FARMACI ANTIMICROBICI

ASPETTI CHIMICI, RESISTENZA, MONITORAGGIO E RICADUTE AMBIENTALI

Autori

  • DOTT.SSA FRANCESCA BELLINI ASL ROMA-1
  • DOTT. ALBERTO CAL
  • DOTT.SSA ALESSIA LIVERINI ASL ROMA-4
  • DOTT.SSA GIULIANA PAGANI ASL ROMA-1
  • DOTT.SSA SARA ZACCHETTI

DOI:

https://doi.org/10.54103/0300-3485/20736

Parole chiave:

RESISTENZA AGLI ANTIBIOTICI, MECCANISMI BIOCHIMICI, DISSEMINAZIONE, COSTO DI BENESSERE, TRASFERIMENTO GENICO ORIZZONTALE, RISCHI PER LA SALUTE UMANA, ECOLOGIA MICROBICA, RESISTANCE TO ANTIBIOTICS, BIOCHEMICAL MECHANISMS, SPREADING FITNESS COST, HORIZONTAL GENE TRANSFER, HUMAN HEALTH RISK, MICROBIC ECOLOGY

Abstract

(ITA)
Negli ultimi anni è emerso il grave problema della resistenza agli antibiotici nei microrganismi, che rappresenta una profonda minaccia per la salute globale.
I microrganismi resistenti ai farmaci provenienti da fonti antropogeniche e allevamenti zootecnici di tipo intensivo hanno posto serie sfide ambientali e sanitarie.
I geni resistenti agli antibiotici che costituiscono il “resistoma” ambientale vengono trasferiti a batteri patogeni dell’uomo e degli animali. E’ estremamente importante comprendere l’origine ed il meccanismo di trasferimento di questi fattori genetici in agenti patogeni per poter elaborare strategie di interventi terapeutici idonei a limitare le infezioni, ma anche per scongiurare la minaccia della resistenza microbica ai farmaci.
Per intraprendere misure preventive è quindi fondamentale indagare in quali condizioni e fino a che punto avviene la selezione ambientale per la resistenza. Tuttavia, manca ancora una comprensione più profonda dei processi evolutivi ed ecologici che portano alla comparsa clinica dei geni di resistenza ed alla conoscenza delle barriere di dispersione ambientale. Medici, veterinari e chimici sono chiamati a lavorare insieme con l’obiettivo comune di prevenire l’esposizione superflua di agenti patogeni agli antibiotici in contesti non clinici.

 

(ENG)  

In recent years the severe problem of antibiotic resistance in microorganisms has emerged hence representing a deep threat to global health.
Microorganisms resistant to drugs deriving from anthropogenic sources and intensive livestock farming have set serious environmental and health challenges.
Antibiotic-resistant genes that form the environmental “resistoma” are transferred to human and animal pathogenic bacteria. It’s extremely important to comprehend the origin and transfer mechanisms of such genetic factors in pathogenic agents in order to elaborate therapeutic intervention strategies, consequently limiting infections and preventing microbic resistance to drugs.
In order to take preventive measures it is therefore fundamental to investigate in what conditions and at what point the environmental selection for resistance takes place.  However, what is still lacking is a deeper insight of the evolutionary and ecological processes that lead to the clinical appearance of resistance genes and to the understanding of environmental dispersion barriers. Doctors, veterinaries, and chemists are called upon to work together with the common goal of preventing unnecessary exposure of pathogens to antibiotics in non-clinical contexts.

Riferimenti bibliografici

-Aarestrup, F. M. (2015) «The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward», Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1670). doi: 10.1098/rstb.2014.0085. DOI: https://doi.org/10.1098/rstb.2014.0085

-Akiba, T. et al. (1960) «On the mechanism of the development of multiple‐drug‐resistant clones of shigella», Japanese Journal of Microbiology, 4(2), pagg. 219–227.

doi: 10.1111/j.1348-0421.1960.tb00170.x. DOI: https://doi.org/10.1111/j.1348-0421.1960.tb00170.x

-Allen, H. K. et al. (2010) «Call of the wild: Antibiotic resistance genes in natural environments», Nature Reviews Microbiology, pagg. 251–259.

doi: 10.1038/nrmicro2312. DOI: https://doi.org/10.1038/nrmicro2312

-Allen, H. K. (2014) «Antibiotic resistance gene discovery in food-producing animals», Current Opinion in Microbiology, pagg. 25–29.

doi: 10.1016/j.mib.2014.06.001. DOI: https://doi.org/10.1016/j.mib.2014.06.001

-Aminov, R. I. (2010) «A brief history of the antibiotic era: Lessons learned and challenges for the future», Frontiers in Microbiology, 1(DEC).

doi: 10.3389/fmicb.2010.00134. DOI: https://doi.org/10.3389/fmicb.2010.00134

-Anderson, R., Higgins Jr, H. M. e Pettinga, C. D. (1961) «Symposium: how a drug is born», Cincinnati Journal of Medicine, 42, pagg. 49–60.

-Andersson, D. I. e Hughes, D. (2010) «Antibiotic resistance and its cost: Is it possible to reverse resistance?», Nature Reviews Microbiology, pagg. 260–271. doi: 10.1038/nrmicro2319. DOI: https://doi.org/10.1038/nrmicro2319

-Andrew, W. (2006) «Pharmaceutical Manufacturing Encyclopedia Norwich», New York, USA: William Andrew.

-Antonelli, G. et al. (2017) Principi di microbiologia medica. A cura di C. E. Ambrosiana.

-Apata, D. F. (2009) «Antibiotic resistance in poultry», International Journal of Poultry Science, 8(4), pagg. 404–408.

doi: 10.3923/ijps.2009.404.408. DOI: https://doi.org/10.3923/ijps.2009.404.408

-Arzanlou, M., Chai, W. C. e Venter, H. (2017) «Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria», Essays in Biochemistry, pagg. 49–59.

doi: 10.1042/EBC20160063. DOI: https://doi.org/10.1042/EBC20160063

-Baharoglu, Z. e Mazel, D. (2014) «SOS, the formidable strategy of bacteria against aggressions», FEMS Microbiology Reviews, pagg. 1126–1145. doi: 10.1111/1574-6976.12077. DOI: https://doi.org/10.1111/1574-6976.12077

-Baquero, F. et al. (2019) «Gene Transmission in the One Health Microbiosphere and the Channels of Antimicrobial Resistance», Frontiers in Microbiology.

doi: 10.3389/fmicb.2019.02892. DOI: https://doi.org/10.3389/fmicb.2019.02892

-Baquero, F., Martínez, J. L. e Cantón, R. (2008) «Antibiotics and antibiotic resistance in water environments», Current Opinion in Biotechnology, pagg. 260–265.

doi: 10.1016/j.copbio.2008.05.006. DOI: https://doi.org/10.1016/j.copbio.2008.05.006

-Baquero, F., Tedim, A. P. e Coque, T. M. (2013) «Antibiotic resistance shaping multi-level population biology of bacteria», Frontiers in Microbiology.

doi: 10.3389/fmicb.2013.00015. DOI: https://doi.org/10.3389/fmicb.2013.00015

-Bell, B. G. et al. (2014) «A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance», BMC Infectious Diseases, 14(1). doi: 10.1186/1471-2334-14-13. DOI: https://doi.org/10.1186/1471-2334-14-13

-Bell, R. L. et al. (2021) «The persistence of bacterial pathogens in surface water and its impact on global food safety», Pathogens.

doi: 10.3390/pathogens10111391. DOI: https://doi.org/10.3390/pathogens10111391

-Bellino, S. et al. (2019) Rapporto AR-ISS - I dati 2020, Epicentro. Available at: https://www.epicentro.iss.it/antibiotico-resistenza/ar-iss-rapporto-streptococcus-pneumoniae#writers.

-Bengtsson-Palme, J. et al. (2016) «Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics», Science of the Total Environment, 572, pagg. 697–712.

doi: 10.1016/j.scitotenv.2016.06.228. DOI: https://doi.org/10.1016/j.scitotenv.2016.06.228

-Bengtsson-Palme, J. (2017) «Antibiotic resistance in the food supply chain: where can sequencing and metagenomics aid risk assessment?», Current Opinion in Food Science, pagg. 66–71.

doi: 10.1016/j.cofs.2017.01.010. DOI: https://doi.org/10.1016/j.cofs.2017.01.010

-Bengtsson-Palme, J., Jonsson, V. e Heß, S. (2021) «What Is the Role of the Environment in the Emergence of Novel Antibiotic Resistance Genes? A Modeling Approach», Environmental Science and Technology, 55(23), pagg. 15734–15743. doi: 10.1021/acs.est.1c02977. DOI: https://doi.org/10.1021/acs.est.1c02977

-Bengtsson-Palme, J., Kristiansson, E. e Larsson, D. G. J. (2018) «Environmental factors influencing the development and spread of antibiotic resistance», FEMS Microbiology Reviews, pagg. 68–80.

doi: 10.1093/femsre/fux053. DOI: https://doi.org/10.1093/femsre/fux053

-Bengtsson-Palme, J. e Larsson, D. G. J. (2015) «Antibiotic resistance genes in the environment: Prioritizing risks», Nature Reviews Microbiology, pag. 396.

doi: 10.1038/nrmicro3399-c1. DOI: https://doi.org/10.1038/nrmicro3399-c1

-Berg, G. et al. (2013) «The Rhizosphere as a Reservoir for Opportunistic Human Pathogenic Bacteria», in Molecular Microbial Ecology of the Rhizosphere, pagg. 1209–1216.

doi: 10.1002/9781118297674.ch116. DOI: https://doi.org/10.1002/9781118297674.ch116

-Berg, G., Eberl, L. e Hartmann, A. (2005) «The rhizosphere as a reservoir for opportunistic human pathogenic bacteria», Environmental Microbiology, pagg. 1673–1685. doi: 10.1111/j.1462-2920.2005.00891.x. DOI: https://doi.org/10.1111/j.1462-2920.2005.00891.x

-Blázquez, J. et al. (2012) «Antimicrobials as promoters of genetic variation», Current Opinion in Microbiology, pagg. 561–569. doi: 10.1016/j.mib.2012.07.007. DOI: https://doi.org/10.1016/j.mib.2012.07.007

-Bongaerts, G. P. A. e Kaptijn, G. M. P. (1981) «Aminoglycoside phosphotransferase-II-mediated amikacin resistance in Escherichia coli», Antimicrobial Agents and Chemotherapy, 20(3), pagg. 344–350. doi: 10.1128/AAC.20.3.344. DOI: https://doi.org/10.1128/AAC.20.3.344

-Bonnedahl, J. et al. (2009) «Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France», PLoS ONE, 4(6).

doi: 10.1371/journal.pone.0005958. DOI: https://doi.org/10.1371/journal.pone.0005958

-Brown, L. et al. (2017) «Antimicrobial resistance: A call to action!», Clinical Infectious Diseases, pagg. 106–107.

doi: 10.1093/cid/ciw678. DOI: https://doi.org/10.1093/cid/ciw678

-Burwen, D. R., Banerjee, S. N. e Gaynes, R. P. (1994) «Ceftazidime resistance among selected nosocomial gram-negative bacilli in the United States», Journal of Infectious Diseases, 170(6), pagg. 1622–1625.

doi: 10.1093/infdis/170.6.1622. DOI: https://doi.org/10.1093/infdis/170.6.1622

-Bush, K. e Bradford, P. A. (2016) «β-lactams and β-lactamase inhibitors: An overview», Cold Spring Harbor Perspectives in Medicine, 6(8).

doi: 10.1101/cshperspect.a025247. DOI: https://doi.org/10.1101/cshperspect.a025247

-Butler, M. S. et al. (2014) «Glycopeptide antibiotics: Back to the future», Journal of Antibiotics, pagg. 631–644.

doi: 10.1038/ja.2014.111. DOI: https://doi.org/10.1038/ja.2014.111

-Cabello, F. C. (2006) «Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment», Environmental Microbiology, pagg. 1137–1144.

doi: 10.1111/j.1462-2920.2006.01054.x. DOI: https://doi.org/10.1111/j.1462-2920.2006.01054.x

-Calza, L. (2013) Principi di Malattie Infettive, Principi di Malattie Infettive. doi: 10.15651/978-88-748-8593-0. DOI: https://doi.org/10.15651/978-88-748-8593-0

-Castanheira, M. et al. (2007) «First report of plasmid-mediated qnrA1 in a ciprofloxacin-resistant Escherichia coli strain in Latin America», Antimicrobial Agents and Chemotherapy, 51(4), pagg. 1527–1529. DOI: https://doi.org/10.1128/AAC.00780-06

-CDC (2013) Centre for Disease Control and Prevention, Office of Infectious Disease-Antibiotic resistance threats in the United States, 2013, CDC. Available at: http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.

-Cheng, G. et al. (2019) «Selection and dissemination of antimicrobial resistance in Agri-food production», Antimicrobial Resistance and Infection Control.

doi: 10.1186/s13756-019-0623-2. DOI: https://doi.org/10.1186/s13756-019-0623-2

-Di Chiro, A. (2017) «La terra e lo spirito. Questioni e personalità della filosofia in Molise tra Ottocento e Novecento», in Carabba (a c. di). Lanciano, pagg. 127–174.

-Crofton, J. e Mitchison, D. A. (1948) «Streptomycin resistance in pulmonary tuberculosis», British Medical Journal, 2(4588), pagg. 1009–1015.

doi: 10.1136/bmj.2.4588.1009. DOI: https://doi.org/10.1136/bmj.2.4588.1009

-De Boeck, H. et al. (2012) «ESBL-positive enterobacteria isolates in drinking water», Emerging Infectious Diseases, pagg. 1019–1020.

doi: 10.3201/eid1806.111214. DOI: https://doi.org/10.3201/eid1806.111214

-Depardieu, F. et al. (2003) «The vanG glycopeptide resistance operon from Enterococcus faecalis revisited», Molecular Microbiology, 50(3), pagg. 931–948. doi: 10.1046/j.1365-2958.2003.03737.x. DOI: https://doi.org/10.1046/j.1365-2958.2003.03737.x

-Dingemanse, N. J. e Wolf, M. (2010) «Recent models for adaptive personality differences: A review», Philosophical Transactions of the Royal Society B: Biological Sciences, pagg. 3947–3958. doi: 10.1098/rstb.2010.0221. DOI: https://doi.org/10.1098/rstb.2010.0221

-ECDC (2014) «Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net)», EARS-Net, (November), pag. 118.

-European Centre for Disease Prevention and Control (2015) Commission Notice — Guidelines for the prudent use of antimicrobials in veterinary medicine (2015/C 299/04). Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015XC0911%2801%29.

-European Centre for Disease Prevention and Control (2017) «EU guidelines for the prudent use of antimicrobials in human health», European Commission: Health and Food Safety, pagg. 1–21.

-Evans, B. R. e Leighton, F. A. (2014) «A history of One Health», OIE Revue Scientifique et Technique.

doi: 10.20506/rst.33.2.2298. DOI: https://doi.org/10.20506/rst.33.2.2298

-FDA (2010) Forest Laboratories, Inc. Announces FDA Approval of Teflaro (TM) (ceftaroline fosamil) for the Treatment of Community-Acquired Bacterial Pneumonia and Acute Bacterial Skin and Skin Structure Infection. Available at: https://www.biospace.com/article/releases/forest-laboratories-inc-announces-fda-approval-of-teflaro-tm-ceftaroline-fosamil-for-the-treatment-of-community-acquired-bacterial-pneumonia-and-/

-FDA (2015) AVYCAZ safely and effectively [Online]. Forest Pharmaceuticals: FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/206494s000lbl.pdf.

-Fischer, J. e Ganellin, C. R. (2010) Analogue-Based Drug Discovery II.

doi: 10.1002/9783527630035. DOI: https://doi.org/10.1002/9783527630035

-Founou, L. L., Founou, R. C. e Essack, S. Y. (2016) «Antibiotic resistance in the food chain: A developing country-perspective», Frontiers in Microbiology.

doi: 10.3389/fmicb.2016.01881. DOI: https://doi.org/10.3389/fmicb.2016.01881

-Frieri, M., Kumar, K. e Boutin, A. (2017) «Antibiotic resistance», Journal of Infection and Public Health, pagg. 369–378. doi: 10.1016/j.jiph.2016.08.007. DOI: https://doi.org/10.1016/j.jiph.2016.08.007

-Frost, R. O., Steketee, G. e Williams, L. (2000) «Hoarding: A community health problem», Health and Social Care in the Community.

doi: 10.1046/j.1365-2524.2000.00245.x. DOI: https://doi.org/10.1046/j.1365-2524.2000.00245.x

-Gaze, W. H. et al. (2013) «Influence of humans on evolution and mobilization of environmental antibiotic resistome», Emerging Infectious Diseases, 19(7).

doi: 10.3201/eid1907.120871. DOI: https://doi.org/10.3201/eid1907.120871

-Ghaly, T. M. et al. (2017) «Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria», PLoS ONE, 12(6).

doi: 10.1371/journal.pone.0179169. DOI: https://doi.org/10.1371/journal.pone.0179169

-Ghaly, T. M. et al. (2021) «The natural history of integrons», Microorganisms.

doi: 10.3390/microorganisms9112212. DOI: https://doi.org/10.3390/microorganisms9112212

-Giguère, S., Prescott, J. e Dowling, P. (2013) Antimicrobial Drug Action and Interaction: An Introduction. Antimicrobial therapy in Veterinary Medicine 5 th edn., Blackwell. DOI: https://doi.org/10.1002/9781118675014

-Gillings, M. R. (2014) «Integrons: Past, Present, and Future», Microbiology and Molecular Biology Reviews, 78(2), pagg. 257–277. doi: 10.1128/mmbr.00056-13. DOI: https://doi.org/10.1128/MMBR.00056-13

-Gillings, M. R. (2017) «Class 1 integrons as invasive species», Current Opinion in Microbiology, pagg. 10–15.

doi: 10.1016/j.mib.2017.03.002. DOI: https://doi.org/10.1016/j.mib.2017.03.002

-Gorny, R. L. e Dutkiewicz, J. (2002) «Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries», Annals of Agricultural and Environmental Medicine, pagg. 17–23.

-Greene, W. H. et al. (1973) «Pseudomonas aeruginosa resistant to carbenicillin and gentamicin. Epidemiologic and clinical aspects in a cancer center», Annals of Internal Medicine, 79(5), pagg. 684–689.

doi: 10.7326/0003-4819-79-5-684. DOI: https://doi.org/10.7326/0003-4819-79-5-684

-Gu, D. et al. (2018) «A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study», The Lancet Infectious Diseases, 18(1), pagg. 37–46.

doi: 10.1016/S1473-3099(17)30489-9. DOI: https://doi.org/10.1016/S1473-3099(17)30489-9

-Hansman, D. et al. (1974) «Pneumococci relatively insensitive to penicillin in Australia and New Guinea.», The Medical journal of Australia, 2(10), pagg. 353–356. doi: 10.5694/j.1326-5377.1974.tb70836.x. DOI: https://doi.org/10.5694/j.1326-5377.1974.tb70836.x

-Harris, M. (1964) «Pharmaceutical Microbiology», Journal of Medical Education, 39(11). Available at: https://journals.lww.com/academicmedicine/Fulltext/1964/11000/Pharmaceutical_Microbiology.34.aspx. DOI: https://doi.org/10.1097/00001888-196411000-00034

-Harwood, V. J. et al. (2014) «Microbial source tracking markers for detection of fecal contamination in environmental waters: Relationships between pathogens and human health outcomes», FEMS Microbiology Reviews, pagg. 1–40.

doi: 10.1111/1574-6976.12031. DOI: https://doi.org/10.1111/1574-6976.12031

-Hastings, P. J., Rosenberg, S. M. e Slack, A. (2004) «Antibiotic-induced lateral transfer of antibiotic resistance», Trends in Microbiology, pagg. 401–404.

doi: 10.1016/j.tim.2004.07.003. DOI: https://doi.org/10.1016/j.tim.2004.07.003

-Henriques Normark, B. e Normark, S. (2002) «Evolution and spread of antibiotic resistance», Journal of Internal Medicine, pagg. 91–106.

doi: 10.1046/j.1365-2796.2002.01026.x. DOI: https://doi.org/10.1046/j.1365-2796.2002.01026.x

-Hernando-Amado, S. et al. (2017) «Fitness costs associated with the acquisition of antibiotic resistance», Essays in Biochemistry, pagg. 37–48.

doi: 10.1042/EBC20160057. DOI: https://doi.org/10.1042/EBC20160057

-Hernando-Amado, S. et al. (2020) «Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health», Frontiers in Microbiology.

doi: 10.3389/fmicb.2020.01914. DOI: https://doi.org/10.3389/fmicb.2020.01914

-Hiltunen, T., Virta, M. e Anna-Liisa, L. (2017) «Antibiotic resistance in the wild: An ecoevolutionary perspective», Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1712). doi: 10.1098/rstb.2016.0039. DOI: https://doi.org/10.1098/rstb.2016.0039

-Holmes, A. H. et al. (2016) «Understanding the mechanisms and drivers of antimicrobial resistance», The Lancet, pagg. 176–187.

doi: 10.1016/S0140-6736(15)00473-0. DOI: https://doi.org/10.1016/S0140-6736(15)00473-0

-Humphries, R. M. et al. (2015) «First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate», Antimicrobial Agents and Chemotherapy, 59(10), pagg. 6605–6607.

doi: 10.1128/AAC.01165-15. DOI: https://doi.org/10.1128/AAC.01165-15

-Intorre Luigi (2009) «La resistenza microbica ai chemioterapici», in Carli, S., Ormas, P., Re, G. & S. G. (a c. di) Farmacologia Veterinaria. Napoli: Idelson-Gnocchi.

-Jevons, M. P. (1961) «“Celbenin” -resistant Staphylococci», British Medical Journal, pagg. 124–125.

doi: 10.1136/bmj.1.5219.124-a. DOI: https://doi.org/10.1136/bmj.1.5219.124-a

-John, J. F. et al. (1982) «Evidence for a chromosomal site specifying amikacin resistance in multiresistant Serratia marcescens», Antimicrobial Agents and Chemotherapy, 21(4), pagg. 587–591.

doi: 10.1128/AAC.21.4.587. DOI: https://doi.org/10.1128/AAC.21.4.587

-Johnning, A. et al. (2013) «Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production», Applied and Environmental Microbiology, 79(23), pagg. 7256–7263.

doi: 10.1128/AEM.02141-13. DOI: https://doi.org/10.1128/AEM.02141-13

-Johnson, A. P. et al. (1990) «Resistance to vancomycin and teicoplanin: An emerging clinical problem», Clinical Microbiology Reviews, pagg. 280–291.

doi: 10.1128/CMR.3.3.280. DOI: https://doi.org/10.1128/CMR.3.3.280

-Jones, W. F., Nichols, R. L. e Finland, M. (1956) «Development of Resistance and Cross-Resistance in vitro to Erythromycin, Carbomycin, Spiramycin, Oleandomycin and Streptogramin», Proceedings of the Society for Experimental Biology and Medicine, 93(2), pagg. 388–393.

doi: 10.3181/00379727-93-22766. DOI: https://doi.org/10.3181/00379727-93-22766

-Jorgensen, J. H. e Ferraro, M. J. (2009) «Antimicrobial susceptibility testing: A review of general principles and contemporary practices», Clinical Infectious Diseases, pagg. 1749–1755.

doi: 10.1086/647952. DOI: https://doi.org/10.1086/647952

-Jutkina, J. et al. (2016) «An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance», Science of the Total Environment, 548–549, pagg. 131–138. doi: 10.1016/j.scitotenv.2016.01.044. DOI: https://doi.org/10.1016/j.scitotenv.2016.01.044

-Karkman, A. et al. (2016) «High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant», FEMS Microbiology Ecology, 92(3).

doi: 10.1093/femsec/fiw014. DOI: https://doi.org/10.1093/femsec/fiw014

-Knothe, H. et al. (1983) «Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens», Infection, 11(6), pagg. 315–317.

doi: 10.1007/BF01641355. DOI: https://doi.org/10.1007/BF01641355

-Kümmerer, K. (2009) «Antibiotics in the aquatic environment - A review - Part I», Chemosphere, pagg. 417–434. doi: 10.1016/j.chemosphere.2008.11.086. DOI: https://doi.org/10.1016/j.chemosphere.2008.11.086

-Larsson, D. G. J. (2014a) «Antibiotics in the environment», Upsala Journal of Medical Sciences, pagg. 108–112.

doi: 10.3109/03009734.2014.896438. DOI: https://doi.org/10.3109/03009734.2014.896438

-Larsson, D. G. J. (2014b) «Pollution from drug manufacturing: Review and perspectives», Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.2013.0571. DOI: https://doi.org/10.1098/rstb.2013.0571

-Larsson, D. G. J. e Flach, C. F. (2021) «Antibiotic resistance in the environment», Nature Reviews Microbiology.

doi: 10.1038/s41579-021-00649-x. DOI: https://doi.org/10.1038/s41579-021-00649-x

-Laxminarayan, R. (2014) «Antibiotic effectiveness: Balancing conservation against innovation», Science, pagg. 1299–1301.

doi: 10.1126/science.1254163. DOI: https://doi.org/10.1126/science.1254163

-Leclercq, R. et al. (1988) «Plasmid-Mediated Resistance to Vancomycin and Teicoplanin in Enterococcus Faecium», New England Journal of Medicine, 319(3), pagg. 157–161.

doi: 10.1056/nejm198807213190307. DOI: https://doi.org/10.1056/NEJM198807213190307

-Leggett, M. J. et al. (2012) «Bacterial spore structures and their protective role in biocide resistance», Journal of Applied Microbiology, pagg. 485–498.

doi: 10.1111/j.1365-2672.2012.05336.x. DOI: https://doi.org/10.1111/j.1365-2672.2012.05336.x

-Lennon, J. T. e Jones, S. E. (2011) «Microbial seed banks: The ecological and evolutionary implications of dormancy», Nature Reviews Microbiology, pagg. 119–130.

doi: 10.1038/nrmicro2504. DOI: https://doi.org/10.1038/nrmicro2504

-Lesch, J. E. (2007) The first miracle drugs: how the sulfa drugs transformed medicine. Oxford University Press, USA.

-Levin, B. R. et al. (1997) «The population genetics of antibiotic resistance», Clinical Infectious Diseases, 24 (1 SUPPL.).

doi: 10.1093/clinids/24.supplement_1.s9. DOI: https://doi.org/10.1093/clinids/24.Supplement_1.S9

-Levin, B. R., Baquero, F. e Johnsen, P. J. (2014) «A model-guided analysis and perspective on the evolution and epidemiology of antibiotic resistance and its future», Current Opinion in Microbiology, pagg. 83–89.

doi: 10.1016/j.mib.2014.06.004. DOI: https://doi.org/10.1016/j.mib.2014.06.004

-Levine, J. F. et al. (1985) «Amikacin-resistant gram-negative bacilli: Correlation of occurrence with amikacin use», Journal of Infectious Diseases, 151(2), pagg. 295–300.

doi: 10.1093/infdis/151.2.295. DOI: https://doi.org/10.1093/infdis/151.2.295

-Lewis, K. (2013) «Platforms for antibiotic discovery», Nature Reviews Drug Discovery, pagg. 371–387.

doi: 10.1038/nrd3975. DOI: https://doi.org/10.1038/nrd3975

-Li, J. et al. (2017) «Antimicrobial activity and resistance: Influencing factors», Frontiers in Pharmacology.

doi: 10.3389/fphar.2017.00364. DOI: https://doi.org/10.3389/fphar.2017.00364

-Li, J. J. e Corey, E. J. (2013) Drug Discovery: Practices, Processes, and Perspectives, Drug Discovery: Practices, Processes, and Perspectives.

doi: 10.1002/9781118354483. DOI: https://doi.org/10.1002/9781118354483

-Livermore, D. M. (2000) «Epidemiology of antibiotic resistance», in Intensive Care Medicine, Supplement. doi: 10.1111/j.1469-0691.1997.tb00940.x. DOI: https://doi.org/10.1007/s001340051113

-Livermore, D. M. (2003) «Bacterial resistance: Origins, epidemiology, and impact», Clinical Infectious Diseases, 36(SUPPL. 1). doi: 10.1086/344654. DOI: https://doi.org/10.1086/344654

-Löfmark, S. et al. (2008) «Restored fitness leads to long-term persistence of resistant Bacteroides strains in the human intestine», Anaerobe, 14(3), pagg. 157–160.

doi: 10.1016/j.anaerobe.2008.02.003. DOI: https://doi.org/10.1016/j.anaerobe.2008.02.003

-Lundström, S. V. et al. (2016) «Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms», Science of the Total Environment, 553, pagg. 587–595.

doi: 10.1016/j.scitotenv.2016.02.103. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.103

-Lupo, A., Coyne, S. e Berendonk, T. U. (2012) «Origin and evolution of antibiotic resistance: The common mechanisms of emergence and spread in water bodies», Frontiers in Microbiology.

doi: 10.3389/fmicb.2012.00018. DOI: https://doi.org/10.3389/fmicb.2012.00018

-Maiques, E. et al. (2006) «β-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus», Journal of Bacteriology, 188(7), pagg. 2726–2729.

doi: 10.1128/JB.188.7.2726-2729.2006. DOI: https://doi.org/10.1128/JB.188.7.2726-2729.2006

-Mangili, A. et al. (2005) «Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia», Clinical infectious diseases, 40 (7), pagg. 1058–1060. DOI: https://doi.org/10.1086/428616

-Marathe, N. P. et al. (2016) «Limited bacterial diversity within a treatment plant receiving antibiotic containing waste from bulk drug production», PLoS ONE, 11(11).

doi: 10.1371/journal.pone.0165914. DOI: https://doi.org/10.1371/journal.pone.0165914

-Marshall, B. M. e Levy, S. B. (2011) «Food animals and antimicrobials: Impacts on human health», Clinical Microbiology Reviews, pagg. 718–733.

doi: 10.1128/CMR.00002-11. DOI: https://doi.org/10.1128/CMR.00002-11

-Martinez, J. L. (2014) «General principles of antibiotic resistance in bacteria», Drug Discovery Today: Technologies, pagg. 33–39.

doi: 10.1016/j.ddtec.2014.02.001. DOI: https://doi.org/10.1016/j.ddtec.2014.02.001

-Martínez, J. L. (2012) «Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens», Frontiers in Microbiology, 2(JAN).

doi: 10.3389/fmicb.2011.00265. DOI: https://doi.org/10.3389/fmicb.2011.00265

-Martínez, J. L., Coque, T. M. e Baquero, F. (2015) «What is a resistance gene? Ranking risk in resistomes», Nature Reviews Microbiology, pagg. 116–123.

doi: 10.1038/nrmicro3399. DOI: https://doi.org/10.1038/nrmicro3399

-Matte-Tailliez, O. et al. (2002) «Archaeal phylogeny based on ribosomal proteins», Molecular Biology and Evolution, 19(5), pagg. 631–639. doi: 10.1093/oxfordjournals.molbev.a004122. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a004122

-Mattner, F. et al. (2012) «Preventing the spread of multidrug-resistant gram-negative pathogens: Recommendations of an expert panel of the german society for hygiene and microbiology», Deutsches Arzteblatt International, 109(3), pagg. 39–45.

doi: 10.3238/arztebl.2012.0039. DOI: https://doi.org/10.3238/arztebl.2012.0039

-Melnyk, A. H., Wong, A. e Kassen, R. (2015) «The fitness costs of antibiotic resistance mutations», Evolutionary Applications, 8(3), pagg. 273–283.

doi: 10.1111/eva.12196. DOI: https://doi.org/10.1111/eva.12196

-Menkem, Z. E. et al. (2019) «Antibiotic residues in food animals: Public health concern», Acta Ecologica Sinica, 39(5), pagg. 411–415.

doi: 10.1016/j.chnaes.2018.10.004. DOI: https://doi.org/10.1016/j.chnaes.2018.10.004

-Mosalaei, S. et al. (2021) «Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics», Journal of Environmental Health Science and Engineering, 19(2), pagg. 1773–1780. doi: 10.1007/s40201-021-00732-8. DOI: https://doi.org/10.1007/s40201-021-00732-8

-Murray, B. E. (2000) «Vancomycin-resistant enterococcal infections», New England Journal of Medicine, 342 (10), pagg. 710–721. DOI: https://doi.org/10.1056/NEJM200003093421007

-Nathan, C. (2004) «Antibiotics at the crossroads», Nature, pagg. 899–902.

doi: 10.1038/431899a. DOI: https://doi.org/10.1038/431899a

-Pal, C. et al. (2016) «The structure and diversity of human, animal and environmental resistomes», Microbiome, 4. doi: 10.1186/s40168-016-0199-5. DOI: https://doi.org/10.1186/s40168-016-0199-5

-Pearl. Mary C (2007) Perdue Too Chicken to Quit Antibiotics Cold Turkey Antibiotic use on the farm hurts people—and doesn’t help the bottom line., DIscover. Available at: https://web.archive.org/web/20070925063617/http://discovermagazine.com/2007/sep/better-planet.

-Perciaccante, A. et al. (2019) «Vincenzo Tiberio (1869–1915) and the dawn of the antibiotic age», Internal and Emergency Medicine, pagg. 1363–1364.

doi: 10.1007/s11739-019-02116-1. DOI: https://doi.org/10.1007/s11739-019-02116-1

-Perron, G. G. et al. (2015) «Fighting microbial drug resistance: A primer on the role of evolutionary biology in public health», Evolutionary Applications, pagg. 211–222. doi: 10.1111/eva.12254. DOI: https://doi.org/10.1111/eva.12254

-Philippot, L. et al. (2010) «The ecological coherence of high bacterial taxonomic ranks», Nature Reviews Microbiology, pagg. 523–529.

doi: 10.1038/nrmicro2367. DOI: https://doi.org/10.1038/nrmicro2367

-Plaza-Rodríguez, C. et al. (2021) «Wildlife as Sentinels of Antimicrobial Resistance in Germany?», Frontiers in Veterinary Science, 7.

doi: 10.3389/fvets.2020.627821. DOI: https://doi.org/10.3389/fvets.2020.627821

-Ramsey, C. H. e Edwards, P. R. (1961) «Resistance of Salmonellae isolated in 1959 and 1960 to tetracyclines and chloramphenicol», Applied microbiology, 9(5), pagg. 389–391. DOI: https://doi.org/10.1128/am.9.5.389-391.1961

-Rasko, D. A. et al. (2011) «Origins of the E. coli Strain Causing an Outbreak of Hemolytic–Uremic Syndrome in Germany», New England Journal of Medicine, 365(8), pagg. 709–717.

doi: 10.1056/nejmoa1106920. DOI: https://doi.org/10.1056/NEJMoa1106920

-Res, R., Hoti, K. e Charrois, T. L. (2017) «Pharmacists’ perceptions regarding optimization of antibiotic prescribing in the community», Journal of pharmacy practice, 30(2), pagg. 146–153. DOI: https://doi.org/10.1177/0897190015623883

-Rizzo, L. et al. (2013) «Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review», Science of the Total Environment, pagg. 345–360.

doi: 10.1016/j.scitotenv.2013.01.032. DOI: https://doi.org/10.1016/j.scitotenv.2013.01.032

-Rolain, J. M. (2013) «Food and human gut as reservoirs of transferable antibiotic resistance encoding genes», Frontiers in Microbiology.

doi: 10.3389/fmicb.2013.00173. DOI: https://doi.org/10.3389/fmicb.2013.00173

-Romero, J. L. et al. (2017) «Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds», Frontiers in Microbiology, 8.

doi: 10.3389/fmicb.2017.01650. DOI: https://doi.org/10.3389/fmicb.2017.01650

-Roy, J. (2011) An Introduction to Pharmaceutical Sciences: Production, Chemistry, Techniques and Technology, An Introduction to Pharmaceutical Sciences: Production, Chemistry, Techniques and Technology.

doi: 10.1533/9781908818041. DOI: https://doi.org/10.1533/9781908818041

-Salyers, A. A., Gupta, A. e Wang, Y. (2004) «Human intestinal bacteria as reservoirs for antibiotic resistance genes», Trends in Microbiology, pagg. 412–416.

doi: 10.1016/j.tim.2004.07.004. DOI: https://doi.org/10.1016/j.tim.2004.07.004

-Schatz, A., Bugie, E. e Waksman, S. A. (2005) «Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. 1944.», Clinical orthopaedics and related research, 437, pagg. 3–6. doi: 10.1097/01.blo.0000175887.98112.fe. DOI: https://doi.org/10.1097/01.blo.0000175887.98112.fe

-Seier-Petersen, M. A. et al. (2014) «Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis», Journal of Antimicrobial Chemotherapy, 69(2), pagg. 343–348. doi: 10.1093/jac/dkt370. DOI: https://doi.org/10.1093/jac/dkt370

Sensi, P. (1983) «History of the development of rifampin», Reviews of Infectious Diseases, 5, pagg. S402–S406.

doi: 10.1093/clinids/5.Supplement_3.S402. DOI: https://doi.org/10.1093/clinids/5.Supplement_3.S402

-Serra-Burriel, M. et al. (2020) «Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis», PLoS ONE, 15(1).

doi: 10.1371/journal.pone.0227139. DOI: https://doi.org/10.1371/journal.pone.0227139

-Shoemaker, N. B. et al. (2001) «Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon», Applied and Environmental Microbiology, 67(2), pagg. 561–568.

doi: 10.1128/AEM.67.2.561-568.2001. DOI: https://doi.org/10.1128/AEM.67.2.561-568.2001

-Sievert, D. M. et al. (2008) «Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006», Clinical Infectious Diseases, 46(5), pagg. 668–674. doi: 10.1086/527392. DOI: https://doi.org/10.1086/527392

-SITOX Società Italiana di Tossicologia (2019) Residui di farmaci veterinari negli alimenti: le regole UE, analisi e risultati. Available at: https://www.sitox.org/blog-sitox/residui-di-farmaci-veterinari-negli-alimenti-le-regole-ue-analisi-e-risultati-2019-10-23.

-SITOX Società Italiana di Tossicologia (2020) Antibiotici: dalla loro scoperta alla resistenza batterica. Available at: https://www.sitox.org/blog-sitox/antibiotici-dalla-loro-scoperta-alla-resistenza-batterica-2020-11-17#null

-Smillie, C. S. et al. (2011) «Ecology drives a global network of gene exchange connecting the human microbiome», Nature, 480(7376), pagg. 241–244.

doi: 10.1038/nature10571. DOI: https://doi.org/10.1038/nature10571

-Smith, G. N. e Worrel, C. S. (1949) «Enzymatic reduction of chloramphenicol», Archives of biochemistry, 24(1), pagg. 216–223.

-Soge, O. O. et al. (2012) «Emergence of increased azithromycin resistance during unsuccessful treatment of neisseria gonorrhoeae infection with azithromycin (Portland, OR, 2011)», Sexually Transmitted Diseases, 39(11), pagg. 877–879.

doi: 10.1097/OLQ.0b013e3182685d2b. DOI: https://doi.org/10.1097/OLQ.0b013e3182685d2b

-Sommer, M. O. A., Dantas, G. e Church, G. M. (2009) «Functional characterization of the antibiotic resistance reservoir in the human microflora», Science, 325(5944), pagg. 1128–1131.

doi: 10.1126/science.1176950. DOI: https://doi.org/10.1126/science.1176950

-Sommer, M. O., Church, G. M. e Dantas, G. (2010) «A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion», Molecular Systems Biology, 6. doi: 10.1038/msb.2010.16. DOI: https://doi.org/10.1038/msb.2010.16

-Stamm, W. E. e Hooton, T. M. (1993) «Management of urinary tract infections in adults», New England journal of medicine, 329(18), pagg. 1328–1334. DOI: https://doi.org/10.1056/NEJM199310283291808

-Steinhagen, H. (2011) «The Evolution of Drug Discovery: From Traditional Medicines to Modern Drugs. By Enrique Raviña.», ChemMedChem, 6(9), pagg. 1746–1747.

doi: 10.1002/cmdc.201100321. DOI: https://doi.org/10.1002/cmdc.201100321

-Stokstad, E. L. R. e Jukes, T. H. (1951) «Effect of Various Levels of Vitamin B12 Upon Growth Response Produced by Aureomycin in Chicks», Proceedings of the Society for Experimental Biology and Medicine, 76(1), pagg. 73–76.

doi: 10.3181/00379727-76-18391. DOI: https://doi.org/10.3181/00379727-76-18391

-Tamburello, M. e Villone, G. (2017) «Vincenzo Tiberio: la prima antibiotico terapia sperimentale in vivo», MEDICINA NEI SECOLI ARTE E SCIENZA, 29(2), pagg. 533–552.

-Telenti, A. et al. (1993) «Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis», The Lancet, 341(8846), pagg. 647–651.

doi: 10.1016/0140-6736(93)90417-F. DOI: https://doi.org/10.1016/0140-6736(93)90417-F

-Török, M. E., Moran, E. D. e Cooke, F. J. (2017) «Oxford Handbook of Infectious Diseases and Microbiology. Great Clarendon Street». Oxford, OX2 6DP, UK. DOI: https://doi.org/10.1093/med/9780199671328.001.0001

-Troillet, N., Samore, M. H. e Carmeli, Y. (1997) «Imipenem-resistant Pseudomonas aeruginosa: risk factors and antibiotic susceptibility patterns», Clinical infectious diseases, 25(5), pagg. 1094–1098. DOI: https://doi.org/10.1086/516092

-Tsai, F. C. e Macher, J. M. (2005) «Concentrations of airborne culturable bacteria in 100 large US office buildings from the BASE study», in Indoor Air, Supplement, pagg. 71–81.

doi: 10.1111/j.1600-0668.2005.00346.x. DOI: https://doi.org/10.1111/j.1600-0668.2005.00346.x

-Tsiodras, S. et al. (2001) «Linezolid resistance in a clinical isolate of Staphylococcus aureus», Lancet, 358(9277), pagg. 207–208.

doi: 10.1016/S0140-6736(01)05410-1. DOI: https://doi.org/10.1016/S0140-6736(01)05410-1

-Tsukamura, M. (1972) «The pattern of resistance development to rifampicin in mycobacterium tuberculosis», Tubercle, 53(2), pagg. 111–117.

doi: 10.1016/0041-3879(72)90027-X. DOI: https://doi.org/10.1016/0041-3879(72)90027-X

-UMEZAWA, H. et al. (1957) «Production and isolation of a new antibiotic: kanamycin», The Journal of antibiotics, 10(5), pagg. 181–188.

doi: 10.11554/antibioticsa.10.5_181.

-Uttley, A. C. (1988) «Vancomycin-resistant enterococci», Lancet, 2, pagg. 57–58. DOI: https://doi.org/10.1016/S0140-6736(88)91037-9

-Ventola, C. L. (2015) «The antibiotic resistance crisis: causes and threats: Part 1: Causes and Threats», Pharmacy and Therapeutics, 40(4), pagg. 277–283. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25859123%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4378521%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/25859123%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4378521.

-Vincenzo, T. (1895) «Sugli estratti di alcune muffe», Annali d’igiene sperimentale, (V), pagg. 91–103. Available at: https://books.google.com/books/download/Annali_d_igiene_sperimentale.pdf?id=T8l_d3EEGi0C&output=pdf.

-Vogwill, T. e Maclean, R. C. (2015) «The genetic basis of the fitness costs of antimicrobial resistance: A meta-analysis approach», Evolutionary Applications, 8(3), pagg. 284–295.

doi: 10.1111/eva.12202. DOI: https://doi.org/10.1111/eva.12202

-WAISBREN, B. A. e SPINK, W. W. (1950) «A clinical appraisal of neomycin», Annals of internal medicine, 33(5), pagg. 1099–1119.

doi: 10.7326/0003-4819-33-5-1099. DOI: https://doi.org/10.7326/0003-4819-33-5-1099

-Wales, A. D. e Davies, R. H. (2015) «Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens», Antibiotics, pagg. 567–604.

doi: 10.3390/antibiotics4040567. DOI: https://doi.org/10.3390/antibiotics4040567

-Watanakunakorn, C. (1976) «Clindamycin therapy of Staphylococcus aureus endocarditis: clinical relapse and development of resistance to clindamycin, lincomycin and erythromycin», The American journal of medicine, 60(3), pagg. 419–425. DOI: https://doi.org/10.1016/0002-9343(76)90758-0

-Webber, M. A. et al. (2013) «Clinically relevant mutant DNA gyrase alters supercoiling, changes the transcriptome, and confers multidrug resistance», mBio, 4(4). doi: 10.1128/mBio.00273-13. DOI: https://doi.org/10.1128/mBio.00273-13

-Weinberg, E. D. e Tonnis, S. M. (1967) «Role of manganese in biosynthesis of bacitracin», Canadian Journal of Microbiology, 13(5), pagg. 614–615.

doi: 10.1139/m67-079. DOI: https://doi.org/10.1139/m67-079

-Wheeler, E. et al. (2012) «Carriage of antibiotic-resistant enteric bacteria varies among sites in gala ́ pagos reptiles», Journal of Wildlife Diseases, 48(1), pagg. 56–67. doi: 10.7589/0090-3558-48.1.56. DOI: https://doi.org/10.7589/0090-3558-48.1.56

-WHO (2017) «Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach», World Health Organization, pag. 87. Available at: https://apps.who.int/iris/bitstream/handle/10665/255747/9789241512411-eng.pdf;jsessionid=1710DEAA0E355CBCB99450559C0DD0C8?sequence=1%0Ahttp://apps.who.int/iris/bitstream/10665/255747/1/9789241512411-eng.pdf?ua=1%0Ahttp://apps.who.int/iris/bitstream/10665/.

-Wiedenbeck, J. e Cohan, F. M. (2011) «Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches», FEMS Microbiology Reviews, pagg. 957–976. doi: 10.1111/j.1574-6976.2011.00292.x. DOI: https://doi.org/10.1111/j.1574-6976.2011.00292.x

Worsley-Tonks, K. E. L. et al. (2021) «Comparison of Antimicrobial-Resistant Escherichia coli Isolates from Urban Raccoons and Domestic Dogs», Applied and Environmental Microbiology, 87(15), pagg. 1–14.

doi: 10.1128/AEM.00484-21. DOI: https://doi.org/10.1128/AEM.00484-21

-Youmans, G. P. e Williston, E. H. (1946) «Effect of Streptomycin on Experimental Infections Produced in Mice with Streptomycin Resistant Strains of M. tuberculosis var. Hominis», Proceedings of the Society for Experimental Biology and Medicine, 63(1), pagg. 131–134.

doi: 10.3181/00379727-63-15523. DOI: https://doi.org/10.3181/00379727-63-15523

-Zaffiri, L., Gardner, J. e Toledo-Pereyra, L. H. (2012) «History of antibiotics. from salvarsan to cephalosporins», Journal of Investigative Surgery, pagg. 67–77.

doi: 10.3109/08941939.2012.664099. DOI: https://doi.org/10.3109/08941939.2012.664099

-Zeballos-Gross, D. et al. (2021) «The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review», Frontiers in Microbiology.

doi: 10.3389/fmicb.2021.703886. DOI: https://doi.org/10.3389/fmicb.2021.703886

-Zhang, T. et al. (2019) «Time-resolved spread of antibiotic resistance genes in highly polluted air», Environment International, 127, pagg. 333–339.

doi: 10.1016/j.envint.2019.03.006. DOI: https://doi.org/10.1016/j.envint.2019.03.006

-Zhang, Y. et al. (2017) «Subinhibitory Concentrations of Disinfectants Promote the Horizontal Transfer of Multidrug Resistance Genes within and across Genera», Environmental Science and Technology, 51(1), pagg. 570–580.

doi: 10.1021/acs.est.6b03132. DOI: https://doi.org/10.1021/acs.est.6b03132

Pubblicato

2021-06-02