Bridging the gap between cell culture and live tissue


Traditional in vitro two-dimensional (2-D) culture systems only partly imitate the physiological and biochemical features of cells in their original tissue. In vivo, in organs and tissues, cells are surrounded by a three-dimensional (3-D) organization of supporting matrix and neighbouring cells, and a gradient of chemical and mechanical signals. Furthermore, the presence of blood flow and mechanical movement provides a dynamic environment (Jong et al., 2011). In contrast, traditional in vitro culture, carried out on 2-D plastic or glass substrates, typically provides a static environment, which, however is the base of the present understanding of many biological processes, tissue homeostasis as well as disease.

It is clear that this is not an exact representation of what is happening in vivo and the microenvironment provided by in vitro cell culture models are significantly different and can cause deviations in cell response and behaviour from those distinctive of in vivo tissues.

In order to translate the present basic knowledge in cell control, cell repair and regeneration from the laboratory bench to the clinical application, we need a better understanding of the cell and tissue interactions. This implies a detailed comprehension of the natural tissue environment, with its organization and local signals, in order to more closely mimic what happens in vivo, developing more physiological models for efficient in vitro systems. In particular, it is imperative to understand the role of the environmental cues which can be mainly divided into those of a chemical and mechanical nature.


Admyre, C., Grunewald, J., Thyberg, J., Gripenbäck, S., Tornling, G., Eklund, A., Scheynius, A., Gabrielsson, S., 2003. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 22(4):578-83.

Andre, F., Andersen, M., Wolfers, J., Lozier, A., Raposo, G., Serra, V., Ruegg, C., Flament, C., Angevin, E., Amigorena, S., Zitvogel, L., 2001. Exosomes in cancer immunotherapy: preclinical data. Adv Exp Med Biol. 495:349-54.

Baker, M.B., Chen, C.S., 2012. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci. 125(13): 3015–3024.

Benny, P., Badowski, C., Lane, E.B., Raghunath, M., 2016. Improving 2D and 3D Skin In Vitro Models Using Macromolecular Crowding. J Vis Exp. (114).

Benton, G., Arnaoutova, I., George, J., Kleinman, H.K., Koblinski, J., 2014. Matrigel: From discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 79-80:3-18.

Bokari, M., Carnachan, R., Przyborski, S.A., Cameron, N.R., 2007. Effect of synthesis parameters on emulsion-templated porous polymer formation and evaluation for 3D cell culture scaffolds. J Mater Chem. 17, 4088-4094.

Brevini, T.A., Pennarossa, G., Rahman, M.M., Paffoni , A., Antonini, S., Ragni, G., deEguileor, M., Tettamanti, G., Gandolfi, F., 2014. Morphological and molecular changes of human granulosa cells exposed to 5-Azacytidine and addressed toward muscular differentiation. Stem Cell Rev. 10(5):633-42.

Caby, M.P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G., Bonnerot, C., Exosomal-like vesicles are present in human blood plasma. Int Immunol. 17(7):879-87.

Chandrakantan V., Yeola, A., Kwan, J.C., Oliver, R.A., Qiao, Q., Kang, Y.C., Zarzour, P., Beck, D., Boelen, L., Unnikrishnan, A., Villanueva, J.E., Nunez, A.C., Knezevic, K., Palu, C., Nasrallah, R., Carnell, M., Macmillan, A., Whan, R., Yu, Y., Hardy, Philip, Grey, S.T., Gladbach, A., Delerue, F., Ittner, L., Mobbs, R., Walkley, C.R., Purton, L.E., Ward, R.L., Wong, J.W.H., Hesson, L.B., Walsh, W., Pimanda, J.E., 2016. PDGF-AbB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci U S A. 113: 2306-2315.

Ellis, R.J., 2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol. 11(1):114-9.

English, A., Azeem, A., Gaspar, D.A., Keane, K., Kumar, P., Keeney, M., Rooney, N., Pandit, A., Zeugolis, D.I., 2012. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. J Mater Sci Mater Med. 23(1):137-48.

Fevrier, B., Raposo, G., 2004. Exosomes: endosomal-derived vesicles shipping extracellular messages, Curr Opin Cell Biol. 16(4):415-21.

Gerecht, S., Burdick, J.A., Ferreira, L.S., Townsend, S.A., Langer, R., Vunjak-Novakovic, G., 2007. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 104, 11298–11303.

Greening, D.W., Nguyen, H.P., Elgass, K., Simpson, R.J., Salamonsen L.A., 2016. Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions. Biol Reprod. 94(2):38.

Heijnen, H.F., Schiel, A.E., Fijnheer, R., Geuze, H.J., Sixma, J.J., 1999. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 94(11):3791-9.

Janmey, P.A., McCulloch, C.A., 2007. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng. 9:1-34.

Jo, S., Park, K., 2000. Surface modification using silanated poly(ethylene glycol)s. Biomaterials. 21, 605-615.

Jong, H. S., Yu, J., Luo, D., Shuler, M.L., March, J.C., 2011. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip. 11, 389-392.

Keenan, T. M., Folch, A., 2008. Biomolecular gradients in cell culture systems. Lab Chip. 8(1):34-57

Knight, E., Murray, B., Charnachan, R., Przyborski, S., 2011. Alvetex®: polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol. 695, 323-40.

Knight, E., Przyborski, S.A., 2014. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat. 227, 746-756.

L’Heureux, N., McAllister, T.N., de la Fuente, L.M., 2007. Tissue-engineered blood vessel for adult arterial revascularization”, N Engl J Med. 357(14):1451-3.

Lareu, R.R., Subramhanya. K.H., Peng, Y., Benny, P., Chen, C., Wang, Z., Rajagopalan, R., Raghunath, M., 2007. Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: the biological relevance of the excluded volume effect. FEBS Lett. 581(14):2709-14.

Manzoni, E.F., Pennarossa, G., deEguileor, M., Tettamanti, G., Gandolfi, F., Brevini, T.A.L., 2016. 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep. 6:37017.

Mathivanan, S., Lim, J.W., Tauro, B.J., Ji, H., Moritz, R.L., Simpson, R.J., 2010. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 9(2):197-208.

Mikos, A. G., Sarakinos, G., Leite, S.M., Vacanti, J.P., Langer, R., 1993. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 14, 323-330.

Ostrowski, M.,, Carmo, N.B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C.F., Schauer, K., Hume, A.N., Freitas, R.P., Goud, B., Benaroch, P., Hacohen, N., Fukuda, M., Desnos, C., Seabra, M.C., Darchen, F., Amigorena, S., Moita, L.F., Thery, C., 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 12(1):19-30; sup pp 1-13.

Peck, M., Gebhart, D., Dusserre, N., McAllister, T.N., L'Heureux, N., 2012. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs. 195(1-2):144-58

Pennarossa, G., Maffei, S., Campagnol, M., Tarantini, L., Gandolfi, F., Brevini, T.A.L., 2013. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin secreting cells. Proc Natl Acad Sci U S A. 110: 8948-8953

Peters, P.J., Geuze, H.J., Van der Donk, H.A., Slot, J.W., Griffith, J.M., Stam, N.J., Clevers, H.C., Borst, J., 1989. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 19(8):1469-75.

Pisitkun, T., Shen, R.F., Knepper, M.A., 2004. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 101(36):13368-73.

Raposo, G., Tenza, D., Mecheri, S., Peronet, R., Bonnerot, C., Desaymard, C., 1997. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell. 8(12):2631-45.

Taylor, S.M., Jones, P.A., 1979. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacitydine. Cell. 17:771-9

Tibbitt, M.W., Anseth, K.S., 2009. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol Bioeng. 103, 655-663.

Torisawa, Y.-S., Mosadegh, B., Luker, G.D., Morell, M., O’shea, K.S., Takayama, S., 2009. Microfluidic Hydrodynamic Cellular Patterning For Systematic Formation Of Co-Culture Spheroids. Integr Biol. 1, 649-645.

Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S., Reddi, A.H., 1992. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 202, 1-8.

Wydooghe, E., Vandaele, L., Heras, S., De Sutter, P., Deforce, D., Peelman, L., De Schauwer, C., Van Soom, A., 2015. Autocrine embryotropins revisited: how do embryos communicate with each other in vitro when cultured in groups?. Biol Rev Camb Philos Soc. 92 (1), 505-520.

Yoshii, Y., Waki, A., Yoshida, K., Kakezuka, A., Kobayashi, M., Namiki, H., Kuroda, Y., Kiyono, Y., Yoshii, H., Furukawa, T., Asai, T., Okazawa, H., Gelovani, J.G., Fujibayashi, Y., 2011. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials. 32, 6052–6058.

Zimmerman, S.B., Harrison, B., 1987. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc Natl Acad Sci U S A. 84(7):1871-5.

Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., Amigorena, S., 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 4(5):594-600.

This work is licensed under a CC BY-SA 4.0 international