First deployment of IoT tracking devices on Common swift Apus apus: a pilot study

Autori/Autrici

  • Michelangelo Morganti Istituto di Ricerca sulle Acque - CNR-IRSA Consiglio Nazionale delle Ricerche. Brugherio (MB)
  • Milo Manica GIO Gruppo Insubrico Ornitologia. Clivio (VA)
  • Daniela Casola GIO Gruppo Insubrico Ornitologia. Clivio (VA)
  • Lorenzo Colombo GIO Gruppo Insubrico Ornitologia. Clivio (VA)
  • Alessandra Stocchetti GIO Gruppo Insubrico Ornitologia. Clivio (VA)
  • Wolfgang Fiedler Max Planck Institute of Animal Behavior - Department of Migration image/svg+xml
  • Martin Wikelski Max Planck Institute of Animal Behavior - Department of Migration image/svg+xml
  • Klaudia Witte University of Konstanz - Department of Biology image/svg+xml
  • Timm Alexander Wild Max Planck Institute of Animal Behavior - Department of Migration image/svg+xml

DOI:

https://doi.org/10.30456/avo.2024117

Parole chiave:

tracking, IoT devices, movement ecology, bio-logging, Apus apus

Abstract

Five breeding adults of Common swift Apus apus from a north Italian colony were equipped with lightweight (1.2 g) tracking devices based on IoT (Internet of Things) technology, collecting location data and transmitting them through the Sigfox network of base stations. The main novelty is that these devices enable the real-time transmission of locations with no need for re-capturing. The devices were glued to the back feathers, which were to be lost during moult at the latest. The devices transmitted over variable periods (3-25 days, mean ± SD: 9.31 ± 11.8), collecting in total a mean ± SD of 17.58 ± 18.4 locations per individual. These data mostly recorded movements around the colony, except for one bird that migrated immediately after tagging. This bird was successfully tracked until reaching southern Spain, where transmissions ended because the IoT network is not available out of continental Europe, with a few exceptions. This pilot study demonstrates that swifts can be successfully tagged with lightweight devices without harnessing. While single-direction migration displacements can be successfully tracked over the EU with these devices, researchers need improvements in both the location quality of the Sigfox IoT network and the life length of the devices if they aim to study the details of foraging movements. Eventually, we stress that beyond pure research purposes, tracking swifts through IoT devices—which transmit real-time data to the Animal Tracker mobile app—may also effectively engage the public and enhance conservation awareness.

Downloads

I dati di download non sono ancora disponibili.

Biografia autore/autrice

Michelangelo Morganti, Istituto di Ricerca sulle Acque - CNR-IRSA Consiglio Nazionale delle Ricerche. Brugherio (MB)

NBFC, National Biodiversity Future Centre, Palermo, Italia

Martin Wikelski, Max Planck Institute of Animal Behavior - Department of Migration

University of Konstanz, Department of Biology, Germany

Riferimenti bibliografici

Amichai E. & Kronfeld-Schor N. 2019. Artificial light at night promotes activity throughout the night in nesting common swifts (Apus apus). Scientific Reports 9: 11052. DOI: https://doi.org/10.1038/s41598-019-47544-3

Åkesson S., Klaassen R., Holmgren J., Fox J.W. & Hedenström A. 2012. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators. PloS One 7: e41195 DOI: https://doi.org/10.1371/journal.pone.0041195

Biles K.S., Bednarz J.C., Schulwitz S.E. & Johnson J.A. 2023. Tracking device attachment methods for American Kestrels: Backpack versus leg-loop harnesses. Journal of Raptor Research 57: 304-313. DOI: https://doi.org/10.3356/JRR-22-13

Bloch I., Troupin D., Toledo S., Nathan R. & Sapir N. 2024 (preprint). Combining radio-telemetry and radar measurements to test optimal foraging in an aerial insectivore bird eLife 13:RP96573https://doi.org/10.7554/eLife.96573.1 DOI: https://doi.org/10.7554/eLife.96573

Brlík V., Kolecek J., Burgess M., […] & Procházka P. 2020. Weak effects of geolocators on small birds: A metaanalysis controlled for phylogeny and publication bias. Journal of Animal Ecology 89:207-220. DOI: https://doi.org/10.1111/1365-2656.12962

Carere C. & Alleva E. 1998. Sex differences in parental care in the common swift (Apus apus): effect of brood size and nestling age. Canadian Journal of Zoology 76: 1382-1387. DOI: https://doi.org/10.1139/z98-073

Demongin, L. 2016. Identification guide to birds in the hand. Privately published.

FranceDokter A.M., Åkesson S., Beekhuis H., Bouten W., Buurma L., van Gasteren H. & Holleman I. 2013. Twilight ascents by common swifts, Apus apus, at dawn and dusk: acquisition of orientation cues? Animal Behaviour 85: 545–552. DOI: https://doi.org/10.1016/j.anbehav.2012.12.006

Ferrari A. 2021. BSc thesis - Cure parentali in una coppia di Rondone Comune Apus apus in provincia di Varese. Università degli Studi dell’ Insubria, Corso di Laurea in Scienze dell’Ambiente e della Natura, aa. 2021/2022.

Ferri M. 2018. Le «rondonare»: come attrarre i rondoni negli edifici, dal medioevo ai nostri giorni. Atti Società dei Naturalisti e dei Matematici di Modena vol. 149.

Geen G.R., Robinson R.A. & Baillie S.R. 2019. Effects of tracking devices on individual birds–a review of the evidence. Journal of Avian Biology 50: e01823. DOI: https://doi.org/10.1111/jav.01823

Hedenström A., Norevik G., Warfvinge K., Andersson A., Bäckman J. & Åkesson S. 2016. Annual 10-Month Aerial Life Phase in the Common Swift Apus apus. Current Biology 26: 3066-3070. DOI: https://doi.org/10.1016/j.cub.2016.09.014

Hedenström A., Norevik G., Boano G., Andersson A., Bäckman J. & Åkesson S. 2019. Flight activity in pallid swifts Apus pallidus during the non‐breeding period. Journal of Avian Biology 50: e01972. DOI: https://doi.org/10.1111/jav.01972

Hedenström A., Sparks R.A., Norevik G., Woolley C., Levandoski G.J. & Åkesson S. 2022. Moonlight drives nocturnal vertical flight dynamics in black swifts. Current Biology 32: 1875-1881. DOI: https://doi.org/10.1016/j.cub.2022.03.006

Hijmans R.J., Karney C., Williams E. & Vennes C. 2022. geosphere: Spherical Trigonometry version 1.5.18. R package https://cran.rproject.org/web/packages/geosphere/index.html

Huang X., Zhao Y. & Liu Y. 2021. Using light-level geolocations to monitor incubation behaviour of a cavity-nesting bird Apus apus pekinensis. Avian Research 12: 1-6. DOI: https://doi.org/10.1186/s40657-021-00245-w

Hufkens, K., Meier, C. M., Evens, R., […] & Kearsley, L. 2023. Evaluating the effects of moonlight on the vertical flight profiles of three western Palaearctic swifts. Proceedings of the Royal Society B 290: 20230957. DOI: https://doi.org/10.1098/rspb.2023.0957

Jukema J., van de Wetering H. & Klaassen, R.H. 2015. Primary moult in non-breeding second-calendar-year Swifts Apus apus during summer in Europe. Ringing & Migration 30: 1-6. DOI: https://doi.org/10.1080/03078698.2015.1059632

Liechti F., Witvliet W., Weber R. & Bächler E. 2013. First evidence of a 200-day non-stop flight in a bird. Nature Communications 4: 2554. DOI: https://doi.org/10.1038/ncomms3554

Kiat Y. & Bloch I. 2023. The relationship of moult timing, duration and sequence to the aerial lifestyle of the Little Swift (Apus affinis). Ibis 165: 1331-1342. DOI: https://doi.org/10.1111/ibi.13209

Klaassen R., Klaassen H., Berghuis A., Berghuis M., Schreven K., van der Horst Y., Verkade H. & Kearsley L. 2014. Trekroutes en overwinteringsgebieden van Nederlandse Gierzwaluwen ontrafeld met geolocators. Limosa 87:173-181.

Kays R., Crofoot M.C., Jetz W. & Wikelski M. 2015. Terrestrial animal tracking as an eye on life and planet. Science 348:6240 aaa2478. DOI: https://doi.org/10.1126/science.aaa2478

Kays R., Davidson S.C., Berger M., Bohrer G., Fiedler W., Flack A., Hirt J., Hahn C., Gauggel D. & Russell B. 2022. The Movebank system for studying global animal movement and demography. Methods in Ecology and Evolution 13:419-431. DOI: https://doi.org/10.1111/2041-210X.13767

Kolzsch A., Davidson S.C., Gauggel D., […] & Safi K. 2022. MoveApps: a serverless no-code analysis platform for animal tracking data. Movement ecology 10:30. DOI: https://doi.org/10.1186/s40462-022-00327-4

Manica M., Casola D., Colombo L., Stocchetti A., Cavallaro C., Villa S., Morganti M., Parnell A., 2022. Birds tower and walls: three successful examples of rehabilitation in the province of Varese, Italy. 6th International Swift Conference, Segovia (Spain).

McKinlay S.E., Morganti M., Mazzoleni A., Labate A., Sorrenti M. & Rubolini D. 2024. Non-breeding ranging behaviour, habitat use, and pre-breeding migratory movements of Fieldfares (Turdus pilaris) wintering in southern Europe. Journal of Ornithology 165: 337-346. DOI: https://doi.org/10.1007/s10336-023-02136-x

Meier C.M., Karaardıç H., Aymí R., Peev S.G., Bächler E., Weber R., Witvliet W. & Liechti F. 2018. What makes Alpine swift ascend at twilight? Novel geolocators reveal year-round flight behaviour. Behavioral Ecology and Sociobiology , 72: 1-13. DOI: https://doi.org/10.1007/s00265-017-2438-6

Morganti M., Assandri G., Aguirre J.I., Ramirez Á., Caffi M. & Pulido F. 2017. How residents behave: home range flexibility and dominance over migrants in a Mediterranean passerine. Animal Behaviour 123: 293-304. DOI: https://doi.org/10.1016/j.anbehav.2016.10.021

Morganti M., Rubolini D., Åkesson S., Bermejo A., De la Puente J., […] & Ambrosini R. 2018. Effect of light‐level geolocators on apparent survival of two highly aerial swift species. Journal of Avian Biology 49: jav-01521. DOI: https://doi.org/10.1111/jav.01521

Nathan R., Getz W.M., Revilla E., Holyoak M., Kadmon R., Saltz D. & Smouse P.E. 2008. A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences 105: 19052-19059. DOI: https://doi.org/10.1073/pnas.0800375105

Nilsson C., Bäckman J. & Dokter A.M. 2019. Flocking behaviour in the twilight ascents of Common Swifts Apus apus. Ibis 161:674-678. DOI: https://doi.org/10.1111/ibi.12704

Norevik G., Boano G., Hedenström A., Lardelli R., Liechti F. & Åkesson S. 2019. Highly mobile insectivorous swifts perform multiple intra‐tropical migrations to exploit an asynchronous African phenology. Oikos 128: 640-648. DOI: https://doi.org/10.1111/oik.05531

O’Connell M. J., Squirrell F.I. & Greening M. 2023. A preliminary study of the winter roosting behaviour of four woodland passerines. Bird Study 70: 243–250. DOI: https://doi.org/10.1080/00063657.2023.2269329

Qasem L., Cardew A., Wilson A., Griffiths I., Halsey L.G., […] & Wilson R. 2012. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PloS one 7: e31187. DOI: https://doi.org/10.1371/journal.pone.0031187

R core team 2022. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Version 4.2.2

Raim A. 1978. A radio transmitter attachment for small passerine birds. Bird-Banding 49: 326-332. DOI: https://doi.org/10.2307/4512391

Schaub T., Meffert P.J. & Kerth G. 2016. Nest-boxes for Common Swifts Apus apus as compensatory measures in the context of building renovation: efficacy and predictors of occupancy. Bird Conservation International 26: 164-176. DOI: https://doi.org/10.1017/S0959270914000525

Schaub T., Wellbrock A.H.J., Rozman, J. & Witte K. 2020. Light data from geolocation reveal patterns of nest visit frequency and suitable conditions for efficient nest site monitoring in Common Swifts Apus apus, Bird Study 66: 519. DOI: https://doi.org/10.1080/00063657.2020.1732862

Wild T.A., van Schalkwyk L., Viljoen P., Heine G., […] & Wikelski M. 2023. A multi -species evaluation of digital wildlife monitoring using the Sigfox IoT network. Animal Biotelemetry 11:13. DOI: https://doi.org/10.1186/s40317-023-00326-1

Wellbrock A.H.J., Bauch C., Rozman J. & Witte K. 2017. 'Same procedure as last year?' Repeatedly tracked swifts show individual consistency in migration pattern in successive years. Journal of Avian Biology 48: 897-903 DOI: https://doi.org/10.1111/jav.01251

Wellbrock A.H.J., Armer H., Bäuerlein C., Bäuerlein K., Brünner K., Kelsey N.A., Rozman J. & Witte K. 2017. GPS macht´s möglich! – Pilotstudie zur Identifizierung der Jagdgebiete von Mauerseglern Apus apus aus Kolonien im Landkries Roth. Vogelwarte 56: 413-414.

Wellbrock A.H.J. & Witte K. 2022. No “carry-over” effects of tracking devices on return rate and parameters determining reproductive success in once and repeatedly tagged common swifts (Apus apus), a long-distance migratory bird. Movement Ecology 10:58 DOI: https://doi.org/10.1186/s40462-022-00357-y

Zhao Y., Zhao X., Wu L., Mu T., Yu F., […] & Liu Y. 2022. A 30,000-km journey by Apus apus pekinensis tracks arid lands between northern China and south-western Africa. Movement Ecology 10: 29. DOI: https://doi.org/10.1186/s40462-022-00329-2

Pubblicato

2024-01-01

Come citare

Morganti, M., Manica, M., Casola, D., Colombo, L., Stocchetti, A., Fiedler, W., … Wild, T. A. (2024). First deployment of IoT tracking devices on Common swift Apus apus: a pilot study. Avocetta, 48. https://doi.org/10.30456/avo.2024117

Fascicolo

Sezione

Research Articles