ASSISTITO, SUPPORTATO O GENERATO DALL’IA: UNA TASSONOMIA ISPIRATA DALLA CAPTOLOGIA PER L’USO DELL’INTELLIGENZA ARTIFICIALE NELLA DIDATTICA
DOI:
https://doi.org/10.54103/2037-3597/29098Abstract
Circa 25 anni fa, B.J. Fogg ha avviato la ricerca sul tema della tecnologia persuasiva, nota come captologia. La persuasione è considerata un contributo importante alla motivazione, fondamentale per il successo nell’apprendimento. Tuttavia, solo di recente la captologia è stata presa in considerazione nel contesto della didattica. Oggi, i cambiamenti radicali determinati dalla proliferazione dell’IA richiedono una riconsiderazione del ruolo della captologia quando si utilizza l’IA per la didattica. In questo articolo proponiamo una tassonomia dell’uso dell’IA adottando la lente della captologia, illustrando con alcuni casi di studio come alcuni interventi educativi potrebbero essere definiti in termini di captologia. Partendo dalle tre componenti della triade funzionale della captologia, i casi di studio esaminati contribuiscono ad illustrare la tassonomia proposta. In ogni caso di studio illustriamo gli elementi che potrebbero aiutare nell’apprendimento delle lingue straniere. La tassonomia proposta potrebbe essere utilizzata sia a livello descrittivo per classificare gli interventi consentiti dall’IA nei sistemi educativi esistenti, sia a livello prescrittivo per dare forma allo sviluppo di nuove soluzioni tecniche di integrazione dell’IA nella didattica. Il presente contributo fornisce un quadro teorico e linee guida pratiche per la possibile adozione futura dell’IA nell’istruzione.
AI-assisted, AI-supported or AI-generated: A captology-inspired taxonomy for the use of artificial intelligence in education
More than 25 years ago, B.J Fogg founded the research on persuasive technology, or captology for short. Nowadays, it is widely agreed that persuasion is an important part of the motivation to make learning successful. Yet, only recently captology has been considered in the context of education. Today, the radical changes driven by the emergence of GenAI, call for a reconsideration of the role captology plays when considering AI use for education. We propose a taxonomy of AI use through the lens of captology - how a range of learner-facing educational interventions could be mapped in terms of captology, and illustrate this with case studies. Starting with the components of captology’s functional triad, we collocate representative examples that help illustrate the proposed taxonomy. In each case study, we illustrate the elements that could help in foreign language learning. The proposed taxonomy could be used both descriptively to classify the AI-enabled interventions in existing educational systems, and prescriptively to shape the development of new technical features. This contribution shapes both a theoretical framework, and practical guidelines towards possible future adoption of AI in education.
Downloads
References
Ahn J., Oh A. (2021), “Mitigating Language-Dependent Ethnic Bias in BERT”, in Moens M.-F., Huang X., Specia L., Yih S. W. (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp. 533-549: https://doi.org/10.18653/v1/2021.emnlp-main.42.
Alshammari A. (2023), “Captology in game-based education: A theoretical framework for the design of persuasive games”, in Interactive Learning Environments, 31, 5, pp. 2947-2966: https://doi.org/10.1080/10494820.2021.1915803.
Atkinson B. M. C. (2006), “Captology: A Critical Review”, in Ijsselsteijn W. A., de Kort Y. A. W., Midden C., Eggen B., van den Hoven E. (eds.), Persuasive Technology, Springer, Berlin, pp. 171-182: https://doi.org/10.1007/11755494_25.
Beatty K. (2013), Teaching and researching computer-assisted language learning, Routledge, New York-London.
Biggs J. B., Tang C. (2007), Teaching for Quality Learning at University (Society for Research Into Highter Education), Open University Press, London.
Bull S. (2020), “There are Open Learner Models About!”, in IEEE Transactions on Learning Technologies, 13, 2, pp. 425-448: https://doi.org/10.1109/TLT.2020.2978473.
Cuscito M., Ferrara A., Ruskov M. (2024), “How BERT Speaks Shakespearean English? Evaluating Historical Bias in Contextual Language Models”, in Damiano R., Ferilli S., Striani M., Silvello G., Sassoli de’ Bianchi B. T. (eds.), Proceedings of the 3rd Workshop on Artificial Intelligence for Cultural Heritage, pp. 14-21: https://ceur-ws.org/Vol-3865/02_paper.pdf.
de Vassimon Manela D., Errington D., Fisher T., van Breugel B., Minervini P. (2021), “Stereotype and Skew: Quantifying Gender Bias in Pre-trained and Fine-tuned Language Models”, in Merlo P., Tiedemann J., Tsarfaty R. (eds.), Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, Association for Computational Linguistics, pp. 2232-2242:
https://doi.org/10.18653/v1/2021.eacl-main.190.
Devlin J., Chang M.-W., Le K., Toutanova K. (2019), “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in Burstein J., Doran C., Solorio T. (eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Association for Computational Linguistics, pp. 4171-4186:
https://doi.org/10.18653/v1/N19-1423.
Di Carlo V., Bianchi F., Palmonari M. (2019), “Training Temporal Word Embeddings with a Compass”, in Proceedings of the AAAI Conference on Artificial Intelligence, 33, 01, pp. 6326-6334: https://doi.org/10.1609/aaai.v33i01.33016326.
Diehl E., Sterman J. D. (1995), “Effects of Feedback Complexity on Dynamic Decision Making”, in Organizational Behavior and Human Decision Processes, 62, 2, pp. 198-215:
https://doi.org/10.1006/obhd.1995.1043.
Dochy F., Segers M., Sluijsmans D. (1999), “The use of self-, peer and co-assessment in higher education: A review”, in Studies in Higher Education, 24, 3, pp. 331-350:
https://doi.org/10.1080/03075079912331379935.
Ekblom P. (2011), Crime Prevention, Security and Community Safety Using the 5Is Framework (Crime Prevention and Security Management), Palgrave Macmillan, London.
Feng G., Zhang B., Gu Y., Ye H., He D., Wang L. (2023), “Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective”, in Advances in Neural Information Processing Systems, 36, pp. 70757-70798:
Fogg B. J. (1998), “Persuasive computers: Perspectives and research directions”, in CHI ‘98: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 225-232:
https://doi.org/10.1145/274644.274677.
Fogg B. J. (2003), Persuasive technology: Using computers to change what we think and do, Morgan Kaufmann Publishers, Burlington (MA).
Gardner H. E. (2000), Intelligence Reframed: Multiple Intelligences for the 21st Century, Basic Books, New York.
Gijbels D., Dochy F., Van den Bossche P., Segers M. (2005), “Effects of Problem-Based Learning: A Meta-Analysis From the Angle of Assessment”, in Review of Educational Research, 75, 1, pp. 27-61: https://doi.org/10.3102/00346543075001027.
Haidt J. (2013), The righteous mind: Why good people are divided by politics and religion, Vintage Books, New York.
Haier R. (2017), “The neuroscience of intelligence, Cambridge University Press, Cambridge.
Helander M. (ed.). (2014), Handbook of human-computer interaction, North-Holland, Amsterdam.
Hoadley C., Campos F. C. (2022), “Design-based research: What it is and why it matters to studying online learning”, in Educational Psychologist, 57, 3, pp. 207-220;
https://doi.org/10.1080/00461520.2022.2079128.
Hoover J., Portillo-Wightman G., Yeh L., Havaldar S., Davani A. M., Lin Y., Kennedy B., Atari M., Kamel Z., Mendlen M., Moreno G., Park C., Chang T. E., Chin J., Leong C., Leung J. Y., Mirinjian A., Dehghani M. (2020), “Moral Foundations Twitter Corpus: A Collection of 35k Tweets Annotated for Moral Sentiment”, in Social Psychological and Personality Science, 11, 8, pp. 1057-1071: https://doi.org/10.1177/1948550619876629.
Hopp F. R., Fisher J. T., Cornell D., Huskey R., Weber R. (2021), “The extended Moral Foundations Dictionary (eMFD): Development and applications of a crowd-sourced approach to extracting moral intuitions from text”, in Behavior Research Methods, 53, 1, pp. 232-246: https://doi.org/10.3758/s13428-020-01433-0.
Kiesel J., Alshomary M., Handke N., Cai X., Wachsmuth H., Stein B. (2022), “Identifying the Human Values behind Arguments”, in Muresan S., Nakov P., Villavicencio A. (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers), Association for Computational Linguistics, pp. 4459-4471:
https://doi.org/10.18653/v1/2022.acl-long.306.
Kiryazov S., Atanasov D., Valerieva I., Ruskov M. (2016), “Memory in my Pocket: How the Lexicum Ubiquitous Tool Revolutionises Vocabulary Learning”, in Smart Learning Excellence Conference.
Kojima T., Gu S. S., Reid M., Matsuo Y., Iwasawa Y. (2022), Large Language Models are Zero-Shot Reasoners (No. arXiv:2205.11916). arXiv:
https://doi.org/10.48550/arXiv.2205.11916.
Koyuturk C., Yavari M., Theophilou E., Bursic S., Donabauer G., Telari A., Testa A., Boiano R., Gabbiadini A., Hernandez-Leo D., Ruskov M., Ognibene D. (2023), “Developing Effective Educational Chatbots with ChatGPT prompts: Insights from Preliminary Tests in a Case Study on Social Media Literacy”, in International Conference on Computers in Education: https://doi.org/10.58459/icce.2023.960.
Krippendorff K. (2004), “Reliability in Content Analysis.: Some Common Misconceptions and Recommendations”, in Human Communication Research, 30, 3, pp. 411-433:
https://doi.org/10.1111/j.1468-2958.2004.tb00738.x.
Laurillard D. (2001), Rethinking University Teaching: A Conversational Framework for the Effective Use of Learning Technologies, Routledge, New York-London.
Lin H., Huang B., Ye H., Chen Q., Wang Z., Li S., Ma J., Wan X., Zou J., Liang Y. (2024), Selecting Large Language Model to Fine-tune via Rectified Scaling Law (No. arXiv:2402.02314). arXiv: https://doi.org/10.48550/arXiv.2402.02314.
Mackintosh N. J. (2011), “IQ and human intelligence, Oxford University Press, Oxford.
McGuire A., Qureshi W., Saad M. (2024), “A Constructivist Model for Leveraging GenAI Tools for Individualized, Peer-simulated Feedback on Student Writing”, in International Journal of Technology in Education, 7, 2, pp. 326-352: https://doi.org/10.46328/ijte.639.
Mikolov T., Chen K., Corrado G. S., Dean J. (2013), Efficient Estimation of Word Representations in Vector Space: http://arxiv.org/abs/1301.3781.
Montanelli S., Ruskov M. (2023), “A Systematic Literature Review of Online Collaborative Story Writing”, in Abdelnour Nocera J., Kristín Lárusdóttir M., Petrie H., Piccinno A., Winckler M. (eds.), Human-Computer Interaction – INTERACT 2023, Springer Nature Switzerland, Cham, pp. 73-93: https://doi.org/10.1007/978-3-031-42286-7_5.
Moore J. (2024), “Kairotic Entanglement: Kairos, Artificial Intelligence, Persuasion, and the Search for Meaning – A Literature Review”, in Spectra Undergraduate Research Journal, 3, 2: https://doi.org/10.9741/2766-7227.1030.
Morollon Diaz-Faes A., Murteira C. S. R., Ruskov M. (2024), “Values That Are Explicitly Present in Fairy Tales: Comparing Samples from German, Italian and Portuguese Traditions”, in Journal of Data Mining & Digital Humanities, NLP4DH:
https://doi.org/10.46298/jdmdh.13120.
Morris M. R., Bernstein M. S., Bigham J. P., Bruckman A. S., Monroy-Hernández A. (2024), “Is Human-AI Interaction CSCW?”, in Companion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing, pp. 95-97:
https://doi.org/10.1145/3678884.3689134.
Nah F. F.-H., Zeng Q., Telaprolu V. R., Ayyappa A. P., Eschenbrenner B. (2014), “Gamification of Education: A Review of Literature”, in Nah F. F.-H (ed.), HCI in Business, Vol. 8527, Springer International Publishing, New York, pp. 401-409:
https://doi.org/10.1007/978-3-319-07293-7_39.
Nielsen L., Salminen J., Jung S.-G., Jansen B. J. (2021), “Think-Aloud Surveys”, in Ardito C., Lanzilotti R., MaliziaA, Petrie H., Piccinno A., Desolda G., Inkpen K. (eds.), Human-Computer Interaction – INTERACT 2021, Springer International Publishing, New York, pp. 504-508: https://doi.org/10.1007/978-3-030-85607-6_67.
Oliveira W., Hamari J., Shi L., Toda A. M., Rodrigues L., Palomino P. T., Isotani S. (2023), “Tailored gamification in education: A literature review and future agenda”, in Education and Information Technologies, 28, 1, pp. 373-406: https://doi.org/10.1007/s10639-022-11122-4.
Orji F. A., Gutierrez F. J., Vassileva J. (2024), “Exploring the Influence of Persuasive Strategies on Student Motivation: Self-determination Theory Perspective”, in Baghaei N., Ali R., Win K., Oyibo K. (eds.), Persuasive Technology, Vol. 14636, Springer Nature Switzerland, Cham, pp. 222-236: https://doi.org/10.1007/978-3-031-58226-4_17.
Perkins D. (2008), “Beyond Understanding”, in Land R., Meyer J. H. F., Smith J. (eds.), Threshold Concepts within the Disciplines, pp. 3-20, Sense Publishers, Rotterdam.
Ponizovskiy V., Ardag M., Grigoryan L., Boyd R., Dobewall H., Holtz P. (2020), “Development and Validation of the Personal Values Dictionary: A Theory-Driven Tool for Investigating References to Basic Human Values in Text”, in European Journal of Personality, 34, 5, pp. 885-902: https://doi.org/10.1002/per.2294.
Ruskov M. (2023a), “Grimm in Wonderland: Prompt Engineering with Midjourney to Illustrate Fairytales”, in Bardi A., Falcon A., Ferilli S., Marchesin S., Redavid D. (eds.), Proceedings of the 19th Conference on Information and Research Science Connecting to Digital and Library Science, Vol. 3365, CEUR, pp. 180-191:
https://ceur-ws.org/Vol-3365/#paper6.
Ruskov M. (2023b), “Who and How: Using Sentence-Level NLP to Evaluate Idea Completeness”, in Wang N., Rebolledo-Mendez G., Dimitrova V., Matsuda N., Santos O. C: (eds.), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky, Springer Nature Switzerland, Cham, pp. 284-289:
https://doi.org/10.1007/978-3-031-36336-8_44.
Ruskov M., Ekblom P., Sasse M. A. (2013), “In Search for the Right Measure: Assessing Types of Developed Knowledge while Using a Gamified Web Toolkit”, in Proceedings of the 7th European Conference on Games Based Learning, pp. 722-729.
Ruskov M., Ekblom P., Sasse M. A. (2014), “Towards a Simulation of Information Security Behaviour in Organisations”, in Zhu H., Blackwell C. (eds.), Cyberpatterns, University College London, London, pp. 177-184: https://doi.org/10.1007/978-3-319-04447-7_14.
Ruskov M., Ekblom P., Sasse M. A. (2022), Getting Users Smart Quick about Security: Results from 90 Minutes of Using a Persuasive Toolkit for Facilitating Information Security Problem Solving by Non-Professionals (No. arXiv:2209.02420). arXiv:
https://doi.org/10.48550/arXiv.2209.02420.
Sabatini F., De Santis C., Camodeca C. (2011), Sistema e testo: Dalla grammatica valenziale all’esperienza dei testi. Guida per l’insegnante, Loescher, Torino.
Schwartz S. H. (2012), “An Overview of the Schwartz Theory of Basic Values”, in Online Readings in Psychology and Culture, 2, 1: https://doi.org/10.9707/2307-0919.1116.
Scriven M. (1966), The methodology of evaluation, Purdue University, West Lafayette (IN).
Sheng E., Chang K.-W., Natarajan P., Peng N. (2019), “The Woman Worked as a Babysitter: On Biases in Language Generation”, in Inui K., Jiang J., Ng V, Wan X. (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, pp. 3407-3412: https://doi.org/10.18653/v1/D19-1339.
Staron M. (2020), Action Research in Software Engineering: Theory and Applications, Springer International Publishing, New York.
Theophilou E., Koyuturk C., Yavari M., Bursic S., Donabauer G., Telari A., Testa A., Boiano R., Hernandez-Leo D., Ruskov M., Taibi D., Gabbiadini A., Ognibene D. (2023), Learning to Prompt in the Classroom to Understand AI Limits: A pilot study (No. arXiv:2307.01540): arXiv. https://doi.org/10.48550/arXiv.2307.01540.
Valerieva I., Atanasov D., Kiryazov S., Ruskov M. (2017), “Keeping the Genie in Your Bottle: Using Learning Analytics to Explore User Retention within a Language Learning Platform”, in Smart Learning Excellence Conference:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4935021.
Van Eck R. (2006), “Digital Game-Based Learning It’s Not Just the Digital Natives Who Are Restless”, in EDUCAUSE Review, 41, 2, pp. 16–30:
Verroios V., Bernstein M. S. (2014), “Context Trees: Crowdsourcing Global Understanding from Local Views”, in Second AAAI Conference on Human Computation and Crowdsourcing. Second AAAI Conference on Human Computation and Crowdsourcing:
https://www.aaai.org/ocs/index.php/HCOMP/HCOMP14/paper/view/8951.
Xiao C., Cai J., Zhao W., Zeng G., Lin B., Zhou J., Zheng Z., Han X., Liu Z., Sun M. (2024), Densing Law of LLMs (No. arXiv:2412.04315). arXiv:
https://doi.org/10.48550/arXiv.2412.04315.
Yanardag P., Cebrian M., Rahwan I. (2021), “Shelley: A Crowd-sourced Collaborative Horror Writer”, in Creativity and Cognition, pp. 1-8:
https://doi.org/10.1145/3450741.3465251.
Yee N. (2005), “Motivations of Play in MMORPGs”, in DiGRA 2005 Conference, Vancouver. http://www.nickyee.com/daedalus/motivations.pdf.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Martin Ruskov

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


