INTEGRARE IL PROMPT ENGINEERING TRA LE ABILITÀ TRASVERSALI PER L’EDUCAZIONE LINGUISTICA: UNO STUDIO DI CASO
DOI:
https://doi.org/10.54103/2037-3597/30456Abstract
L’integrazione dell’Intelligenza Artificiale Generativa (GAI), e in particolare dei Modelli Linguistici di Grandi Dimensioni (LLM), nell’ambito dell’educazione linguistica non dovrebbe essere limitata a un uso puramente strumentale delle tecnologie basate sull’IA. Al contrario, essa richiede lo sviluppo di competenze comunicative, metacognitive e trasversali (soft skills) al fine di favorire una collaborazione dinamica e sinergica tra esseri umani e intelligenza artificiale. Da questa prospettiva, il presente articolo presenta i risultati di uno studio sperimentale condotto in un contesto di scuola superiore, finalizzato a esplorare le interazioni tra un gruppo di studenti e ChatGPT durante attività progettate per potenziare le competenze di scrittura accademica. La ricerca si concentra sull’analisi delle strategie di prompt adottate dai partecipanti per guidare le loro interazioni con il modello linguistico, indagando in che modo le variazioni nella formulazione e nel raffinamento iterativo dei prompt possano influenzare la qualità del feedback fornito da ChatGPT. Sulla base di tale analisi, lo studio propone un modello operativo di competenze trasversali e digitali — tra cui mediazione, pensiero critico e problem solving — che studenti e docenti dovrebbero sviluppare per promuovere un uso efficace e responsabile degli LLM nell’insegnamento e apprendimento linguistico.
Integrating prompt engineering into the transversal skills for language education: a case study
The implementation of Generative Artificial Intelligence (GAI), and particularly of Large Language Models (LLM), into the field of language education should not be limited to a purely instrumental use of AI-based technologies. Conversely, it requires the development of communicative, metacognitive and soft skills in order to foster a dynamic and synergistic human-AI collaboration. From this perspective, this paper presents the results of an experimental study conducted in a high school context and aimed at exploring the interactions between a group of students and ChatGPT during activities designed to enhance academic writing skills. The research focuses on the analysis of the prompt strategies adopted by participants to guide their interactions with the linguistic model by investigating how variations in the formulation and iterative refinment of prompts can influence the quality of ChatGPT’s feedback. Building on this analysis, the study proposes an operational model of transversal and digital competences, including mediation, critical thinking and problem solving skills, that learners and educators should develop to promote an effective and responsible use of LLMs for language teaching and learning.
Downloads
Riferimenti bibliografici
Adiguzel T., Kaya M. H., Cansu F. K. (2023), “Revolutionizing education with AI: Exploring the transformative potential of ChatGPT”, in Contemporary Educational Technology, 15, 3, ep429: https://doi.org/10.30935/cedtech/13152. DOI: https://doi.org/10.30935/cedtech/13152
Anderson N., Mcgowan A., Galway L., Hanna P., Collins M., Cutting D. (2024), “Implementing generative AI and Large Language Models in education”, in ISAS 2023: Proceedings of the 7th International Symposium on Innovative Approaches in Smart Technologies, Institute of Electrical and Electronics Engineers Inc., pp. 1-6: https://doi.org/10.1109/isas60782.2023.10391517. DOI: https://doi.org/10.1109/ISAS60782.2023.10391517
Barrot J. S. (2024), “ChatGPT as a language learning tool: An emerging technology report”, in Technology, Knowledge and Learning, 29, pp. 1151-1156: https://doi.org/10.1007/s10758-023-09711-4. DOI: https://doi.org/10.1007/s10758-023-09711-4
Bender E. M., Koller A. (2020), “Climbing towards NLU: On meaning, form, and understanding in the age of data”, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL, pp. 5185-5198: 10.18653/v1/2020.acl-main.463. DOI: https://doi.org/10.18653/v1/2020.acl-main.463
Cain W. (2024), “Prompting change: Exploring prompt engineering in Large Language Model AI and its potential to transform education”, in TechTrends, 68, pp. 47-57: https://doi.org/10.1007/s11528-023-00896-0. DOI: https://doi.org/10.1007/s11528-023-00896-0
Chen B., Zhang Z., Langrené N., Zhu S. (2025), “Unleashing the potential of prompt engineering for Large Language Models”, in Patterns, 6, 6, pp. 1-44. DOI: https://doi.org/10.1016/j.patter.2025.101260
Chiu T. K. F., Moorhouse B. L., Chai C. S., Ismailov M. (2023), “Teacher support and student motivation to learn with Artificial Intelligence (AI) based chatbot”, in Interactive Learning Environment, 32, 7, pp. 3240-3256:
https://doi.org/10.1080/10494820.2023.2172044. DOI: https://doi.org/10.1080/10494820.2023.2172044
Dang H., Mecke L., Lehmann F., Goller S., Busheck D. (2022), “How to prompt? Opportunities and challenges of zero- and few-Shot learning for human-AI interaction in creative applications of generative models”, in ArXiv, abs/2209.01390.
Eager B., Brunton R. (2023), “Prompting higher education towards AI-augmented teaching and learning practice”, in Journal of University Teaching and Learning Practice, 20, 5, pp. 1-19: https://doi.org/10.53761/1.20.5.02. DOI: https://doi.org/10.53761/1.20.5.02
Farrokhnia M., Banihashem S. K., Noroozi O., Wals A. (2023), “A SWOT analysis of ChatGPT: Implications for educational practice and research”, in Innovations in Education and Teaching International, 61, 3, pp. 460-474:
https://doi.org/10.1080/14703297.2023.2195846. DOI: https://doi.org/10.1080/14703297.2023.2195846
Gao T., Fisch A., Chen D. (2021), “Making pre-trained language models better few-shot learners”, in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL, pp. 3816-3830: 10.18653/v1/2021.acl-long.295. DOI: https://doi.org/10.18653/v1/2021.acl-long.295
Ge T. (2024), “Assessing the acceptance and utilization of ChatGPT by Chinese university students in English writing education”, in International Journal of Learning and Teaching, 10, pp. 166-170: 10.18178/ijlt.10.1.166-170. DOI: https://doi.org/10.18178/ijlt.10.1.166-170
Ji Z., Lee N., Frieske R., Yu T., Su D., Xu Y., Ishii E., Bang Y., Chen D., Dai W., Chan H. S., Madotto A., Fung P. (2023), “Survey of hallucination in Natural Language Generation”, in ACM Computer Survey, 55, 12, pp. 1-38:
https://doi.org/10.1145/3571730. DOI: https://doi.org/10.1145/3571730
Jiang T., Sun Z., Fu S., Lv Y. (2024), “Human-AI interaction research agenda: A user-centered perspective”, in Data and Information Management, 8, 4, pp. 1-10:
https://doi.org/10.1016/j.dim.2024.100078. DOI: https://doi.org/10.1016/j.dim.2024.100078
Kasneci E., Sessler K., Küchemann S., Bannert M., Dementieva D., Fischer F., Gasser U., Groh G., Günnemann S., Hüllermeier E., Krusche S., Kutyniok G., Michaeli T., Nerdel C., Pfeffer J., Poquet O., Sailer M., Schmidt A., Seidel T., Stadler M., Weller J., Kuhn J., Kasneci G. (2023), “ChatGPT for good? On opportunities and challenges of Large Language Models for Education”, in Learning and Individual Differences, 103, pp. 1-12: https://doi.org/10.1016/j.lindif.2023.102274. DOI: https://doi.org/10.1016/j.lindif.2023.102274
Knoth N., Tolzin A., Janson A., Leimeister J. M. (2024), “AI literacy and its implications for prompt engineering strategies”, in Computers and Education: Artificial Intelligence, 6, pp. 1-14: https://doi.org/10.1016/j.caeai.2024.100225. DOI: https://doi.org/10.1016/j.caeai.2024.100225
Korzynski P., Mazurek G., Krzypkowska P., Kurasinski A. (2023), “Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT”, in Entrepreneurial Business and Economics Review, 11, 3, pp. 25-37: https://doi.org/10.15678/EBER.2023.110302. DOI: https://doi.org/10.15678/EBER.2023.110302
Lai C. Y., Cheung K. Y., Chan C. S. (2023), “Exploring the role of intrinsic motivation in ChatGPT adoption to support active learning: An extension of the technology acceptance model”, in Computers and Education: Artificial Intelligence, 5, pp. 1-13: https://doi.org/10.1016/j.caeai.2023.100178. DOI: https://doi.org/10.1016/j.caeai.2023.100178
Lee D., Palmer E. (2025), “Prompt engineering in higher education: A systematic review to help inform curricula”, in International Journal of Education Technology in Higher Education, 22, 7, pp. 1-22: https://doi.org/10.1186/s41239-025-00503-7. DOI: https://doi.org/10.1186/s41239-025-00503-7
Lee U., Jung H., Jeon Y., Sohn Y., Hwang W., Moon J., Kim H. (2023), “Few-shot is enough: Exploring ChatGPT prompt engineering method for automatic question generation in English education”, in Education and Information Technologies, 29, 9, pp. 11483-11515: https://doi.org/10.1007/s10639-023-12249-8. DOI: https://doi.org/10.1007/s10639-023-12249-8
Linardatos P., Papastefanopoulos V., Kotsiantis S. (2021), “Explainable AI: A review of machine learning interpretability methods”, in Entropy, 23, 1, pp. 1-18:
https://doi.org/10.3390/e23010018. DOI: https://doi.org/10.3390/e23010018
Lim W. M., Gunasekara A., Pallant J. L., Pallant J. I., Pechenkina E. (2023), “Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators”, in The International Journal of Management Education, 21, 2, pp. 1-13: https://doi.org/10.1016/j.ijme.2023.100790. DOI: https://doi.org/10.1016/j.ijme.2023.100790
Liu L. (2023), “Analyzing the text contents produced by ChatGPT: Prompts, feature-components in responses, and a predictive model”, in Journal of Educational Technology Development and Exchange, 16, 1, pp. 49-70: https://doi.org/10.18785/jetde.1601.03. DOI: https://doi.org/10.18785/jetde.1601.03
Liu M., Zhang L. J., Zhang D. (2025), “Enhancing student GAI literacy in digital multimodal composing through development and validation of a scale”, in Computers in Human Behavior, 166, pp. 1-16:
https://doi.org/10.1016/j.chb.2025.108569. DOI: https://doi.org/10.1016/j.chb.2025.108569
Liu P., Yuan W., Fu J., Jiang Z., Hayashi H., Neubig G. (2021), “Pre-train, prompt, and predict: A systematic survey of prompting methods in Natural Language Processing”, in ACM Computer Surveys, 55, 9., pp. 1-35:
https://doi.org/10.1145/3560815. DOI: https://doi.org/10.1145/3560815
Liu Y., Deng G., Xu Z., Li Z., Zheng Y., Zhang Y., Zhao L., Zhang T., Wang K. (2024), “A hitchhiker’s guide to jailbreaking ChatGPT via prompt engineering”, in SEA4DQ 2024: Proceedings of the 4th International Workshop on Software Engineering and AI for Data Quality in Cyber-Physical Systems/Internet of Things, ACM, pp. 12-21: https://doi.org/10.1145/3663530.3665021. DOI: https://doi.org/10.1145/3663530.3665021
Lo L. S. (2023), “The CLEAR path: A framework for enhancing information literacy through prompt engineering”, in The Journal of Academic Librarianship, 49, 4, pp. 1-3:
https://doi.org/10.1016/j.acalib.2023.102720. DOI: https://doi.org/10.1016/j.acalib.2023.102720
Lu Y., Bartolo M., Moore A., Riedel S., Stenetorp P. (2022), “Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity”, in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, ACL, pp. 8086-8098: 10.18653/v1/2022.acl-long.556. DOI: https://doi.org/10.18653/v1/2022.acl-long.556
Mezzadri M. (2024), Apprendere, insegnare e valutare le lingue, Franco Cesati Editore, Firenze.
Mezzadri M., Paita M. (2025), “Artificial intelligence in language education: Exploring prompting strategies to foster argumentative writing skills”, in Journal of Studies in Language, Culture, and Society, 8 (1), pp. 188-205.
Mondal S., Bappon S. D., Roy C. K. (2024), “Enhancing user interaction in ChatGPT: Characterizing and consolidating multiple prompts for issue resolution”, in MSR ’24: Proceedings of the 21st International Conference on Mining Software Repositories, ACM, pp. 222-226: https://doi.org/10.1145/3643991.3645085. DOI: https://doi.org/10.1145/3643991.3645085
O’Connor J., Andreas J. (2021), “What context features can transform language models use?”, in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL, pp. 851-864: 10.18653/v1/2021.acl-long.70. DOI: https://doi.org/10.18653/v1/2021.acl-long.70
Oppenlaender J., Linder R., Silvennoinen J. (2024), “Prompting AI art: An investigation into the creative skill of prompt engineering”, in International Journal of Human-Computer Interaction, 1, pp. 1-23: https://doi.org/10.1080/10447318.2024.2431761. DOI: https://doi.org/10.1080/10447318.2024.2431761
Ou A. W., Khuder B., Franzetti S., Negretti R. (2024), “Conceptualising and cultivating Critical GAI Literacy in doctoral academic writing”, in Journal of Second Language Writing, 66, pp. 1-16: https://doi.org/10.1016/j.jslw.2024.101156. DOI: https://doi.org/10.1016/j.jslw.2024.101156
Ranieri M., Cuomo S., Biagini G. (2023), Scuola e intelligenza artificiale: percorsi di alfabetizzazione critica, Carrocci, Roma.
Rawas S. (2024), “ChatGPT: Empowering lifelong learning in the digital age of higher education”, in Education and Information Technologies, 29, pp. 6895-6908: https://doi.org/10.1007/s10639-023-12114-8. DOI: https://doi.org/10.1007/s10639-023-12114-8
Ribeiro M. T., Singh S., Guestrin C. (2016), “Why should I trust you? Explaining the predictions of any classifier”, in KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 1135-1144:
https://doi.org/10.1145/2939672.2939778. DOI: https://doi.org/10.1145/2939672.2939778
Sawalha G., Taj I., Shoufan A. (2024), “Analyzing student prompt and their effect on ChatGPT’s performance”, in Cogent Education, 11, 1, pp. 1-20:
https://doi.org/10.1080/2331186X.2024.2397200. DOI: https://doi.org/10.1080/2331186X.2024.2397200
Shaikh S., Yayilgan S. Y., Klimova B., Pikhart M. (2023), “Assessing the usability of ChatGPT for formal English language learning”, in Investigation in Health, Psychology and Education, 13, 9, pp. 1937-1960: https://doi.org/10.3390/ejihpe13090140. DOI: https://doi.org/10.3390/ejihpe13090140
Steele J. L., (2023), “To GPT or not GPT? Empowering our students to learn with AI”, in Computers and Education: Artificial Intelligence, 5, pp. 1-5:
https://doi.org/10.1016/j.caeai.2023.100160. DOI: https://doi.org/10.1016/j.caeai.2023.100160
Su Y., Lin Y., Lai C. (2023), “Collaborating with ChatGPT in argumentative writing classrooms”, in Assessing Writing, 57, pp. 1-13:
https://doi.org/10.1016/j.asw.2023.100752. DOI: https://doi.org/10.1016/j.asw.2023.100752
Tan B., Yang Z., Al-Shedivat M., Xing E. P., Hu Z. (2021), “Progressive generation of long text with pretrained language models”, in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL, pp. 4313-4324: 10.18653/v1/2021.naacl-main.341. DOI: https://doi.org/10.18653/v1/2021.naacl-main.341
Tlili A., Shehata B., Adarkwah M. A., Bozkurt A., Hickey D. T., Huang R., Agyemang B. (2023), “What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education”, in Smart Learning Environments, 10, 15, pp. 1-24: https://doi.org/10.1186/s40561-023-00237-x. DOI: https://doi.org/10.1186/s40561-023-00237-x
Tseng W., Warschauer M. (2023), “AI-writing tools in education: if you can’t beat them, join them”, in Journal of China Computer-Assisted Language Learning, 3, 2, pp. 258-262:
https://doi.org/10.1515/jccall-2023-0008. DOI: https://doi.org/10.1515/jccall-2023-0008
Vaccino-Salvadore S. (2023), “Exploring the ethical dimensions of using ChatGPT in language learning and beyond”, in Languages, 8, 3, p. 191:
https://doi.org/10.3390/languages8030191. DOI: https://doi.org/10.3390/languages8030191
Walter Y. (2024), “Embracing the future of artificial intelligence in the classroom: The relevance of AI literacy, prompt engineering, and critical thinking in modern education”, in International Journal of Educational Technology in Higher Education, 21, 15, pp. 1-29: https://doi.org/10.1186/s41239-024-00448-3. DOI: https://doi.org/10.1186/s41239-024-00448-3
Wang C., Wang Z. (2025), “Investigating L2 writers’ critical AI literacy in AI-assisted writing: An ASPE model”, in Journal of Second Language Writing, 67, pp. 1-17:
https://doi.org/10.1016/j.jslw.2025.101187. DOI: https://doi.org/10.1016/j.jslw.2025.101187
Wang F., Cheung A. C. K., Chai C. S. (2024), “Language learning development in human-AI interaction: A thematic review of the research landscape”, in System, 125, pp. 1-24: https://doi.org/10.1016/j.system.2024.103424. DOI: https://doi.org/10.1016/j.system.2024.103424
Wang L., Chen X., Wang C., Xu L., Shadiev R., Li Y. (2024), “ChatGPT’s capabilities in providing feedback on undergraduate students’ argumentation: A case study”, in Thinking Skills and Creativity, 51, pp. 1-14:
https://doi.org/10.1016/j.tsc.2023.101440. DOI: https://doi.org/10.1016/j.tsc.2023.101440
Wang M., Wang M., Xu X., Yang L., Cai D., Yin M. (2024), “Unleashing ChatGPT’s power: A case study on optimizing information retrieval in flipped classrooms via prompt engineering”, in IEEE Transactions on Learning Technologies, 17, pp. 629-641:
https://doi.org/10.1109/TLT.2023.3324714. DOI: https://doi.org/10.1109/TLT.2023.3324714
Warschauer M., Tseng W., Yim S., Webster T., Jacob S., Du Q., Tate T. (2023), “The affordances and contradictions of AI-generated text for writers of English as a second or foreign language”, in Journal of Second Language Writing, 63, pp. 1-7: https://doi.org/10.1016/j.jslw.2023.101071. DOI: https://doi.org/10.2139/ssrn.4404380
White J., Fu Q., Hays S., Sandborn M., Olea C., Gilbert H., Elnashar A., Spencer-Smith J., Schmidt D. C. (2023), “A prompt pattern catalogue to enhance prompt engineering with ChatGPT”, in PLoP ‘23: Proceedings of the 30th Conference on Pattern Languages of Programs, The Hillside Group, USA, pp. 1-31.
Wu T., Terry M., Cai C. J. (2022), “AI chains: Transparent and controllable human-AI interaction by chaining Large Language Model prompts”, in CHI ‘22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, ACM, pp. 1-22:
https://doi.org/10.1145/3491102.3517582. DOI: https://doi.org/10.1145/3491102.3517582
Young J. C., Shishido M. (2023), “Investigating OpenAI’s ChatGPT potentials in generating chatbot’s dialogue for English as a Foreign Language Learning”, in International Journal of Advanced Computer Science and Applications, 14, 6, pp. 65-72:
http://dx.doi.org/10.14569/IJACSA.2023.0140607. DOI: https://doi.org/10.14569/IJACSA.2023.0140607
Zamfirescu-Pereira J. D., Wong R. Y., Hartmann B., Yang Q. (2023), “Why Johnny can’t prompt: How non-AI experts try (and fail) to design LLM prompts”, in CHI ‘23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, ACM, pp. 1-21: https://doi.org/10.1145/3544548.3581388. DOI: https://doi.org/10.1145/3544548.3581388
Zhao T. Z., Wallace E., Feng S., Klein D., Singh, S. (2021), “Calibrate before use: Improving few-shot performance of language models”, in PMLR: Proceedings of the 38th International Conference on Machine Learning, pp. 12697-12706.
Dowloads
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2025 Marco Mezzadri, Mariapaola Paita

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Condividi allo stesso modo 4.0.


