The secondpart of theproofbycases,which involves theassumption that g n(ψ) ∈
S1, is exactly the same (mutatis mutandis, of course). Hence, if (i i i ), then (i i i )[S2/S1]
and therefore k ∈ Γ(S2).

If (iv ), then it suffices to substitute E for A in the argument above.

If (v ), then there is a n ∈ N, such that g n(ϕ(n)) ∈ S2 and for all m ∈ N, g n(ϕ(m)) ∈
S2 ∪ A. Therefore g n(∃v0ϕ(v0)) ∈ Γ(S2).

If (vi ), then n ∈ S2 and hence g n(T (n)) ∈ Γ(S2).

(8) is therefore false, and the monotonicity of Γ is proved. �

Since Γ is a monotone operator on P(N), it has a least fixed point.

Lemma 2.8 (FIXED POINT). Γ has aminimal fixed point, i.e. there is a set S such that
Γ(S) = S , and for all S ′ = Γ(S ′), S ⊆ S ′.

Proof Sketch. Every monotone function π : P −→ P on an inductive poset P 28 has a
(unique) least fixed point. Since the paradox operator Γ is a monotone function on
the power set of natural numbers, and since P(N) is an inductive poset, Γ has a least
fixed point29. �

28AposetP is inductive (or chain-complete) if every chainS ⊆ P has a least upperbound. (Moschovakis,
2006, Def. 6.10, p. 75).
29SeeMoschovakis, (2006, §§6-7), andMoschovakis, (1974, pp. 6-8) for details. The former contains an

extensive, yet accessible, analysis of fixed points in general. The latter is a study of inductive definitions.
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The informal description of paradoxical sentences stated above is captured by
the first clause of the formal definition, viz. n = g n(ϕ) 1 PA ` ϕ ↔ ¬T pϕq. It makes
sure that the “atomic” paradoxical sentences are elements of X . These sentences,
evidently, are not atomic in the usual sense. Nevertheless, they are atomic in the
sense that they are the minimum required to yield a paradox. All other clauses are
meant to avoid theproblemwhichwouldhave followed fromadefinition in “Kripke-
style”30. In other words: their goal is, on the basis of the truth tables presented in
§ 2.3.2, to assure that in the new model a sentence ϕ is paradoxical if, and only if,
T pϕq is paradoxical too. A proof of this claim is contained in the following and last
section, which contain the main theorem of the paper.

3 Analysis of the NewModel

Let us check whether the model constructed thus far adequately models the truth
predicate, andwhether it improves the kripkeanMFP. First of all, I will show that the
Liar gets assigned value p. Thereafter, I shall prove that the new model verifies the
metalinguistic T-Schema.

Proposition 3.1. In 〈M, (E, A, X )〉 both λ and ¬T pλq are paradoxical.

Proof. I follow thenotation of LEMMA 1.1. Since λ is provably equivalent (inPA) with
¬T pλq, it follows that g n(λ) ∈ X and thereforeV(T pλq) = p iffV(¬T pλq) = p.

To prove thatV(λ) = p, as λ is a sentence beginning with a quantifier, namely

∃v0
�

v0 � p βq ∧ ∃v1(Diag(v0, v1) ∧ ¬T (v1))︸                                                ︷︷                                                ︸
λ−(v0)

�

I have to show that there is a n ∈ N, such that λ−(n) is paradoxical, and that for all
m ∈ N, λ−(m) is either false or paradoxical.

It is clear that for allm , g n(β), λ−(m) is false. Therefore, I only have to show that
λ−(p βq) is paradoxical:

V(λ−(p βq) = p) ⇔
V

�
p βq � p βq ∧ ∃v1(Diag(p βq, v1) ∧ ¬T (v1))� = p ⇔

V
�
∃v1(Diag(p βq, v1) ∧ ¬T (v1)︸                          ︷︷                          ︸

λ−−(v1)
)� = p (11)

(11) is easily established. To begin with, for any m , g n(λ), λ−−(m) is false, since
30Aword ofwarning: I certainly do notmean to suggest that Kripke, in this context, would have defined

‘paradoxical’ as he did in theOutline.
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V(Diag(p βq,m)) = 0, for all m , g n(λ). Furthermore, λ−−(pλq), i.e.

Diag(p βq, pλq) ∧ ¬T pλq (12)

is paradoxical, sinceV(¬T pλq) = p andV(Diag(p βq, pλq)) = 1. �

I will not show the details for the Truth-teller being undefined, since they are,
mutatis mutandis, the same.

We can now turn to the main theorem:

Theorem 3.2. (METALINGUISTIC T-SCHEMA) For all ϕ ∈ L t
pa , the following holds:

V(ϕ) = V(T pϕq)

Proof. The proof is quite straightforward, although the details are fairly lengthy. Let
me give an outline first: as we know, in MFP every sentence ϕ has the same truth
value as the sentenceT pϕq. LEMMA 3.3 proves that a sentence is true (false) inMFP
if, and only if, it has value 1 (0) in 〈M, (E, A, X )〉. This gives us the so-calledNec (from
ϕ infer T pϕq) and Conec (from T pϕq infer ϕ): a sentence ϕ has truth value 1 (0) in
〈M, (E, A, X )〉 if, and only if, the sentence T pϕq has value 1 (0) too. To complete the
proof, it remains to be shown that a sentence ϕ is paradoxical if, and only if, the
sentenceT pϕq is paradoxical as well. This will be done in LEMMA 3.5.

Lemma 3.3. For all ϕ ∈ L t
pa , the following holds:

〈M, (E∞, A∞)〉 |=sk ϕ⇔V(ϕ) = 1
〈M, (E∞, A∞)〉 |=sk ¬ϕ⇔V(ϕ) = 0

Proof. The left-to-right direction

〈M, (E∞, A∞)〉 |=sk ϕ⇒V(ϕ) = 1 (13)

〈M, (E∞, A∞)〉 |=sk ¬ϕ⇒V(ϕ) = 0 (14)

is evident, since (i) both models have the standard interpretation M for Lpa , (ii)
(E∞, A∞) = (E, A), and (iii) the new logic is exactly like K3 whenever no conjunct has
value p.

As a shortcut for the right-to-left direction, Iwill prove that if a sentencehas value
1 or 0 in 〈M, (E, A, X )〉, then it is not undefined inMFP. It follows that if a sentence
has value 1 (0) in 〈M, (E, A, X )〉 then it is true (false) inMFP, for it cannot be unde-
fined, nor false (true) – otherwise it would have value 0 (1) in 〈M, (E, A, X )〉. Let now
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‘〈M, (E∞, A∞)〉 =|sk ϕ’ abbreviate ‘ϕ is undefined inMFP’. It can be shown that

(V(ϕ) = 1 0 V(ϕ) = 0) ⇒ ¬¬〈M, (E∞, A∞)〉 =|sk ϕ

A simple induction verifies the statement.

ϕ ≡ T (n) If V(T (n)) = 1 or V(T (n)) = 0, then n ∈ E ∪ A iff n ∈ E∞ ∪ A∞ iff
¬¬〈M, (E∞, A∞)〉 =|sk T (n).
ϕ ≡ ¬ψ If V(¬ψ) = 1 or V(¬ψ) = 0, then V(ψ) = 0 or V(ψ) = 1. Thus, by i.h.,
¬¬〈M, (E∞, A∞)〉 =|sk ψ iff ¬¬〈M, (E∞, A∞)〉 =|sk ¬ψ.
ϕ ≡ ψ ∨ χ By contraposition, 〈M, (E∞, A∞)〉 =|sk ψ∨ χ iff at least one disjunct, say
ψ, is undefined and the other, say χ, is not true. By i.h.,V(ψ) , 1 andV(ψ) , 0, and
thereforeV(ψ∨ χ) , 0. To show thatV(ψ∨ χ) , 1, it suffices to show thatV(χ) , 1,
which follows from the fact that χ is either false or undefined inMFP: if it is false,
i.e. if 〈M, (E∞, A∞)〉 |=sk ¬χ then V(χ) = 0, and if 〈M, (E∞, A∞)〉 =|sk χ, then by i.h.
V(χ) , 1. Consequently,V(ψ ∨ χ) , 1.
ϕ ≡ ∃vi (ψ(vi )) By contraposition, 〈M, (E∞, A∞)〉 =|sk ∃vi (ψ(vi )) iff there is no n ∈ N,
such that 〈M, (E∞, A∞)〉 |=sk ψ(n), and for at least some n ∈ N, ψ(n) is undefined.
Hence, by i.h., for some n ∈ N, V(ψ(n)) , 0, and thusV(∃vi (ψ(vi ))) , 0. To show that
V(∃vi (ψ(vi ))) , 1, assume the contrary to derive a contradiction.V(∃vi (ψ(vi ))) = 1 iff
∃∃n ∈ N(V(ψ(n)) = 1), iff, by i.h., ¬¬〈M, (E∞, A∞)〉 =|sk ψ(n). Then either 〈M, (E∞, A∞)〉
|=sk ψ(n)or 〈M, (E∞, A∞)〉 |=sk ¬ψ(n). The former implies 〈M, (E∞, A∞)〉 |=sk ∃vi (ψ(vi ));
the latter implies thatV(ψ(n)) = 0, contradicting the assumption. �

LEMMA 3.3 yields the first half of THEOREM 3.2:

Corollary 3.4. (NEC AND CONEC) For all ϕ ∈ L t
pa , the following holds:

V(ϕ) = 1⇔V(T pϕq) = 1
V(ϕ) = 0⇔V(T pϕq) = 0

Proof. Straightforward consequence of LEMMA 3.3. �

The lemma below completes the proof.

Lemma 3.5. For all ϕ ∈ L t
pa , the following holds:

V(ϕ) = p ⇔ V(T pϕq) = p

Proof. The proof is by induction on the complexity of ϕ.
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ϕ ≡ T (n) V(T (n)) = p iff n ∈ X iff, by DE�NITION 2.5-(vi), g n(T (n)) ∈ X iff
V(T pT (n)q) = p.
Remark 3.6. Notice that we can now use the induction hypothesisV(ϕ) = V(T pϕq)
for all atomic formulas. �

ϕ ≡ ¬ψ V(¬ψ) = p iff V(ψ) = p iff, by i.h., V(T pψq) = p iff g n(ψ) ∈ X iff, by
DE�NITION 2.5-(ii), g n(¬ψ) ∈ X iffV(T p¬ψq) = p.

Disjunction

ϕ ≡ ψ ∨ χ; ⇒ V(ψ ∨ χ) = p iff

(A) At least one between ψ and χ, say ψ, is paradoxical.

(B) χ is either false or paradoxical.

From (A),

V(ψ) = p i.h.
⇔ V(T pψq) = p ⇔ g n(ψ) ∈ X (15)

Towards a contradiction, assume thatV(T pψ ∨ χq) , p, iff

(i) V(T pψ ∨ χq) = 1; or

(ii) V(T pψ ∨ χq) = 0; or

(iii) V(T pψ ∨ χq) = u.

We can rule out (i) and (ii), since, by COROLLARY 3.4, V(T pψ ∨ χq) = 1(0) iffV(ψ ∨
χ) = 1(0), but we are assuming V(ψ ∨ χ) = p. If (iii), then g n(ψ ∨ χ) < X . On the
basis of DE�NITION 2.5-(iii), since we are assuming that g n(ψ) ∈ X , we can argue as
follows:

(g n(ψ) ∈ X 1 g n(ψ ∨ χ) < X ) ⇒ g n(χ) < A ∪ X (16)

It follows that either g n(χ) ∈ E , or g n(χ) < E ∪ A ∪ X . If the former, thenV(T p χq) =
1 ⇔ V(χ) = 1, and if the latter, then V(T p χq) = u

i.h.
⇔ V(χ) = u. Both contra-

dict (B). Hence all (i), (ii), and (iii) deliver a contradiction, from which derives that
V(T pψ ∨ χq) = p.
ϕ ≡ ψ ∨ χ; ⇐ V(T pψ ∨ χq) = p iff g n(ψ ∨ χ) ∈ X , iff

(A) At least one between g n(ψ) and g n(χ), say g n(ψ), is element of X .

(B) g n(χ) ∈ A ∪ X .
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From (A)

g n(ψ) ∈ X ⇔ V(T pψq) = p i.h.
⇔ V(ψ) = p (17)

Towards a contradiction, assumeV(ψ ∨ χ) , p. Then – again due to COROLLARY 3.4
–V(ψ ∨ χ) = u. But ifV(ψ ∨ χ) = u andV(ψ) = p, thenV(χ) = u and therefore, by
i.h., g n(χ) < A ∪ X , which contradicts (B).

Existential Quantifier

ϕ ≡ ∃v0ψ(v0); ⇒ V(∃v0ψ(v0)) = p, iff

(A) ∃∃n ∈ N (V(ψ(n)) = p).

(B) \∀m ∈ N (V(ψ(m)) = p 0 V(ψ(m)) = 0).

Using the induction hypothesis, (A) and (B) yield:

(A ′) ∃∃n ∈ N (g n(ψ(n)) ∈ X ).

(B ′) \∀m ∈ N (g n(ψ(m)) ∈ A ∪ X ).

We derive by DE�NITION 2.5-(v) that g n(∃v0ψ(v0)) ∈ X , and therefore that
V(T p∃v0ψ(v0)q) = p.
ϕ ≡ ∃viψ(vi ); ⇐ V(T p∃viψ(vi )q) = p, iff g n(∃viψ(vi )) ∈ X , iff

(A) ∃∃n ∈ N (g n(ψ(n)) ∈ X ).

(B) \∀m ∈ N (g n(ψ(m)) ∈ A ∪ X ).

(A) and (B) imply

(A ′) ∃∃n ∈ N
�
V(T pψ(n)q) = p�

.

(B ′) \∀m ∈ N
�
V(T pψ(m)q) = p 0 V(T pψ(m)q) = 0�

.

From (A ′), we derive by induction that ∃∃n ∈ N (V(ψ(n)) = p). From (B ′), on the other
hand, we derive that \∀m ∈ N (V(ψ(m)) = p 0 V(ψ(m)) = 0). Therefore, according to
the definition ofV ,V(∃viψ(vi )) = p. �

THEOREM 3.2 derives from COROLLARY 3.4 and LEMMA 3.5. �
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4 What’s next?

There are two questions I didn’t address, which lead to an obvious further step. The
first is whether the new logic, together with the new model-theoretical framework,
may be useful to deal with other paradoxes. Consider, for instance, the Grelling-
Nelson paradox (Grelling and Nelson, 1907) involving the predicate “is heterologi-
cal”31. Within the new framework, one might argue that “‘heterological’ is hetero-
logical” is (like the Liar) paradoxical, for ‘heterological’ cannot consistently be con-
tained in the extension or in the anti-extension of “is heterological”, whereas “‘au-
tological’ is heterological” is (like the Truth-teller) simply undefined.

The second question is how to obtain a proper theory of truth, i.e. how an ax-
iomatisation of the new model may look like32. Additionally, one might try to add
a “Łukasiewicz conditional” to the new logic, to the effect that f→(p, p) = 1. Such a
conditional couldmake λ ↔ ¬T pλq truewhile both λ and¬T pλqwere still paradox-
ical. Of course, if one decides to add such a conditional, the interpretation ofT must
be accordingly modified, in order to preserve the metalinguistic T-Schema. As it is
now defined, g n(λ ↔ ¬T pλq) < E , and henceV(T pλ ↔ ¬T pλqq) , 1. Yet, if in the
hypothetical new frameworkV(λ ↔ ¬T pλq) = 1, then its code better be element of
E . This seems to me worthy of study33: it does seem right to maintain that the Liar
sentence is true if and only if untrue. Would it then not be worthwhile to investigate
a theorywithinwhich bothT pλq and¬T pλq are paradoxical, butwhere nonetheless
T pλq ↔ ¬T pλq is true?

31Mention should be made at this point of the work of Martin, (1967, 1968), who tries to propose one
solution for both Liar and Grelling-Nelson paradoxes.
32I guess that an appropriate axiomatisation of the model presented here will result in a system some-

where in the neighbourhood of PKF (partial Kripke-Feferman).
33A study in a similar direction is due to Field, (2002, 2008), who adds a new conditional to K3, which

is not definable as usual by negation and disjunction.
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