Salta al menu principale di navigazione Salta al contenuto principale Salta al piè di pagina del sito

Saggi per la call-sezione sottoposta a peer review

N. 8 (2024): Suono: la dimensione sonora del quotidiano tra arti visive, macchine, musica elettronica. Prospettive teoriche, pratiche e culturali (Vol. 2)

Tyranny of (AI)Thought. L'intelligenza artificiale nella composizione musicale: un caso di studio su Krallice “Diotima”

DOI
https://doi.org/10.54103/connessioni/26583
Inviata
settembre 25, 2024
Pubblicato
2024-12-31

Abstract

In questo articolo intendiamo discutere la crescente influenza dell'intelligenza artificiale (IA) nei campi dell'arte. Il fenomeno, già da tempo familiare nel settore delle arti visive, sta oggi acquistando rilevanza anche in quello della musica. L'impatto dell'IA sulla musica, in particolare sui sottogeneri più avanguardisti e sperimentali, sta generando dibattiti che spaziano dai copyright, all'autenticità e, soprattutto, alla creatività. Il caso specifico discusso in questa ricerca è l'album Diotima della band newyorkese Krallice, uscito nel 2011, e la sua "controparte" generata da Dadabots, un collettivo che sperimenta con le IA, Coditany of Timeness, creata utilizzando una rete neurale addestrata su Diotima. Pubblicato al NeurIPS 2017, Coditany of Timeness esemplifica come l'IA possa reinterpretare stili musicali, permettendo di avviare una riflessione sulla creatività "macchinica". Entrambi gli album sono stati sottoposti ad analisi per quanto riguarda la struttura delle canzoni, la melodia e il linguaggio armonico. La dimensione creativa retrostante il progetto è stata approfondita attraverso un’analisi testuale di articoli e interviste online, per un totale di 37 documenti. Questo insieme di risultati sono poi stati discussi con i membri dei Krallice attraverso un'intervista semi strutturata. L'intento è quello di esplorare il modo in cui l'IA interagisce con il processo creativo umano, ponendo domande su come la macchina interpreti questi processi, e su come questi risultati siano percepiti dagli artisti stessi.

Riferimenti bibliografici

  1. Alexander S., Rutherford J., A critique of techno-optimism: Efficiency without sufficiency is lost, in: S. Alexander, J. Rutherford (eds.), Routledge handbook of global sustainability governance, Routledge 2019, pp. 231-241.
  2. Anantrasirichai N., Bull D., Artificial intelligence in the creative industries: a review, in «Ar-tificial Intelligence Review», vol. 55, n. 1, 2022, pp. 589-656.
  3. Balaban M., Ebcioğlu K., Laske O. (eds.), Understanding music with AI: perspectives on mu-sic cognition, MIT Press 1992.
  4. Barenboim G., Debbio L. D., Hirn J., Sanz V., Exploring how a generative AI interprets music, in «Neural Computing and Applications», 2024, pp. 1-16.
  5. Barrett T., Criticizing art, Mayfield, Mountain View (CA) 1994.
  6. Baudrillard J., Simulacra and simulation, University of Michigan Press 1994.
  7. Bauman Z., Liquid modernity, John Wiley & Sons 2013.
  8. Becker H.S., Art worlds: updated and expanded, University of California Press 2023.
  9. Benjamin W., Jennings M.W., The work of art in the age of its technological reproducibility [first version], in «Grey Room», n. 39, 2010, pp. 11-37.
  10. Bernardini N., Erik Satie’s Musique d’Ameublement, some ninety years later, Furniture Mu-sic/Der Blauer Hase 2008.
  11. Bigsby C.W.E., Dada & surrealism, Routledge 2017.
  12. Birks M., Mills J., Grounded theory: A practical guide, Sage 2015.
  13. Birtchnell T., Listening without ears: Artificial intelligence in audio mastering, in «Big Data & Society», vol. 5, n. 2, 2018, 2053951718808553.
  14. Born G., The social and the aesthetic: For a post-Bourdieuian theory of cultural production, in «Cultural Sociology», vol. 4, n. 2, 2010, pp. 171-208.
  15. Bovone L., Tra riflessività e ascolto: l’attualità della sociologia, Armando Editore 2010.
  16. Bown O., Sociocultural and Design Perspectives on AI-Based Music Production: Why Do We Make Music and What Changes if AI Makes It for Us?, in: E.R. Miranda (ed.), Handbook of Artificial Intelligence for Music, Springer, Cham 2021.
  17. Braguinski N., Mathematical music: from antiquity to music AI, Focal Press 2022.
  18. Braidotti R., Posthuman, all too human: Towards a new process ontology, in «Theory, Cul-ture & Society», vol. 23, n. 7-8, 2006, pp. 197-208.
  19. Cao Y., Li S., Liu Y., Yan Z., Dai Y., Yu P.S., Sun L., A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt, arXiv preprint arXiv:2303.04226, 2023.
  20. Carr C.J., Zukowski Z., Generating albums with samplernn to imitate metal, rock, and punk bands, arXiv preprint arXiv:1811.06633, 2018.
  21. Carruthers P., The architecture of the mind, Oxford University Press 2006.
  22. Chen H., Xiao Q., Yin X., Generating music algorithm with deep convolutional generative adversarial networks, in: 2019 IEEE 2nd International Conference on Electronics Tech-nology (ICET), IEEE 2019, pp. 576-580.
  23. Chu H., Kim J., Kim S., Lim H., Lee H., Jin S., Lee J., Kim T., Ko S., An empirical study on how people perceive AI-generated music, in: Proceedings of the 31st ACM International Con-ference on Information & Knowledge Management, 2022, pp. 304-314.
  24. Chun W.H.K., Fisher A.W., Keenan T., New media, old media: A history and theory reader, Routledge 2004.
  25. Chung J., AI Luddites: Consumers Penalize Creative Work Output Generated by Artificial In-telligence, PREPRINT (Version 1) available at Research Square, 2023.
  26. Civit M., Civit-Masot J., Cuadrado F., Escalona M.J., A systematic review of artificial intelli-gence-based music generation: Scope, applications, and future trends, in «Expert Sys-tems with Applications», vol. 209, 2022, 118190.
  27. Clarke E.F., Lost and found in music: Music, consciousness and subjectivity, in «Musicae Sci-entiae», vol. 18, n. 3, 2014, pp. 354-368.
  28. Cole R., The problem with AI music: song and cyborg creativity in the digital age, in «Popu-lar Music», vol. 39, n. 2, 2020, pp. 332-338.
  29. Colebrook C., Understanding Deleuze, Routledge 2020.
  30. Cook N., Music as creative practice, Oxford University Press 2018.
  31. Cope D., Experiments in musical intelligence (EMI): Non‐linear linguistic‐based composition, in «Journal of New Music Research», vol. 18, n. 1-2, 1989, pp. 117-139.
  32. Csikszentmihalyi M., Society, Culture, and Person: A Systems View of Creativity, in: The Sys-tems Model of Creativity, Springer, Dordrecht 2014.
  33. Czobor-Lupp M., Hannah Arendt on the Power of Creative Making in a World of Plural Cul-tures, in «The European Legacy», vol. 13, n. 4, 2008, pp. 445-461.
  34. Da Silva P., David Cope and Experiments in Musical Intelligence, Spectrumpress 2003.
  35. Datta H., Knox G., Bronnenberg B.J., Changing their tune: How consumers’ adoption of online streaming affects music consumption and discovery, in «Marketing Science», vol. 37, n. 1, 2018, pp. 5-21.
  36. De Mori B.B., Music and non-human agency, in: J.C. Post (ed.), Ethnomusicology: A Contem-porary Reader, Volume II, Routledge, New York 2017, pp. 181-194.
  37. Dearnley C., A reflection on the use of semi-structured interviews, in «Nurse Researcher», vol. 13, n. 1, 2005.
  38. Deleuze G., Guattari F., What is philosophy?, Columbia University Press 1996.
  39. Deruty E., Grachten M., Lattner S., Nistal J., Aouameur C., On the Development and Prac-tice of AI Technology for Contemporary Popular Music Production, in «Transactions of the International Society for Music Information Retrieval», vol. 5, n. 1, 2022, pp. 35-50.
  40. Dunsby J., Whittall A., Music analysis in theory and practice, Faber Music, London 1988.
  41. Epstein Z., Hertzmann A., Investigators of Human Creativity, Akten M., Farid H., Fjeld J., ... & Smith A., Art and the science of generative AI, in «Science», vol. 380, n. 6650, 2023, pp. 1110-1111.
  42. Eriksson M., Fleischer R., Johansson A., Snickars P., Vonderau P., Spotify teardown: Inside the black box of streaming music, MIT Press 2019.
  43. Ernst W., Sonic Time Machines: Explicit Sound, Sirenic Voices, and Implicit Sonicity, Amster-dam University Press, Amsterdam 2016.
  44. Ferguson L., Band-in-a-box for the general music classroom, in «General Music Today», vol. 18, n. 2, 2005, pp. 7-13.
  45. Ferrara L., Philosophy and the analysis of music: Bridges to musical sound, form, and refer-ence, Greenwood Press, New York 1991.
  46. Feuerriegel S., Hartmann J., Janiesch C., Zschech P., Generative ai, in «Business & Infor-mation Systems Engineering», vol. 66, n. 1, 2024, pp. 111-126.
  47. Floridi L., Establishing the rules for building trustworthy AI, in: Ethics, Governance, and Poli-cies in Artificial Intelligence, 2021, pp. 41-45.
  48. Fosler-Lussier E., Markov models and hidden Markov models: A brief tutorial, International Computer Science Institute 1998.
  49. Franklin J.A., Recurrent neural networks for music computation, in «INFORMS Journal on Computing», vol. 18, n. 3, 2006, pp. 321-338.
  50. Galanter P., Artificial intelligence and problems in generative art theory, in: Proceedings of EVA London 2019, BCS Learning & Development 2019.
  51. Galaz V., Centeno M.A., Callahan P.W., Causevic A., Patterson T., Brass I., ... & Levy K., Arti-ficial intelligence, systemic risks, and sustainability, in «Technology in Society», vol. 67, 2021, 101741.
  52. Gaut B., The philosophy of creativity, in «Philosophy Compass», vol. 5, n. 12, 2010, pp. 1034-1046.
  53. Gaut B., Creativity and rationality, in «The Journal of Aesthetics and Art Criticism», vol. 70, n. 3, 2012, pp. 259-270.
  54. Gomez J., Math Rock, Bloomsbury Publishing USA 2024.
  55. Gridley M., Maxham R., Hoff R., Three approaches to defining jazz, in «The Musical Quar-terly», vol. 73, n. 4, 1989, pp. 513-531.
  56. Helmanto F., Dayana Y.F., The Development of Musicalization Poetry assisted by Artificial Intelligence, in «Foremost Journal», vol. 5, n. 2, 2024, pp. 119-126.
  57. Hernandez-Olivan C., Beltran J.R., Music composition with deep learning: A review, in: Ad-vances in speech and music technology: computational aspects and applications, 2022, pp. 25-50.
  58. Hillier B., Considering genre in metal music, in «Metal Music Studies», vol. 6, n. 1, 2020, pp. 5-26.
  59. Hong J.W., Fischer K., Ha Y., Zeng Y., Human, I wrote a song for you: An experiment testing the influence of machines’ attributes on the AI-composed music evaluation, in «Com-puters in Human Behavior», vol. 131, 2022, 107239.
  60. Hunt-Hendrix H., Transcendental black metal, in: Hideous Gnosis: Black Metal Theory Sym-posium, vol. 1, 2010, pp. 53-65.
  61. Jiang H.H., Brown L., Cheng J., Khan M., Gupta A., Workman D., ... & Gebru T., AI Art and its Impact on Artists, in: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 2023, pp. 363-374.
  62. Jo A., The promise and peril of generative AI, in «Nature», vol. 614, n. 1, 2023, pp. 214-216.
  63. Kahn-Harris K., Extreme metal: Music and culture on the edge, Berg 2006.
  64. Kahn-Harris K., End of the World Music: Is Extreme Metal the Sound of the Apocalypse?, in: J. Wallis, K. Kahn-Harris (eds.), The End All Around Us. Apocalyptic Texts and Popular Culture, Routledge 2009, pp. 22-42.
  65. Kaliakatsos-Papakostas M., Floros A., Vrahatis M.N., Artificial intelligence methods for mu-sic generation: a review and future perspectives, in: Nature-Inspired Computation and Swarm Intelligence, 2020, pp. 217-245.
  66. Karpov N., Artificial Intelligence for Music Composing: Future Scenario Analysis, 2020.
  67. Knott E., Rao A.H., Summers K., Teeger C., Interviews in the social sciences, in «Nature Re-views Methods Primers», vol. 2, n. 1, 2022, 73.
  68. Kulesco C., Cima G., Metal Theory. Esegesi del vero metallo, D Editore, Roma 2024.
  69. Lanier Jr C.D., Rader C.S., Synthesizers: an exploration into the iconicity of marketplace icons, in «Consumption Markets & Culture», vol. 24, n. 6, 2021, pp. 596-610.
  70. Leman M., Maes P.J., Music perception and embodied music cognition, in: L. Shapiro (ed.), The Routledge handbook of embodied cognition, Routledge 2014, pp. 81-89.
  71. Magaldi D., Berler M., Semi-structured interviews, in: Encyclopedia of personality and indi-vidual differences, 2020, pp. 4825-4830.
  72. Mansoori M., Murali R., A systematic survey on music composition using artificial intelli-gence, in: 2022 International Conference for Advancement in Technology (ICONAT), IEEE 2022, pp. 1-8.
  73. Mclntyre R., Consumption in contemporary capitalism: Beyond Marx and Veblen, in «Review of Social Economy», vol. 50, n. 1, 1992, pp. 40-60.
  74. Middleton R., Popular music analysis and musicology: bridging the gap, in «Popular Music», vol. 12, n. 2, 1993, pp. 177-190.
  75. Moore A., Patterns of harmony, in «Popular Music», vol. 11, n. 1, 1992, pp. 73-106.
  76. Morriss-Kay G.M., The evolution of human artistic creativity, in «Journal of Anatomy», vol. 216, n. 2, 2010, pp. 158-176.
  77. Moruzzi C., Should Human Artists Fear AI?: A Report on the Perception of Creative AI, in: M. Verdicchio, M. Carvalhais, L. Ribas, A. Rangel (eds.), Proceedings of the Eighth Confer-ence on Computation, Communication, Aesthetics & X, Universidade do Porto 2020, pp. 170-185.
  78. Moruzzi C., Measuring creativity: an account of natural and artificial creativity, in «Europe-an Journal for Philosophy of Science», vol. 11, n. 1, 2021, p. 1.
  79. Napolitano D., AI Voice Between Anthropocentrism and Posthumanism: Alexa and Voice Cloning, in «Journal of Interdisciplinary Voice Studies», vol. 7, n. 1, 2022, pp. 35-49.
  80. Nketia J.K., The juncture of the social and the musical: the methodology of cultural analysis, in «The World of Music», vol. 23, n. 2, 1981, pp. 22-39.
  81. Norris J.R., Markov chains, Cambridge University Press 1998.
  82. Notaro A., State-of-the-art: AI through the (artificial) Artist’s Eye, in: Proceedings of EVA London 2020: Electronic Visualisation and the Arts, 2020, pp. 322-328.
  83. Novikova K., Future of Artificial Intelligence in Music Industry: The Connection Between Generative AI and Music Production, 2024.
  84. Olson B.H., I am the black wizards: Multiplicity, mysticism and identity in black metal music and culture, Master’s thesis, Bowling Green State University 2008.
  85. Ooi K.B., Tan G.W.H., Al-Emran M., Al-Sharafi M.A., Capatina A., Chakraborty A., ... & Fos-so Wamba S., The potential of generative artificial intelligence across disciplines: Per-spectives and future directions, in «Journal of Computer Information Systems», 2023, pp. 1-32.
  86. Percino G., Klimek P., Thurner S., Instrumentational complexity of music genres and why simplicity sells, in «PloS One», vol. 9, n. 12, 2014, e115255.
  87. Phillipov M., Death metal and music criticism: Analysis at the limits, Lexington Books 2012.
  88. Piekut B., Experimentalism otherwise: The New York avant-garde and its limits, University of California Press 2011.
  89. Pošćić A., Kreković G., On the human role in generative art: a case study of AI-driven live coding, in «Journal of Science and Technology of the Arts», vol. 12, n. 3, 2020, pp. 45-62.
  90. Potts J., Keane M., Flew T., Cunningham S., Hartley J., Key concepts in creative industries, Sage Publications 2012.
  91. Qiu Z., Ren Y., Li C., Liu H., Huang Y., Yang Y., ... & Zhang K., Mind band: a crossmedia AI music composing platform, in: Proceedings of the 27th ACM international conference on multimedia, 2019, pp. 2231-2233.
  92. Regev M., Producing artistic value: The case of rock music, in «The Sociological Quarterly», vol. 35, n. 1, 1994, pp. 85-102.
  93. Roudavski S., McCormack J., Post-anthropocentric creativity, in «Digital Creativity», vol. 27, n. 1, 2016, pp. 3-6.
  94. Runco M.A., Jaeger G.J., The standard definition of creativity, in «Creativity Research Jour-nal», vol. 24, n. 1, 2012, pp. 92-96.
  95. Russell S., Bohannon J., Artificial intelligence. Fears of an AI pioneer, in «Science (New York, NY)», vol. 349, n. 6245, 2015, pp. 252-252.
  96. Samuelson P., Generative AI meets copyright, in «Science», vol. 381, n. 6654, 2023, pp. 158-161.
  97. Sandred O., Laurson M., Kuuskankare M., Revisiting the Illiac Suite–a rule-based approach to stochastic processes, in «Sonic Ideas/Ideas Sonicas», vol. 2, 2009, pp. 42-46.
  98. Sawyer R.K., Individual and group creativity, in: J.C. Kaufman, R.J. Sternberg (eds.), Cam-bridge handbook of creativity, Cambridge University Press, Cambridge 2010, pp. 366-380.
  99. Sawyer R.K., Henriksen D., Explaining creativity: The science of human innovation, Oxford University Press 2024.
  100. Schmid U., Ragni M., Gonzalez C., Funke J., The challenge of complexity for cognitive sys-tems, in «Cognitive Systems Research», vol. 12, n. 3-4, 2011, pp. 211-218.
  101. Schubert E., McPherson G.E., The perception of emotion in music, Oxford University Press 2006.
  102. Scruton R., The aesthetics of music, Oxford University Press 1999.
  103. Seaver N., Computing taste: Algorithms and the makers of music recommendation, Univer-sity of Chicago Press 2022.
  104. Shank D.B., Stefanik C., Stuhlsatz C., Kacirek K., Belfi A.M., AI composer bias: Listeners like music less when they think it was composed by an AI, in «Journal of Experimental Psy-chology: Applied», vol. 29, n. 3, 2023, pp. 676.
  105. Simon F.M., Altay S., Mercier H., Misinformation reloaded? Fears about the impact of gen-erative AI on misinformation are overblown, in «Harvard Kennedy School Misinfor-mation Review», vol. 4, n. 5, 2023.
  106. Simondon G., Technical mentality, in «Parrhesia», vol. 7, n. 1, 2009, pp. 17-27.
  107. Smialek E.T., Genre and expression in extreme metal music, ca. 1990–2015, McGill Univer-sity (Canada) 2015.
  108. Striphas T., Algorithmic culture, in «European Journal of Cultural Studies», vol. 18, n. 4-5, 2015, pp. 395-412.
  109. Sturm B.L., Iglesias M., Ben-Tal O., Miron M., Gómez E., Artificial intelligence and music: open questions of copyright law and engineering praxis, in: Arts, vol. 8, n. 3, MDPI 2019, 115.
  110. Sun D., Wang H., Xiong J., Would you like to listen to my music, my friend? An experiment on AI musicians, in «International Journal of Human–Computer Interaction», vol. 40, n. 12, 2024, pp. 3133-3143.
  111. Taddeo M., Floridi L., How AI can be a force for good, in «Science», vol. 361, n. 6404, 2018, pp. 751-752.
  112. Tagg P., Analysing popular music: theory, method and practice, in «Popular Music», vol. 2, 1982, pp. 37-67.
  113. Taylor J., El Ardeliya V., Wolfson J., Exploration of Artificial Intelligence in Creative Fields: Generative Art, Music, and Design, in «International Journal of Cyber and IT Service Management», vol. 4, n. 1, 2024, pp. 39-45.
  114. Tyft A.T., If you don’t like the old Darkthrone records… Fuck off!”-Nostalgia and subcultural capital as gatekeeping incentives in the black metal community, 2021.
  115. van der Zant T., Kouw M., Schomaker L., Generative Artificial Intelligence, Springer, Cham (Switzerland) 2013.
  116. Venegas-Vera A.V., Colbert G.B., Lerma E.V., Positive and negative impact of social media in the COVID-19 era, in «Reviews in Cardiovascular Medicine», vol. 21, n. 4, 2020, pp. 561-564.
  117. Verma S., Artificial intelligence and music: History and the future perspective, in «Interna-tional Journal of Applied Research», vol. 7, n. 2, 2021, pp. 272-275.
  118. Vuust P., Heggli O.A., Friston K.J., Kringelbach M.L., Music in the brain, in «Nature Reviews Neuroscience», vol. 23, n. 5, 2022, pp. 287-305.
  119. Wodak R., Complex texts: Analysing, understanding, explaining and interpreting meanings, in «Discourse Studies», vol. 13, n. 5, 2011, pp. 623-633.
  120. Young J.G., What is creativity?, in «The Journal of Creative Behavior», vol. 19, n. 2, 1985, pp. 77–87.
  121. Zhang C., Lu Y., Study on artificial intelligence: The state of the art and future prospects, in «Journal of Industrial Information Integration», vol. 23, 2021, 100224.
  122. Zhou E., Lee D., Generative artificial intelligence, human creativity, and art, in «PNAS Nex-us», vol. 3, n. 3, 2024.
  123. 신원식, 김민철, Music artificial intelligence: A Case of Google Magenta, in «산경논집», vol. 40, n. 1, 2020, pp. 21-28.

Downloads

I dati di download non sono ancora disponibili.