Monitoraggio proattivo delle condizioni croniche attraverso l’uso di Wearable Mounting Devices (WDMs) nelle cure primarie: protocollo di uno studio multicentrico di fattibilità randomizzato e controllato in Italia e Finlandia
DOI:
https://doi.org/10.54103/dn/28128Parole chiave:
Assistenza primaria, infermieri di famiglia e di comunità, dispositivi di monitoraggio indossabili, assistenza proattivaAbstract
BACKGROUND: I dispositivi di monitoraggio indossabili (WMD) sono uno strumento promettente per supportare l'autogestione delle condizioni croniche, ma l'uso prolungato a lungo termine rimane una sfida. Questo studio multicentrico di fattibilità, randomizzato e controllato, ha l'obiettivo di sviluppare e valutare un intervento di monitoraggio proattivo che utilizzi i WMD per persone con patologie croniche in contesti di cure primarie in Italia e Finlandia.
METODI: L'intervento sarà sviluppato seguendo il quadro del Medical Research Council, guidato dalla teoria dell'autodeterminazione. I focus-group con le parti interessate informeranno la progettazione delle procedure di intervento, dei materiali di formazione e delle strategie per promuovere l'uso sostenuto dei WMD facilitando la competenza, l'autonomia e la relazione. Lo studio di fattibilità randomizzerà i partecipanti al gruppo di intervento sull'ADM, che riceverà un monitoraggio proattivo da parte di infermieri di famiglia e di comunità, oppure a un gruppo di controllo che riceverà un'assistenza standard. Gli esiti comprendono l'usabilità, la fattibilità (reclutamento, abbandono, difficoltà tecniche), l'implementazione (uso continuato, aderenza), la qualità della vita, l'autoefficacia e l'utilizzo dei servizi sanitari. I dati qualitativi esploreranno le differenze culturali tra i due Paesi.
RISULTATI E CONCLUSIONI: Dando priorità al coinvolgimento degli stakeholder, alle basi teoriche e alle considerazioni pragmatiche durante la fase di sviluppo dell'intervento, questo studio mira a sviluppare un programma di monitoraggio proattivo fattibile ed efficace per migliorare la gestione delle condizioni croniche attraverso l'uso sostenuto dei MMG nelle cure primarie in diversi contesti europei, aumentando le opportunità per gli infermieri di avere strumenti avanzati per il monitoraggio dei pazienti e strategie di autoefficacia.
Downloads
Riferimenti bibliografici
1. Brennan P, Perola M, van Ommen GJ, Riboli E. Chronic disease research in Europe and the need for integrated population cohorts. Eur J Epidemiol. 2017;32(9):741-9.
2. Zimlichman E, Nicklin W, Aggarwal R, Bates DW. Health Care 2030: The Coming Transformation. Catalyst non-issue content. 2021;2(2).
3. Endalamaw A, Khatri RB, Erku D, Nigatu F, Zewdie A, Wolka E, et al. Successes and challenges towards improving quality of primary health care services: a scoping review. BMC Health Serv Res. 2023;23(1):893.
4. Hunter DJ, Bengoa R. Meeting the challenge of health system transformation in European countries. Policy and Society. 2022;42(1):14-27.
5. Mezzalira E, Canzan F, Marini G, Longhini J, Leardini C, Saiani L, et al. Introduction of novel complex integrated care models supported by digital health interventions in European primary settings: a scoping review. Health Policy and Technology. 2024;13(4):100896.
6. Conti A, Albanesi B, Busca E, Martini L, Costa C, Campagna S. [Family and community nursing: overview of practice in Europe]. Assist Inferm Ric. 2021;40(3):131-6.
7. Hudon C, Chouinard MC, Diadiou F, Lambert M, Bouliane D. Case Management in Primary Care for Frequent Users of Health Care Services With Chronic Diseases: A Qualitative Study of Patient and Family Experience. Ann Fam Med. 2015;13(6):523-8.
8. Longhini J, Mezzalira E, Saiani L, Landi S, Leardini C, Marini G. Identificare i bisogni della popolazione: metodi di analisi e di stratificazione. Assistenza Infermieristica e Ricerca. 2023;42(2):103-10.
9. Musio ME, Vassalini L, Centanaro R, Bariola M, Ghiozzi M, Santacroce M, et al. Advancing nursing in Italy through the development and evaluation of an innovative postgraduate programme in Family and Community Nursing - A pilot study. J Prev Med Hyg. 2022;63(2):E331-e43.
10. Rosa WE, Fitzgerald M, Davis S, Farley JE, Khanyola J, Kwong J, et al. Leveraging nurse practitioner capacities to achieve global health for all: COVID-19 and beyond. Int Nurs Rev. 2020;67(4):554-9.
11. Guk K, Han G, Lim J, Jeong K, Kang T, Lim E-K, et al. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials. 2019;9(6):813.
12. Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med. 2018;15(5):429-48.
13. Jafleh EA, Alnaqbi FA, Almaeeni HA, Faqeeh S, Alzaabi MA, Al Zaman K. The Role of Wearable Devices in Chronic Disease Monitoring and Patient Care: A Comprehensive Review. Cureus. 2024;16(9):e68921.
14. Dorsey ER, Topol EJ. Telemedicine 2020 and the next decade. Lancet. 2020;395(10227):859.
15. Hassanalieragh M, Page A, Soyata T, Sharma G, Aktas M, Mateos G, et al., editors. Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. 2015 IEEE International Conference on Services Computing; 2015 27 June-2 July 2015.
16. Attig C, Franke T. Abandonment of personal quantification: A review and empirical study investigating reasons for wearable activity tracking attrition. Computers in Human Behavior. 2020;102:223-37.
17. Deranek K, Hewitt B, Gudi A, McLeod A. The impact of exercise motives on adolescents’ sustained use of wearable technology. Behaviour & Information Technology. 2021;40(7):691-705.
18. Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist. 2000;55(1):68-78.
19. Ryan RM, Deci EL. Self-determination theory: Basic psychological needs in motivation, development, and wellness. New York, NY, US: The Guilford Press; 2017. xii, 756-xii, p.
20. Liao J, Xiao HY, Li XQ, Sun SH, Liu SX, Yang YJ, et al. A Social Group-Based Information-Motivation-Behavior Skill Intervention to Promote Acceptability and Adoption of Wearable Activity Trackers Among Middle-Aged and Older Adults: Cluster Randomized Controlled Trial. JMIR Mhealth Uhealth. 2020;8(4):e14969.
21. Jung EH, Kang H. Self-Determination in Wearable Fitness Technology: The Moderating Effect of Age. International Journal of Human–Computer Interaction. 2022;38(15):1399-409.
22. Huang H, Wang HHX, Donaghy E, Henderson D, Mercer SW. Using self-determination theory in research and evaluation in primary care. Health Expect. 2022;25(6):2700-8.
23. European Observatory Health Policy Series. In: Busse R, Klazinga N, Panteli D, Quentin W, editors. Improving healthcare quality in Europe: Characteristics, effectiveness and implementation of different strategies. Copenhagen (Denmark): European Observatory on Health Systems and Policies
© World Health Organization (acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies) and OECD (2019). 2019.
24. Skivington K, Matthews L, Simpson SA, Craig P, Baird J, Blazeby JM, et al. A new framework for developing and evaluating complex interventions: update of Medical Research Council guidance. BMJ. 2021;374:n2061.
25. Teixeira PJ, Marques MM, Silva MN, Brunet J, Duda JL, Haerens L, et al. A classification of motivation and behavior change techniques used in self-determination theory-based interventions in health contexts. Motivation Science. 2020;6(4):438-55.
26. Ferre F, de Belvis AG, Valerio L, Longhi S, Lazzari A, Fattore G, et al. Italy: health system review. Health Syst Transit. 2014;16(4):1-168.
27. Marcadelli S, Stievano A, Rocco G. Policy proposals for a new welfare: the development of the family and community nurse in Italy as the key to promote social capital and social innovation. Prim Health Care Res Dev. 2019;20:e109.
28. Keskimaki I, Tynkkynen LK, Reissell E, Koivusalo M, Syrja V, Vuorenkoski L, et al. Finland: Health System Review. Health Syst Transit. 2019;21(2):1-166.
29. Haverinen J, Keränen N, Tuovinen T, Ruotanen R, Reponen J. National Development and Regional Differences in eHealth Maturity in Finnish Public Health Care: Survey Study. JMIR Med Inform. 2022;10(8):e35612.
30. Girolamo GD, Rucci P, Scocco P, Becchi A, Coppa F, D'Addario A, et al. Quality of life assessment: validation of the Italian version of the WHOQOL-Brief. Epidemiologia e Psichiatria Sociale. 2000;9(1):45-55.
31. Siljander E, Luoma M-L, Meriläinen-Porras S. Validity and reliability of Finnish version of WHOQOL-Bref on adult population in Finland. International Journal of Happiness and Development. 2015;2.
32. Miriam W, Christina H, Giulia P, Brian Winfried M, Michael S, Eva M-D. Validation of the Global Physical Activity Questionnaire for self-administration in a European context. BMJ Open Sport & Exercise Medicine. 2017;3(1):e000206.
33. Higgins KN, editor The Stress Management Self-Efficacy Inventory (SMSEI): Development and Initial Psychometrics2005.
34. Trindade GC, Viggiano LGdL, Brant ER, Lopes CAdO, Faria MLd, Ribeiro PHNdS, et al. Evaluation of quality of life in hemophilia patients using the WHOQOL-bref and Haemo-A-Qol questionnaires. Hematology, Transfusion and Cell Therapy. 2019;41(4):335-41.
35. Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, et al. Wearable Health Devices in Health Care: Narrative Systematic Review. JMIR Mhealth Uhealth. 2020;8(11):e18907.
36. Saarikko J, Axelin A, Huvinen E, Rahmani AM, Kolari T, Niela-Vilén H. Effectiveness of supporting lifestyle change in pregnant mothers with obesity through the wearable internet-of-things (SLIM) -intervention on self-efficacy in weight management in pregnant women: A quasi-experimental trial. Midwifery. 2025;140:104235.
37. Longhini J, Marzaro C, Bargeri S, Palese A, Dell'Isola A, Turolla A, et al. Wearable Devices to Improve Physical Activity and Reduce Sedentary Behaviour: An Umbrella Review. Sports Med Open. 2024;10(1):9.
38. Berk SI. Time to Care: Primary Care Visit Duration and Value-Based Healthcare. The American Journal of Medicine. 2020;133(6):655-6.
39. McDonald KM, Rodriguez HP, Shortell SM. Organizational Influences on Time Pressure Stressors and Potential Patient Consequences in Primary Care. Med Care. 2018;56(10):822-30.
40. Neves AL, Burgers J. Digital technologies in primary care: Implications for patient care and future research. European Journal of General Practice. 2022;28(1):203-8.
41. Donetto S, Pierri P, Tsianakas V, Robert G. Experience-based Co-design and Healthcare Improvement: Realizing Participatory Design in the Public Sector. The Design Journal. 2015;18(2):227-48.
42. Baines R, Bradwell H, Edwards K, Stevens S, Prime S, Tredinnick-Rowe J, et al. Meaningful patient and public involvement in digital health innovation, implementation and evaluation: A systematic review. Health Expect. 2022;25(4):1232-45.
43. Fowe IE, Sanders EC, Boot WR. Understanding Barriers to the Collection of Mobile and Wearable Device Data to Monitor Health and Cognition in Older Adults: A Scoping Review. AMIA Jt Summits Transl Sci Proc. 2023;2023:186-95.
44. Auxier J, Savolainen KT, Bender M, Rahmani AM, Sarhaddi F, Azimi I, et al. Exploring Access as a Process of Adaptation in a Self-Monitoring Perinatal eHealth System: Mixed Methods Study From a Sociomaterial Perspective. JMIR Form Res. 2023;7:e44385.
45. Auxier J, Asgari Mehrabadi M, Rahmani AM, Axelin A. A Descriptive Comparative Pilot Study: Association Between Use of a Self-monitoring Device and Sleep and Stress Outcomes in Pregnancy. Comput Inform Nurs. 2023;41(6):457-66.
46. Pouresmail Z, Nabavi FH, Rassouli M. The development of practice standards for patient education in nurse-led clinics: a mixed-method study. BMC Nursing. 2023;22(1):277.
Dowloads
Pubblicato
Come citare
Fascicolo
Sezione
Categorie
Licenza
Copyright (c) 2025 Elisabetta Mezzalira, Luisa Saiani, Anna Axelin

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.
Accettato 2025-02-14
Pubblicato 2025-02-14