The Task of the Human-Machine Translator: Scaling Intelligence and Preserving Transcendence.
DOI:
https://doi.org/10.54103/2039-9251/30240Abstract
Walter Benjamin’s seminal 1923 essay «Die Aufgabe des Übersetzers» (The Task of the Translator) provides one of the most profound philosophical frameworks for understanding translation as a transcendent act that reveals the «pure language» underlying all human expression. In the era of large language models (LLMs) and neural machine translation, Benjamin’s concepts of textual «afterlife», linguistic kinship, and the philosophical versus practical divide in translation take on unprecedented urgency. This essay examines how the scaling of intelligence – from Qwen2.5-32B to 72B parameter models – simultaneously approaches and reveals the fundamental limitations of computational approaches to translation, particularly in the context of classical Chinese texts. Through analysis of contemporary scaling laws, linguistic challenges specific to classical Chinese, and emerging human-machine collaborative frameworks, this work argues that effective translation in the AI era requires what The Economist termed «cyborg translation» – a synergy that preserves human interpretive authority while leveraging machine computational power. The essay demonstrates that while scaling laws show diminishing returns and performance plateaus, the integration of philosophical understanding with technical innovation offers pathways toward translation systems that honor both Benjamin’s transcendent vision and practical computational constraints.
Downloads
Riferimenti bibliografici
Amershi, Saleema, Maya Cakmak, W. Bradley Knox, and Todd Kulesza. «Power to the People: The Role of Humans in Interactive Machine Learning.» AI Magazine 35, no. 4 (2014): 105-120.
Austin, J. L. How to Do Things with Words, Harvard University Press, Cambridge 1962.
Benjamin, W., Die Aufgabe des Übersetzers, In Gesammelte Schriften, vol. IV.1, ed. Tillman Rexroth, Suhrkamp Verlag, Frankfurt am Main 1972, pp. 9-21.
Benjamin, W., The Task of the Translator, in Illuminations: Essays and Reflections, ed. Hannah Arendt, tr. Harry Zohn, Schocken Books, New York 1968, 69-82.
Benjamin, W. The Task of the Translator, in Walter Benjamin: Selected Writings, Volume 1: 1913–1926, ed. Marcus Bullock and Michael W. Jennings.,: Harvard University Press, Cambridge 1996, pp. 253-263.
Chen, Y., Linguistic Density and Semantic Complexity in Classical Chinese, in Journal of Chinese Linguistics 49, no. 1 (2021): 78-103.
DeepSeek-AI., DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv preprint arXiv:2501.12948, 2025.
Derrida, J., Des Tours de Babel, in Difference in Translation, ed. Joseph F. Graham, Cornell University Press, Ithaca, New York 1985, 165-207.
Disler, C., Benjamin’s ‘Fortleben’: A Redemptive Concept and Its Tragic Mistranslation, in The Germanic Review 85, no. 4 (2010), pp. 278-295.
Epoch AI, Will We Run Out of Data? Limits of LLM Scaling Based on Human-Generated Data. arXiv preprint arXiv:2211.04325v2, 2022.
Habermas, J., Theory of Communicative Action, Translated by Thomas A. McCarthy. 2 vols. Beacon Press, Boston 1984-1987.
Hoffmann, J., Borgeaud, S., Mensch, A., et al., Training Compute-Optimal Large Language Models, IN Advances in Neural Information Processing Systems 35 (2022), pp. 30016-30030.
Hu, M., Scaling Intelligence: Large Language Models and the Translation of Classical Chinese, in Unpublished manuscript, University of California, Santa Cruz 2025.
Kaplan, J., McCandlish S., Henighan, T., et al., Scaling Laws for Neural Language Models, arXiv preprint arXiv:2001.08361, 2020.
Läubli, S., Castilho, S., Neubig, G., et al. A Set of Recommendations for Assessing Human–Machine Parity in Language Translation, in Journal of Artificial Intelligence Research 67 (2020), pp. 653-672.
Lee, J. H., Machine Translation and Benjamin: Pure Language, in Computational Culture 10 (2025).
Ming, L., and Xiao, W., Preprocessing Challenges in Classical Chinese NLP, in ACM Transactions on Asian and Low-Resource Language Information Processing 21, no. 4 (2022), pp. 1-24.
Xiaoping, L., Cultural Embedding in Classical Chinese Poetry, in Chinese Literature and Culture Review 18, no. 3 (2020), pp. 156-178.
Man, P. de, The Resistance to Theory, University of Minnesota Press, Minneapolis 1986.
Meta AI NLLB Team, No Language Left Behind: Scaling Human-Centered Machine Translation. arXiv preprint arXiv:2207.04672, 2022.
Kenton, M. and Chiang, D., Correcting Length Bias in Neural Machine Translation, in Proceedings of the Third Conference on Machine Translation (2018), pp. 212-223.
OpenAI, Learning to Reason with LLMs. OpenAI Technical Report, September 12, 2024.
Qwen Team, Qwen2.5 Technical Report. arXiv preprint arXiv:2412.15115, 2024.
Qwen Team, Qwen3 Technical Report. arXiv preprint arXiv:2505.09388, 2025.
Searle, J. R., Speech Acts: An Essay in the Philosophy of Language, Cambridge University Press, Cambridge 1969.
Tian, H., Can, X., An, W., et al. AnciBERT: A Pre-Trained Model for Ancient Chinese Language Understanding and Generation, in 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.
Venuti, L., The Translator’s Invisibility: A History of Translation. 2nd ed., Routledge, London 2008.
Wang, L., et al., Comparative Evaluation of Machine Translation Systems on Classical Chinese, in Machine Translation 36, no. 2 (2022), pp. 201-225.
Wu, Y., Mik, S., Zhifeng, C., et al, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, arXiv preprint arXiv:1609.08144, 2016.
Zhang, W., et al., Seven Types of Ambiguity in Classical Chinese Translation, IN Computational Linguistics and Chinese Language Processing 28, no. 2 (2023), pp. 45-68.
Dowloads
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2025 Minghui Hu

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Condividi allo stesso modo 4.0.
Gli autori che pubblicano su questa rivista accettano le seguenti condizioni:
1. Gli autori mantengono i diritti sulla loro opera e cedono alla rivista il diritto di prima pubblicazione dell'opera, contemporaneamente licenziata sotto una Licenza Creative Commons - Attribuzione - Condividi allo stesso modo 4.0 internazionale che permette ad altri di condividere l'opera indicando la paternità intellettuale e la prima pubblicazione su questa rivista.
2. Gli autori possono aderire ad altri accordi di licenza non esclusiva per la distribuzione della versione dell'opera pubblicata (es. depositarla in un archivio istituzionale o pubblicarla in una monografia), a patto di indicare che la prima pubblicazione è avvenuta su questa rivista.
3. Gli autori possono diffondere la loro opera online (es. in repository istituzionali o nel loro sito web) prima e durante il processo di submission, poiché può portare a scambi produttivi e aumentare le citazioni dell'opera pubblicata (Vedi The Effect of Open Access).


